
Total Parser Combinators

Nils Anders Danielsson
School of Computer Science, University of Nottingham, United Kingdom

nad@cs.nott.ac.uk

Abstract
A monadic parser combinator library which guarantees termination
of parsing, while still allowing many forms of left recursion, is
described. The library’s interface is similar to those of many other
parser combinator libraries, with two important differences: one is
that the interface clearly specifies which parts of the constructed
parsers may be infinite, and which parts have to be finite, using
dependent types and a combination of induction and coinduction;
and the other is that the parser type is unusually informative.

The library comes with a formal semantics, using which it is
proved that the parser combinators are as expressive as possible.
The implementation is supported by a machine-checked correct-
ness proof.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; E.1 [Data Struc-
tures]; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; F.4.2 [Mathematical
Logic and Formal Languages]: Grammars and Other Rewriting
Systems—Grammar types, Parsing

General Terms Languages, theory, verification

Keywords Dependent types, mixed induction and coinduction,
parser combinators, productivity, termination

1. Introduction
Parser combinators (Burge 1975; Wadler 1985; Fairbairn 1987;
Hutton 1992; Meijer 1992; Fokker 1995; Röjemo 1995; Swier-
stra and Duponcheel 1996; Koopman and Plasmeijer 1999; Lei-
jen and Meijer 2001; Ljunglöf 2002; Hughes and Swierstra 2003;
Claessen 2004; Frost et al. 2008; Wallace 2008, and many others)
can provide an elegant and declarative method for implementing
parsers. When compared with typical parser generators they have
some advantages: it is easy to abstract over recurring grammatical
patterns, and there is no need to use a separate tool just to parse
something. On the other hand there are also some disadvantages:
there is a risk of lack of efficiency, and parser generators can give
static guarantees about termination and non-ambiguity which most
parser combinator libraries fail to give. This paper addresses one of
these points by defining a parser combinator library which ensures
statically that parsing will terminate for every finite input string.

c© ACM, 2010. This is the author’s version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive ver-
sion was published in the Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming (2010), http://doi.acm.org/10.1145/
1863543.1863585.

The library has an interface which is very similar to those of
classical monadic parser combinator libraries. For instance, con-
sider the following simple, left recursive, expression grammar:

term ::= factor | term ’+’ factor
factor ::= atom | factor ’*’ atom
atom ::= number | ’(’ term ’)’

We can define a parser which accepts strings from this grammar,
and also computes the values of the resulting expressions, as fol-
lows (the combinators are described in Section 4):

mutual
term = factor

|] term >>= λ n1 →
tok ’+’ >>= λ →

factor >>= λ n2 →
return (n1 + n2)

factor = atom
|] factor >>= λ n1 →

tok ’*’ >>= λ →

atom >>= λ n2 →
return (n1 ∗ n2)

atom = number
| tok ’(’ >>= λ →

] term >>= λ n →
tok ’)’ >>= λ →

return n

The only visible difference to classical parser combinators is the
use of], which indicates that the definitions are corecursive (see
Section 2). However, we will see later that the parsers’ types con-
tain more information than usual.

When using parser combinators the parsers/grammars are often
constructed using cyclic definitions, as above, so it is natural to see
the definitions as being partly corecursive. However, a purely coin-
ductive reading of the choice and sequencing combinators would
allow definitions like the following ones:

p =] p |] p
p′ =] p′ >>= λ x→] return (f x)

For these definitions it is impossible to implement parsing in a total
way (in the absence of hidden information): a defining characteris-
tic of parser combinator libraries is that non-terminals are implicit,
encoded using the recursion mechanism of the host language, so (in
a pure setting) the only way to inspect p and p′ is via their infinite
unfoldings. The key idea of this paper is that, even if non-terminals
are implicit, totality can be ensured by reading choice inductively,
and only reading an argument of the sequencing operator coinduc-
tively if the other argument does not accept the empty string (see
Section 3). To support this idea the parsers’ types will contain in-
formation about whether or not they accept the empty string.

