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Abstract

We discuss some approaches to declarative programming in-
cluding functional programming, various logic programming
languages and extensions, and definitional programming. In
particular we discuss the programmers need and possibilities
to influence the control part of programs. We also discuss
some problems of the definitional programming language
GCLA and try to find directions for future research into
definitional programming.

1 Introduction

Even though declarative programming languages have been
around for some thirty years by now they have still not
gained any widespread use for real-world applications. At
the same time object-oriented programming has conquered
the world and is the methodology used for most programs
developed today. This is a fact even though the used object-
oriented languages like C++ lacks most features considered
important in declarative programming like a clear and sim-
ple semantics, automatic memory management, and so on.
It should be obvious that the object-oriented approach con-
tains something that is intuitevely appealing to humans. Ac-
cordingly many attempts have been made to include object-
oriented features into declarative programming and several
languages like Prolog and Haskell have object-oriented ex-
tensions

In this note we discuss some existing declarative pro-
gramming paradigms including definitional programming.
In particular we will focus on control and also try to iden-
tify some characteristics that we feel it is necessary to in-
corporate in the next generation definitional programming
language to gain success.

2 Declarative Programming Languages

Most declarative programming languages stem from work in
artificial intelligence and automated theorem proving, areas
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where the need for a higher level of abstraction and a clear
semantic model of programs is obvious.

The basic property of a declarative programming lan-
guage is that a program is a theory in some suitable logic.
This property immediately gives a precise meaning to pro-
grams written in the language. From a programmers point
of the the basic property is that programming is lifted to a
higher level of abstraction. At this higher level of abstrac-
tion the programmer can concentrate on stating what is to
be computed, not necessarily how it is to be computed. In
Kowalski’s terms where algorithm = logic + control, the
programmer gives the logic but not necessarily the control.

According to [30] declarative programming can be un-
derstood in in aweak and a strong sense. Declarative pro-
gramming in the strong sense then means that the program-
mer only has to supply the logic of an algorithm and that all
control information is supplied automatically by the system.
Declarative programming in the weak sense means that the
programmer apart from the logic of a program also must
give control information to yield an efficient program.

2.1 Functional Programming

In functional programming languages programs are built
from function definitions. To give meaning to programs
they are typically mapped on some version of the λ-calculus
which is then given a denotational semantics. There are
both impure (strict) functional languages like Standard ML
[32] allowing things like assignment and pure (lazy) func-
tional languages like Haskell [24].

Modern functional languages like Haskell come rather
close to achieving declarative programming in the strong
sense since programmers rarely need to be aware of control.
On the other hand the execution order of lazy evaluation
is not very easy to understand and the real computational
content of a program is hidden under layers and layers of
syntactic sugar and program transformations. As a conse-
quence the programmer loses control of what is really going
on and may need special tools like heap-profilers to find out
why a program consumes memory in an unexpected way.
To fix the behavior of programs the programmer may be
forced to rewrite the declarative description of the prob-
lem in some way better suited to the particular underlying
implementation. Thus, an important feature of declarative
programming may be lost – the programmer does not only
have to be concerned with how a program is executed but
has to understand a model that is difficult to understand
and very different from the intuitive understanding of the
program.



However, functional programming languages provide many
elegant and powerful features like higher order functions,
strong type systems, list comprehensions, and monads [43].
Several of these notions are being adopted in other declara-
tive programming languages (see below).

Functional languages also support reusing code and come
with a large number of predefined functions. While heavy
use of such general functions give shorter programs it is not
obvious that it makes programs easier to understand. An
example of a general list reducing function is foldr which
can be used to define almost any function taking a list and
reducing it somehow:

fun foldr _ u nil = u
| foldr f u (x::xs) = f x (foldr f u xs)

Functional programming methodology makes heavy use of
foldr and similar functions to define other functions recurs-
ing over lists. For instance the function len can be defined

val len = foldr (add o K 1) 0

where add computes the sum of two integers and K is the K
combinator. We leave up to the reader to understand how
this definition works.

Heavy use of general higher-order functions, function
composition, list comprehensions and so on, makes it possi-
ble to write very short programs but it also turns functional
programming into an activity for experts only since it be-
comes impossible for non-experts to understand the result-
ing programs.