The main contributions of the paper are as follows:

• It is shown how parser combinators can be implemented in such
a way that termination is guaranteed, using a combination of
induction and coinduction to represent parsers, and a variant of
Brzozowski derivatives (1964) to run them.
• Unlike many other parser combinator libraries these parser

combinators can handle many forms of left recursion.
• The parser combinators come with a formal semantics. The

implementation is proved to be correct, and the combinators
are shown to satisfy a number of laws.
• It is shown that the parser combinators are as expressive as

possible (see Sections 3.5 and 4.5).

The core of the paper is Sections 3 and 4. The former section
introduces the ideas by using recognisers (parsers which do not
return any result other than “the string matched” or “the string
did not match”), and the latter section generalises to full parser
combinators. Related work is discussed below.

As mentioned above the parser type is defined using mixed in-
duction and coinduction (Park 1980). This technique is explained
in Section 2, and discussed further in the conclusions. Those read-
ers who are not particularly interested in parser combinators may
still find the paper useful as an example of the use of this technique.

The parser combinator library is defined in the dependently
typed functional programming language Agda (Norell 2007; Agda
Team 2010), which will be introduced as we go along. The library
comes with a machine-checked1 proof which shows that the imple-
mentation is correct with respect to the semantics. The code which
the paper is based on is at the time of writing available from the
author’s web page.

1.1 Related work
There does not seem to be much prior work on formally veri-
fied termination for parser combinators (or other general parsing
frameworks). McBride and McKinna (2002) define grammars in-
ductively, and use types to ensure that a token is consumed before a
non-terminal can be encountered, thereby ruling out left recursion
and non-termination. Danielsson and Norell (2008) and Koprowski
and Binsztok (2010) use similar ideas; Koprowski and Binsztok
also prove full correctness. Muad`Dib (2009) uses a monad anno-
tated with Hoare-style pre- and post-conditions (Swierstra 2009)
to define total parser combinators, including a fixpoint combina-
tor whose type rules out left recursion by requiring the input to be
shorter in recursive calls. Note that none of these other approaches
can handle left recursion. The library defined in this paper seems
to be the first one which both handles (many forms of) left recur-
sion and guarantees termination for every parser which is accepted
by the host language.2 It also seems fair to say that, when com-
pared to the other approaches above, this library has an interface
which is closer to those of “classical” parser combinator libraries.
In the classical approach the ordinary general recursion of the host
language is used to implement cyclic grammars; this library uses
“ordinary” corecursion (restricted by types, see Section 3).

There are a number of parser combinator libraries which can
handle various forms of left recursion, but they all seem to come

1 Note that the meta-theory of Agda has not been properly formalised, and
Agda’s type checker has not been proved to be bug-free, so take words such
as “machine-checked” with a grain of salt.
2 Danielsson and Norell (2009) define a parser using a specialised version
of the library described in this paper. This version of the library can handle
neither left nor right recursion, and is restricted to parsers which do not ac-
cept the empty string. A brief description of the parser interface is provided,
but the implementation of the backend is not discussed.

with some form of restriction. The combinators defined here can
handle many left recursive grammars, but not all; for instance,
the definition p = p is rejected statically. Lickman (1995) de-
fines a library which can handle left recursion if a tailor-made
fixpoint combinator, based on an idea due to Philip Wadler, is
used. He proves (informally) that parsers defined using his com-
binators are terminating, as long as they are used in the right
way; the argument to the fixpoint combinator must satisfy a non-
trivial semantic criterion, which is not checked statically. Johnson
(1995) and Frost et al. (2008) define libraries of recogniser and
parser combinators, respectively, including memoisation combina-
tors which can be used to handle left recursion. As presented these
libraries can fail to terminate if used with grammars with an in-
finite number of non-terminals—for instance, consider the gram-
mar { pn ::= p1+n | n ∈ N }, implemented by the definition p n =
memoise n (p (1 + n))—and users of the libraries need to en-
sure manually that the combinators are used in the right way. The
same limitations apply to a library described by Ljunglöf (2002).
This library uses an impure feature, observable sharing (Claessen
and Sands 1999), to detect cycles in the grammar. Claessen (2001)
mentions a similar implementation, attributing the idea to Magnus
Carlsson. Kiselyov (2009) also presents a combinator library which
can handle left recursion. Users of the library are required to anno-
tate left recursive grammars with something resembling a coinduc-
tive delay constructor. If this constructor is used incorrectly, then
parsing can terminate with the wrong answer.

Baars et al. (2009) represent context-free grammars, including
semantic actions, in a well-typed way. In order to avoid problems
with left recursion when generating top-down parsers from the
grammars they implement a left-corner transformation. Neither
correctness of the transformation nor termination of the generated
parsers is proved formally. Brink et al. (2010) perform a similar
exercise, giving a partial proof of correctness, but no proof of
termination.

In Section 4.5 it is shown that the parser combinators are as
expressive as possible—every parser which can be implemented
using the host language can also be implemented using the com-
binators. In the case of finite token sets this holds even for non-
monadic parser combinators using the applicative functor inter-
face (McBride and Paterson 2008); see Section 3.5. The fact that
monadic parser combinators can be as expressive as possible has al-
ready been pointed out by Ljunglöf (2002), who also mentions that
applicative combinators can be used to parse some languages which
are not context-free, because one can construct infinite grammars
by using parametrised parsers. It has also been known for a long
time that an infinite grammar can represent any language, decidable
or not (Solomon 1977), and that the languages generated by many
infinite grammars can be decided (Mazurkiewicz 1969). However,
the result that monadic and applicative combinators have the same
expressive strength for finite token sets seems to be largely un-
known. For instance, Claessen (2004, page 742) claims that “with
the weaker sequencing, it is only possible to describe context-free
grammars in these systems”.

Bonsangue et al. (2009, Example 2) represent a kind of regular
expressions in a way which bears some similarity to the representa-
tion of recognisers in Section 3. Unlike the definition in this paper
their definition is inductive, with an explicit representation of cy-
cles: µx .ε, where ε can contain x . However, occurrences of x in ε
have to be guarded by what amounts to the consumption of a token,
just as in this paper.

In Sections 3.3 and 4.2 Brzozowski derivative operators (Brzo-
zowski 1964) are implemented for recognisers and parsers, and in
Sections 3.4 and 4.3 these operators are used to characterise recog-
niser and parser equivalence coinductively. Rutten (1998) performs
similar tasks for regular expressions.

2. Induction and coinduction
The parser combinators defined in Sections 3 and 4 use a combina-
tion of induction and coinduction which may at first sight seem be-
wildering, so let us begin by discussing induction and coinduction.
This discussion is rather informal. For more theoretical accounts of
induction and coinduction see, for instance, the works of Hagino
(1987) and Mendler (1988).

Induction can be used to define types where the elements have
finite “depth”. A simple example is the type of finite lists. In
Agda this data type can be defined by giving the types of all the
constructors:

data List (A : Set) : Set where
[] : List A

:: : A→ List A→ List A

This definition should be read inductively, i.e. all lists have finite
length. Functions with underscore in their names are operators;
marks the argument positions. For instance, the constructor :: is
an infix operator. Set is a type of small types.

Coinduction can be used to define types where some elements
have infinite depth. Consider the type of potentially infinite lists
(colists), for instance:

data Colist (A : Set) : Set where
[] : Colist A

:: : A→∞ (Colist A)→ Colist A

(Note that constructors can be overloaded.) The type function
∞ : Set→ Set marks its argument as being coinductive. It is simi-
lar to the suspension type constructors which are used to implement
non-strictness in strict languages (Wadler et al. 1998). Just as the
suspension type constructors the function∞ comes with delay and
force functions, here called] (sharp) and [(flat):

] : {A : Set} → A→∞ A
[: {A : Set} → ∞ A→ A

Sharp is a tightly binding prefix operator; ordinary function appli-
cation binds tighter, though. (Flat is an ordinary function.) Note
that {A : Set} → T is a dependent function space; the argument A
is in scope in T . Arguments in braces, {. . .}, are implicit, and do not
need to be given explicitly as long as Agda can infer them from the
context.