2.2 Logic Programming

For practical applications there exists one logic program-
ming in use: Prolog. Prolog is used for a wide variety of
applications in artificial intelligence, knowledge based sys-
tems, and natural language processing. A (pure) Prolog
program is understood as a set of horn clauses, a subset
of first order predicate logic, which can be given a model-
theoretic semantics, see [27]. Programs are evaluated by
proving queries with respect to the given program.

From a programming point of view Prolog provides two
features not present in functional languages, built-in search
and the ability to compute with partial information. This
is in contrast to functional languages where computations
always are directed, require all arguments to be known and
give exactly one answer. A simple example of how predicates
can be used to compute in several modes and with partial
information is the following appending two lists:

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

Not only can append be used to put two lists together but
also to take a list apart or to append some as yet unknown
list to another one.

The built in search makes it easier to formulate many
problems. For instance, if we define what we mean by a
subset of a list:

subset([],[]).
subset([X|Xs],[X|Ys]) :- subset(Xs,Ys).
subset([_|Xs],Ys) :- subset(Xs,Ys).

we can easily compute all subsets asking the system to find
them for us:

| ?- findall(Xs,subset([1,2,3],Xs),Xss).

Xss = [[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

While the built-in search gives powerful problem solv-
ing capacities to the language it also makes the evaluation
principle more complicated. Accordingly, Prolog and most
other logic programming languages only provide declara-
tive programming in the weak sense where the programmer
also need to provide some control information to get an ef-
ficient program from the declarative problem description.
The method used by many Prolog programmers is rather
ad hoc: First the problem is expressed in a nice declarative
fashion as a number of predicate definitions. Then the pro-
gram is tested and found slow. To remedy the problem the
original program is rewritten by adding control information
(cuts) as annotations in the original code and doing some
other changes like changing the order of arguments to pred-
icates. The resulting program is likely to be quite different
from the original one – and less declarative. As an example,
assume that we wish to define a predicate lookup that finds
a certain element in a list of pairs of keys and values. If the
element is missing the result should be the atom notfound.
A first definition could be:

lookup(Key,[],notfound).
lookup(Key,[(Key,Value)|_],Value).
lookup(Key,[_|Xs],Value) :- lookup(Key,Xs,Value).

However if we compute lookup(1,[(1,a),(1,a)],V) we will
get the answer V = a twice and the answer V = notfound
once. Of course in this case we have a logical error but the
program can be rewritten using the same logic giving only
one answer:

lookup(Key,[],notfound).
lookup(Key,[(Key,Value)|_],Value) :- !.
lookup(Key,[_|Xs],Value) :- lookup(Key,Xs,Value).

The cut (!) means that the third clause is never tried if
the second can be applied. Note how this destroys the logic
of the program (even if it gives the desired answers). A
more efficient version can be defined if we swap the order of
the two first arguments since it will allow the compiler to
generate better code. Prolog also includes loads of impure
features like arithmetic, meta predicates, operational I/O,
and so on. All in all there exist few real Prolog programs
which are truly declarative.

It is possible to incorporate notions like monads and list
comprehensions into logic programming. For instance [8]
shows how it can be done in the higher-order language λ-
Prolog.

There are also languages trying to overcome the deficien-
cies of Prolog by providing cleaner mechanisms for control
and meta-programming. An example is the language Gödel
[23] which is a typed language based on a many-sorted logic.

2.3 Functional Logic Programming

A functional logic programming language tries to amalgate
functional and logic programming into one (hopefully) more
expressive language. In [30] it is argued that such a lan-
guage should serve to bring together the researchers in the
respective areas. This should speed up progress towards
a truly declarative language. Unifying functional and logic
programming should also make it easier for students to mas-
ter declarative programming since they would only need to
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learn one language. The efforts to combine functional and
logic programming mainly seem to come from the logic pro-
gramming community trying to create more powerful and el-
egant languages by including functional evaluation and pro-
gramming techniques into logic programming.

The two most commonly used methods for functional
evaluation languages combining functional and logic pro-
gramming is narrowing (see below) and residuation [1]. Lan-
guages using narrowing suspends evaluation of functional
expressions until they are sufficiently instantiated to be re-
duced deterministically. Thus any mechanism for evaluating
functions will do.