Agda is a total language. This means that all computations of
inductive type must be terminating, and that all computations of
coinductive type must be productive. A computation is productive
if the computation of the next constructor is always terminating, so
even though an infinite colist cannot be computed in finite time we
know that the computation of any finite prefix has to be terminating.
For types which are partly inductive and partly coinductive the
inductive parts must always be computable in finite time, while the
coinductive parts must always be productively computable.

To ensure termination and productivity Agda employs two basic
means for defining functions: inductive values can be destructed us-
ing structural recursion, and coinductive values can be constructed
using guarded corecursion (Coquand 1994). As an example of the
latter, consider the following definition of map for colists:

map : ∀ {A B} → (A→ B)→ Colist A→ Colist B
map f [] = []
map f (x :: xs) = f x ::] map f ([xs)

(Note that the code ∀ {A B} → . . . means that the function takes
two implicit arguments A and B; it is not an application of A to B.)
Agda accepts this definition because the corecursive call to map is
guarded: it occurs under the delay constructor] , without any non-
constructor function application between the left-hand side and the

corecursive call. It is easy to convince oneself that, if the input colist
is productively computable, then the (spine of the) output colist
must also be.

Let us now consider what happens if a definition uses both
induction and coinduction. We can define a language of “stream
processors” (Carlsson and Hallgren 1998; Hancock et al. 2009),
taking colists of As to colists of Bs, as follows:

data SP (A B : Set) : Set where
get : (A→ SP A B) → SP A B
put : B→∞ (SP A B)→ SP A B
done : SP A B

The recursive argument of get is inductive, while the recursive ar-
gument of put is coinductive. The type should be read as the nested
fixpoint νX.µY. (A→ Y) + B × X + 1, with an outer greatest fix-
point and an inner least fixpoint.3 This means that a stream proces-
sor can only read (get) a finite number of elements from the input
before having to produce (put) some output or terminate (done).
As a simple example of a stream processor, consider copy, which
copies its input to its output:

copy : ∀ {A} → SP A A
copy = get (λ a→ put a (] copy))

Note that copy is guarded (lambdas do not affect guardedness).
The semantics of stream processors can be defined as follows:

J K : ∀ {A B} → SP A B→ Colist A→ Colist B
J get f K (a :: as) = J f a K ([as)
J put b sp K as = b ::] J [sp K as
J K = []

(J K is a mixfix operator.) In the case of get one element from the
input colist is consumed (if possible), and potentially used to guide
the rest of the computation, while in the case of put one output
element is produced. The definition of J K uses a lexicographic
combination of guarded corecursion and structural recursion:

• In the second clause the corecursive call is guarded.
• In the first clause the corecursive call is not guarded, but it

“preserves guardedness”: it takes place under zero occurrences
of] rather than at least one (and there are no destructors in-
volved). Furthermore the stream processor argument is struc-
turally smaller: f x is strictly smaller than get f for any x.

This ensures the productivity of the resulting colist: the next output
element can always be computed in finite time, because the number
of get constructors between any two put constructors must be
finite. Agda accepts definitions which use this kind of lexicographic
combination of guarded corecursion and structural recursion. For
more information about Agda’s criterion for accepting a program
as total, and more examples of the use of mixed induction and
coinduction in Agda, see Danielsson and Altenkirch (2010).

It may be interesting to observe what would happen if get
were made coinductive. In this case we could define more stream
processors, for instance the following one:

sink : ∀ {A B} → SP A B
sink = get (λ →] sink)

On the other hand we could no longer define J K as above (suitably
modified), because the output of J sink K as would not be produc-
tive for infinite colists as. In other words, if we make more stream
processors definable some functions become impossible to define.