2.3.1 Narrowing.

The theoretical foundation of languages using narrowing is
Horn-clause logic with equality [35], where functions are de-
fined by introducing new clauses for the equality predicate.
Narrowing, a combination of unification and rewriting that
originally arose in the context of automatic theorem prov-
ing [37], is used to solve equations, which in a functional
language setting amounts to evaluate functions, possibly in-
stantiating unknown functional arguments. Narrowing is
a sound and complete operational semantics for functional
logical languages. Unrestricted narrowing is very expen-
sive however, so a lot of work has gone into finding efficient
versions of narrowing for useful classes of functional logic
programs. A survey is given in [21].

On an abstract level programs in all narrowing languages
consists of a number of equational clauses defining functions:

LHS = RHS : − C1, . . . , Cn n ≥ 0

where a number of left-hand sides (LHS) with the same
principal functor define a function. The Ci’s are conditions
that must be satisfied for the equality between the LHS and
the right-hand side (RHS) to hold. Narrowing can then be
used to solve equations by repeatedly unifying some subterm
in the equation to be solved with a LHS in the program,
and then replacing the subterm by the instantiated RHS
of the rule. Some examples of languages using narrowing
is ALF [18, 19], using a narrowing strategy correspnding to
eager evaluation, and Babel [33] and K-LEAF [13] using lazy
evaluation (narrowing). As an example of a functional logic
program and a narrowing derivation consider the definition

0 + N = N.
s(M) + N = s(M+N).

and the equation X+s(0)=s(s(0)) to be solved. A solution
is given by first doing a narrowing step with the second rule
replacing X+s(0) by s(Y+s(0)) binding X to s(Y). This gives
the new equation s(Y+s(0))=s(s(0)). A narrowing step
with the first rule can then be used to replace the subterm
Y+s(0) by s(0), thus binding Y to 0 and therefore X to s(0).
Since the equation to solve now is s(s(0))=s(s(0)) we have
found the solution X=s(0).

2.3.2 Escher.

An example of a language combining functional and logic
programming taking a different approach is the language
Escher [28, 29]. Escher does not use narrowing as its oper-
ational semantics, nor does it build on first order predicate
logic. Instead Escher programs are theories in an extension
of Church’s simple theory of types and programs are evalu-
ated using a rewriting operational semantics, not a theorem

proving one. Escher was designed with the specific goal of
combining the best parts of the logic language Gödel, the
higher order logic language λ-Prolog, and the functional lan-
guage Haskell. Some features of Escher are ordinary logic
programming capabilities, functional programming includ-
ing higher order functions, list comprehensions and monadic
I/0, built in set-processing, some higher order logic program-
ming and so on.

The advantage of using a rewriting operational semantics
is that no search is involved so each query has a unique
answer and it should be possible to make the implementation
more efficient. On the other hand Escher attempts to be
so expressive that it may be hard to develop an efficient
implementation anyway. The number of rewrite rules used
in Escher is very large, well over one hundred. In [28] Lloyd
writes

The rewrites were determined by experimenta-
tion – when a term didn’t reduce far enough,
I simply added the appropriate rewrite to cope
with this. In spite of this, the current collec-
tion (which I expect to be enlarged as the re-
search progresses) does exhibit quite a lot struc-
ture and, roughly speaking, encompasses the ca-
pabilities of first-order unification, set unifica-
tion and processing, β-reduction, standard log-
ical equivalences, and constructive negation. It’s
capabilities for higher order unification (. . . ) are
currently somewhat limited.

In Escher the programmer provides control by giving mode
declarations for each function (there are no predicates in
Escher instead boolean functions are used). The following is
an example of an Escher program (type definitions excluded)
splitting a list into two sublists. Conceptually it defines
a predicate Split even though it really defines a boolean
function.

FUNCTION Split : List(a) * List(a) * List(a)
-> Boolean.

MODE Split : Split(NONVAR,_,_).
Split(Nil,x,y) =>

x=Nil & y = Nil.
Split(Cons(x,y),v,w) =>

(v=Nil & w=Cons(x,y)) \/
SOME [z] (v = Cons(x,z) & Split(y,z,w)).

The first line is a type declaration. The second provides con-
trol information. It means that a reduction of Split may
only proceed if the first argument is not a variable. The un-
derscores in the second and third arguments means that it
does not matter what these are. Also note the explicit uni-
fication of x and y with Nil in the fourth line. Since Escher
uses matching to find an appropriate clause only variables
are allowed as patterns for arguments having an underscore
in the mode declaration. Escher always computes all solu-
tions implied by the program so the goal

Split([1,2],x,y)

gives the answer

(x = [] & y = [1,2]) \/
(x = [1] & y = [2]) \/
(x = [1,2] & y = [])
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2.3.3 Curry.

The language Curry [22] is a recent proposal for a stan-
dardized language in the area of functional logic program-
ming. The intention is to combine the research efforts of
researchers in the area of functional logic programming and
also, hopefully, researchers in the areas of functional and
logic programming respectively. Thus boosting the develop-
ment of declarative programming in general.

Curry is probably primarily an effort to design a lan-
guage realizing research into efficient evaluation principles
(narrowing strategies) for functional logic languages. How-
ever, in [22] it is stated that Curry should combine the best
ideas of existing declarative languages including the func-
tional languages Haskell [24] and SML [32], the logic lan-
guages Gödel [23] and λ-Prolog [34], and the functional logic
languages ALF [18], Babel [33] and Escher [28].

The default evaluation principle in Curry is a sophisti-
cated lazy narrowing strategy [5, 20, 31] whose goal is to
be as deterministic as possible and also to performs as few
computations as possible. This strategy is complete in that
it computes all solutions to a goal1.

A simple example of a Curry program is the following:

function append: [A] -> [A] -> [A]
append [] Ys = Ys
append [X|Xs] Ys [X|append Xs Ys]

This looks just like an ordinary definition in a functional lan-
guage but can also be used to solve equations. For instance
Curry computes the answer L = [1,2] to the equation

append L [3,4] == [1,2,3,4]

Similarly, the ordinary map function can be defined:

function map: (A -> B) -> [A] -> [B]
map F [] = []
map F [X|Xs] = [(F X)|map F Xs]

Again, map can be used in the same way as in a functional
programming language. However, if succ giving the next
natural number is defined in the program, then the equation

map F [1,2] == [3,4]

will give the solution F = succ. For details of how Curry
handles higher order function variables see [4].

Predicates are represented as boolean functions using
conditional equations. A simple example of this is following:

perm([],[]) = true.
perm([X|Xs],[Y|Ys]) = true <= select(Y,[X|Xs],Z),

perm(Z,Ys).

The second clause means that the result is true if the con-
dition to the right of the arrow holds (evaluates to true).
Some syntactical sugaring is also provided. An alternative
definition for perm where select is defined locally is:

perm([],[]).
perm([E|L],[F|M]) <= select(F,[E|L],N),perm(N,M)

where select(E,[E|L],L)
select(E,[F|L],[F|M]) <= select(E,L,M)

1Since Curry implements depth-first search with backtracking
completeness may be lost anyway.

The where constructs is explained with an implications. An
implication in turn is understood by adding clauses to the
program in much the same way as in λ-Prolog.

The default evaluation principle in Curry is an attempt
at declarative programming in the strong sense. However
it is realized that it is not obvious that the lazy narrowing
used as default is ideal for all applications. It is therefore
possible to give control information in the form of evaluation
restrictions. An evaluation restriction makes it possible to
specify all sorts of evaluation strategies between lazy nar-
rowing and residuation. If evaluation restrictions are used
it is up to the user to ensure that the program computes
all desired answers. To specify that the function append
can only be reduced if its first argument is instantiated2 the
restriction

eval append 1:rigid

is added to the program. If append is called with a variable
as first argument the call waits, residuates, until the variable
is bound. As another example consider the function leg on
natural numbers:

function leq: nat -> nat -> bool
eval leq 1:(s => 2)
leq 0 _ = true
leq (s M) 0 = false
leq (s M) (s N) = leq M N

The evaluation restriction means that the first argument
should always be evaluated (to head-normal form), but that
the second argument should only be evaluated if the first
argument has the functor s at the top. Note that this might
reduce an infinite computation to a finite one if the second
argument can be reduced to infinitely many values. An al-
ternative evaluation strategy, describing residuation, is

eval leq 1:rigid(s => 2:rigid)

which corresponds to the mode declaration

MODE Leq : Leq(NONVAR,NONVAR).

in Escher. Curry also allows the user to specify that a func-
tion should be strict by giving the evaluation restriction
nf(normal form) for the arguments.

Curry also allows the user to give control information by
use of encapsulated search. This means the search required
due to logical variables and back-tracking,non-deterministic
predicates or functions can be encapsulated into a certain
part of the program. A library of typical search-operators
including depth-first search, breadth-first search and so on
is provided.