3 At the time of writing this interpretation is not correct in Agda (Altenkirch
and Danielsson 2010), but the differences are irrelevant for this paper.

3. Recognisers
This section defines a small embedded language of parser combi-
nators. To simplify the explanation the parser combinators defined
in this section can only handle recognition. Full parser combinators
are described in Section 4.

The aim is to define a data type with (at least) the following
basic combinators as constructors: fail, which always fails; empty,
which accepts the empty string; sat, which accepts tokens satisfy-
ing a given predicate; | , symmetric choice; and · , sequencing.

Let us first consider whether the combinator arguments should
be read inductively or coinductively. An infinite choice cannot
be decided (in the absence of extra information), as this is not
possible without inspecting every alternative, so choices will be
read inductively. The situation is a bit trickier for sequencing.
Consider definitions like p = p · p′ or p = p′ · p. If p′ accepts the
empty string, then it seems hard to make any progress with these
definitions. However, if p′ is guaranteed not to accept the empty
string, then we know that any string accepted by the recursive
occurrence of p has to be shorter than the one accepted by p · p′
or p′ · p. To make use of this observation I will indicate whether
or not a recogniser is nullable (accepts the empty string) in its type,
and the left (right) argument of · will be coinductive iff the right
(left) argument is not nullable.

Based on the observations above the type P of parsers (recog-
nisers) can now be defined for a given token type Tok:

mutual
data P : Bool→ Set where
fail : P false
empty : P true
sat : (Tok→ Bool)→ P false
| : ∀ {n1 n2} → P n1 → P n2 → P (n1 ∨ n2)
· : ∀ {n1 n2} →

∞〈 n2 〉P n1 →∞〈 n1 〉P n2 → P (n1 ∧ n2)

∞〈 〉P : Bool→ Bool→ Set
∞〈 false 〉P n = ∞ (P n)
∞〈 true 〉P n = P n

Here P true represents those recognisers which accept the empty
string, and P false those which do not: fail and sat do not accept
the empty string, while empty does; a choice p1 | p2 is nullable
if either p1 or p2 is; and a sequence p1 · p2 is nullable if both p1
and p2 are. The definition of the sequencing operator makes use of
the mixfix operator∞〈 〉P to express the “conditional coinduction”
discussed above: the left argument has type ∞〈 n2 〉P n1, which
means that it is coinductive iff n2 is false, i.e. iff the right argument
is not nullable. The right argument’s type is symmetric.

The conditionally coinductive type ∞〈 〉P comes with corre-
sponding conditional delay and force functions:

]? : ∀ {b n} → P n→∞〈 b 〉P n
]? {b = false} x =] x
]? {b = true} x = x

[? : ∀ {b n} → ∞〈 b 〉P n→ P n
[? {b = false} x = [x
[? {b = true} x = x

(Here {b = . . .} is the notation for pattern matching on an implicit
argument.) We can also define a function which returns true iff the
argument is already forced:

forced? : ∀ {b n} → ∞〈 b 〉P n→ Bool
forced? {b = b} = b

In addition to the constructors listed above the following con-
structors are also included in P:

nonempty : ∀ {n} → P n→ P false
cast : ∀ {n1 n2} → n1 ≡ n2 → P n1 → P n2

The nonempty combinator turns a recogniser which potentially
accepts the empty string into one which definitely does not (see
Section 3.1 for an example and 3.2 for its semantics), and cast
can be used to coerce a recogniser indexed by n1 into a recogniser
indexed by n2, assuming that n1 is equal to n2 (the type n1 ≡ n2 is
a type of proofs showing that n1 and n2 are equal). Both nonempty
and cast are definable in terms of the other combinators—in the
case of cast the definition is trivial, and nonempty can be defined
by recursion over the inductive structure of its input—but due to
Agda’s reliance on guarded corecursion it is convenient to have
them available as constructors.