2.4 Constraint Logic Programming

A constraint logic programming language performs deter-
ministic computations over non-deterministic ones. We will
not go into any details here but simply gives some exam-
ples of programs in the language Life [3]. A language using
a concurrent constraint programming model related to con-
straint logic programming and aiming at several goals sim-
ilar to those of Life (typically including object-orientation
and functions evaluated using residuation) is Oz [38, 39].

2Actually, in citecurry it is demanded that the argument must
not headed by a defined function symbol, be a logical variable or an
application of an unknown function to some arguments
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2.4.1 Life

Life is formally a constraint programming language using a
constraint system based on order-sorted feature structures
[2]. Life aims at being a synthesis of three different pro-
gramming paradigms: logic programming, functional pro-
gramming and object-oriented programming. Life has many
similarities with Prolog but adds functions, approximation
structures and inheritance.

Pure logic programming in Life is very similar to pro-
gramming in Prolog. Predicates are defined using Prolog-
compatible syntax – even the cut is included to prune the
search space. Thus the same problems with control mixed
with declarative statements as in Prolog is present. How-
ever, the presence of functions with deterministic evaluation
makes it possible to write cleaner programs.

Life replaces the (first-order) terms of Prolog with ψ-
terms. The ψ terms are used to represent all data structures,
including lists, clauses, functions and sorts. A ψ term has
a basic sort. The partially ordered set of all sorts may be
viewed as a inheritance hierarchy. A sort may have subsorts
and the subsorts of a sort inherit all properties of the parent
sort. At the the top of the sort hierarchy we find > written
@ in Life. At the base of the hierarchy we fin ⊥ written{}.
There is no conceptual difference between values and sorts.
For instance 1 is equal the set {1} which is a subsort of int.
The sort int is a subsort of real, written int <| real.

The user is free to specify new sorts. The declaration
truck <| vehicle means that all trucks are vehicles and
also that trucks inherits all properties of vehicles. Now, if
we define

mobile(vehicle)

useful(truck)

and ask the query

mobile(X),useful(X)?

we will get the answer X = truck. A ψ term represent a set
of objects. Each object can have attributes. Each attribute
consists of a label (feature name) and a ψ-term:

car(nbr_of_wheels => 4,
manufacturer => string,
max_speed => real).

Note that ψ-terms do not have fixed arities. It may even be
possible to unify two ψ-terms of the same principal sort but
with different arities.

Life also allows the use of functions. A function residu-
ates until its arguments are sufficiently instantiated to match
a clause. An example is:

fact(0) -> 1.
fact(N:int) -> N*fact(N-1)

Now if we ask the query

A = fact(B)?

the system will respond with A = @, B = @~. The tilde
means that B is a residuation variable, that is, further in-
stantiation of B might leader to further evaluation of some
expression. If we state that B = 5 the call to fact can be
computed and we get the answer A = 120. To use and de-
fine higher-order functions poses no problem since functions
are evaluated using matching, that is, no higher order uni-
fication is needed.

2.5 Definitional Programming

In definitional programming a program is simply regarded as
a definition. This is a more basic and low-level notion than
the notion of a function or the notion of a predicate as can
be seen from the fact that we talk of function and predicate
definitions respectively.

So far there is one definitional programming language
GCLA3 [6, 7, 25]. In GCLA programs are regarded as be-
longing to a special class of definitions, the partial inductive
definitions (PID) [15, 26]. Apart from being a definitional
language there is one feature that set GCLA apart from
the rest of the declarative languages discussed in this note,
namely its approach to control. In GCLA the control (or
procedural) part of a program is completely separated from
the declarative description. A program consists of two def-
initions called the (object) definition and the rule (meta)
definition, where the rule definition holds the control infor-
mation. Both the definition and the object definition con-
sists of a number of definitional clauses

a⇐ A.

where the atom a is defined in terms of the condition A.
The most important operation on definitions is the definiens
operation D(a) giving all conditions defining a.

The separation of the declarative description and the
control information means that there is no need to destroy
the declarative part with control information. It also means
that one definition can be used together with several rule
definition giving different procedural behavior. Furthermore
it means that typical control information can be reused to-
gether with many different definitions. It also means (un-
fortunately?) that for most programs the programmer has
to be aware of control issues.

It is important to note that the rule definition giving the
control information has a declarative reading as a definition
giving a declarative approach to control. For more informa-
tion on the control part see [6, 11, 26]

2.5.1 Applications and Extended Logic Programming

GCLA is essentially a logic programming language sharing
backtracking and logical variables with Prolog. It was de-
veloped with the aim to find a suitable modelling tool for
knowledge based systems and has been tried in several appli-
cations [7, 36, 14, 12]. One way that GCLA extends Prolog
is that it allows hypothetical reasoning in a natural way. We
show an example where we only give the definition. To get
an executable program a suitable rule definition has to be
supplied as well.

Assume we know that an object can fly if it is a bird
and if it is not a penguin. We also know that Tweety and
Polly are birds as well as all penguins, and that Pengo is
a penguin. This knowledge is expressed in the following
definition:

flies(X) <= bird(X),(penguin(X) ->false).

bird(tweety).
bird(polly).
bird(X) <= penguin(X).

penguin(pengo).

3To be pronounced “Gisela”

5



To find out which objects cannot fly we can pose the query

(flies(X) \- false).

and the system will respond with X = pengo. Note how this
binds variables in a negated query.

2.5.2 Functional Logic Programming.

As an alternative to the narrowing approach functional and
logic programming can be combined in GCLA in a natural
way. Since horn clause programs can be regarded as induc-
tive definitions [17] (pure) Prolog is a subset of GCLA. How
(first-order) functions can be defined and integrated with
logic programs is described in [40, 42, 41]. It is also showed
both how one library rule definition can be used for a large
class of functional logic programs and how more sophisti-
cated rule definitions can be generated automatically allow-
ing more efficient definitions. We show an example that can
be run using the library rule definition. Let the size of a list
be the number of distinct elements in the list. We express
this in the definition in the following way:

size([]) <= 0.
size([X|Xs]) <= (size(Xs) -> Y) -> if(mem(X,Xs),

Y,
s(Y)).

The second clause corresponds closely to a let expression
in a functional langauge, that is, let y = size xs in ....
We also need to define the function if and the predicate
mem:

if(Pred,Then,Else) <= (Pred -> Then),
(not(Pred) -> Else).

mem(X,[X|_]).
mem(X,[Y|Xs])#{X \= Y} <= mem(X,Xs).

Since GCLA uses logical variables and it is possible to bind
variables in negation we can ask queries like

size([0,X,s(0)]) \- S.

giving first the answer S = s(s(0)), X = 0, then S = s(s(0)),
X = s(0), and finally S = s(s(s(0))), 0 \= X, X \= s(0).
In particular note the third anwers telling us what X must
not be bound to to make the sixe three.

2.5.3 Program Separation.

Another programming technique is program separation. The
principles of program separation using an idealized defini-
tional language is thoroughly described in [9, 10]. Here we
simply give an example in GCLA. The idea of program sep-
aration is to separate an algorithm into its form and its
content. The form implements the recursive form of the al-
gorithm and the content fills the recursive form with the par-
ticular operations performed in the algorithm. It is natural
to implement the form in a rule definition and use it together
with different definitions to give different algorithms.

One form implementing several simple recursive algo-
rithms can be described “To compute F do the following:
If D(F ) is not a recursive call then the computation is fin-
ished, otherwise compute D(F ) to C and take as result of
the computation D(C).” We can implement this as a rule
definition in GCLA:

form <=
definiens(F,DF,_),
recursivecall(F,DF,B),
(formnext(B) -> ([DF] \- C))
-> ([F] \- C).

formnext(true) <=
(form -> ([F] \- C1)),
definiens(C1,SuccC1,_),
unify(SuccC1,C)
-> ([F] \- C).

formnext(false) <=
unify(F,C)
-> ([F] \- C).

D(F ) is a recursive call if it has the same principal functor
as F . One example of an algorithm that has this form is
addition. To compute m+ n one has to be able to perform
the following operations: move from 0 + n to n, move from
s(m) + n to m + n, and take the successor of a natural
number. These operations are defined as follows:

0 + N <= N.
s(M) + N <= M + N.

0 <= s(0).
s(N) <= s(s(N)).

Now, combining form giving the recursive form, with the
definition of the operations needed (the content), we get a
program computing addition:

form \\- s(s(0)) + s(0) \- C.

C = s(s(s(0)))

An example of an algorithm having the same form but dif-
ferent content is min computing the minimum of two nat-
ural numbers. To compute min we still need to get the
successor of a natural number and also need operations to
get from min(0, n) to 0, from min(m, 0) to 0, and from
min(s(m), s(n) to min(m,n):

min(0,_) <= 0.
min(s(_),0) <= 0.
min(s(M),s(N)) <= min(M,N).

3 GCLA: The Next Generation

While GCLA is an interesting first approximisation of def-
initional programming it is still to much of an extension
to Prolog. Not only does it share first-order terms, logical
variables, back-tracking and much of its syntax with Pro-
log, but it is also compiled into a Prolog program. The first
GCLA programs were also clearly Prolog influenced. With
new techniques being developed [41, 42, 9, 10] it becomes
clear that there is a need to refine the tools into a purely
definitional language. Also in the Medview project [16] it
has become clear that GCLA is not sufficient as modelling
tool. Some problems (in no particular order) discovered are:

• Programs run to slowly.

• GCLA lacks means to communicate with the surround-
ing world.
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• In a interactive system like Medview a computational
model that takes a query and gives an answer does
not seem to fit. Parts of the answer might be needed
before the answer has been fully computed and it is
also possible that it is the computation itself that is
interesting.

• Definitions in programs are built from first order terms.
When we try to give a cognitive model of something
like the knowledge of an expert in oral medicine this
is not enough. We need to be able to define notions in
more general terms, definitions need to be built from
arbitrary objects.

• To give an appropriate model it is sometimes necessary
to have several object definitions. The most typical ex-
ample is the programseparation techniques described
in [10].

• The definiens operation provided in GCLA is too gen-
eral and thus too complex in lots of simple applica-
tions. We have yet to find the application using the
full power of the current definiens operation.

• GCLA has no module system making it very hard to
develop large applications. This has been discussed in
[11].

The goal of a new definitional programming system would be
to create a system good enough for use in real applications.
Currently in Medview for instance the conceptual models
are expressed in a definitional theory while the implemen-
tation is simply a series a C programs. If we could design
and implement a useful system the theoretical model and
the running application could both be expressed within the
same theory. This should simplify the development process
and increase the quality of the resulting application since
it would be easier to know that it implements the intended
model. Some ideas and demands for such a system are:

• Instead of the syntactically oriented approach in GCLA
and in [15, 26] a more abstract description of the no-
tion of a definition should be used. A definition D is
simply given by the following data:

– Two sets Dom (the domain of the definition) and
Com (the collection of defining conditions) where
we assume that Dom is included in Com.

– Two operationsDef : Dom→ P (Com) and Fed :
Com → P (Dom). Def gives the definiens of a
defined object while Fed gives the conditions in
Dom(D) that a given defining condition depends
on.

• Too gain efficiency we must have a number of different
definiens operations making it possible to use the right
level of generality. Note that this will be enforced au-
tomatically by the abstract notion of a definition, since
the definition is defined in terms of its definiens oper-
ation.

• If we use an abstract enough notion of a definition
we might be able to achieve syntax free programming.
That is, the syntax will not be essential to the com-
putational model. We will compute with definitional
objects not syntactical objects.

• The strict separation of declarative description and
procedural part used in GCLA will be kept. We be-
lieve that it is essential not to clutter the declarative
part with control information. We also believe that
it is essential that the control part has a declarative
meaning.

• To give wide portability programs should be compiled
into C.

• It must be possible to have full control of search.

• The programming model should from the start con-
sider interaction with the outside world. compile to C
for portability

• On top of the abstract definitional model different pro-
gramming methodologies can be implemented as li-
brary modules. Of course, the user of such modules
will program using some syntactical representation.
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Logic Programming Series. MIT Press, 1994.

[24] P. Hudak et al. Report on the Programming Language
Haskell: A Non-Strict, Purely Functional Language,
March 1992. Version 1.2. Also in Sigplan Notices, May
1992.

[25] P. Kreuger. GCLA II: A definitional approach to con-
trol. In Extensions of logic programming, second in-
ternational workshop, ELP91, number 596 in Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1992.

[26] P. Kreuger. Computational Issues in Calculi of Par-
tial Inductive Definitions. PhD thesis, Department of
Computing Science, University of Göteborg, Göteborg,
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