3.1 Examples
Using the definition above it is easy to define recognisers which are
both left and right recursive, for instance the following one:

left-right : P false

left-right =] left-right ·] left-right

Given the semantics in Section 3.2 it is easy to show that left-right
does not accept any string. This means that fail does not necessarily
have to be primitive, it could be replaced by left-right.

As examples of ill-defined recognisers, consider bad and bad2:

bad : P false
bad = bad

bad2 : P true
bad2 = bad2 · bad2

These definitions are rejected by Agda, because they are neither
structurally recursive nor guarded. They are not terminating, either:
an attempt to evaluate the inductive parts of bad or bad2 would lead
to non-termination, because the definitions do not make use of the
delay operator] .

As a more useful example of how the combinators above can be
used to define derived recognisers, consider the following definition
of the Kleene star:

mutual
? : P false→ P true

p ? = empty | p +
+ : P false→ P false

p + = p ·] (p ?)

(The combinator | binds weaker than the other combinators.)
The recogniser p ? accepts zero or more occurrences of whatever p
accepts, and p + accepts one or more occurrences; this is easy to
prove using the semantics in Section 3.2. Note that this definition
is guarded, and hence productive.4 Note also that p must not accept
the empty string, because if it did, then the right hand side of p +
would have to be written p · p ?, which would make the definition
unguarded and non-terminating—if p ? were unfolded, then no
delay operator would ever be encountered. By using the nonempty
combinator one can define a variant of ? which accepts arbitrary
argument recognisers:

F : ∀ {n} → P n→ P true
pF = nonempty p ?

For more examples, see Section 4.6.

4 The call to p + is not guarded in the definition of p ?, but all that matters
for guardedness is calls from one function to itself. If p + is inlined it is
clear that p ? is guarded.

3.2 Semantics
The semantics of the recognisers is defined as an inductive family.
The type s ∈ p is inhabited iff the token string s is a member of the
language defined by p:

data ∈ : ∀ {n} → List Tok→ P n→ Set where
. . .

The semantics is determined by the constructors of ∈ , which are
introduced below. The values of type s ∈ p are proofs of language
membership; the constructors can be seen as inference rules. To
avoid clutter the declarations of bound variables are omitted in the
constructors’ type signatures.

No string is a member of the language defined by fail, so there
is no constructor for it in ∈ . The empty string is recognised by
empty:

empty : [] ∈ empty

(Recall that constructors can be overloaded.) The singleton [t] is
recognised by sat f if f t evaluates to true (T b is inhabited iff b is
true):

sat : T (f t) → [t] ∈ sat f

If s is recognised by p1, then it is also recognised by p1 | p2, and
similarly for p2:

|-left : s ∈ p1 → s ∈ p1 | p2
|-right : s ∈ p2 → s ∈ p1 | p2

If s1 is recognised by p1 (suitably forced), and s2 is recognised
by p2 (suitably forced), then the concatenation of s1 and s2 is
recognised by p1 · p2:

· : s1 ∈ [? p1 → s2 ∈ [? p2 →
s1 ++ s2 ∈ p1 · p2

If a nonempty string is recognised by p, then it is also recog-
nised by nonempty p (and empty strings are never recognised by
nonempty p):

nonempty : t :: s ∈ p → t :: s ∈ nonempty p

Finally cast preserves the semantics of its recogniser argument:

cast : s ∈ p → s ∈ cast eq p

It is easy to show that the semantics and the nullability index
agree: if p : P n, then [] ∈ p iff n is equal to true (one direction
can be proved by induction on the structure of the semantics, and
the other by induction on the inductive structure of the recogniser;
delayed sub-parsers do not need to be forced). Given this result it
is easy to decide whether or not [] ∈ p; it suffices to inspect the
index:

nullable? : ∀ {n} (p : P n)→ Dec ([] ∈ p)

Note that the correctness of nullable? is stated in its type. An
element of Dec P is either a proof of P or a proof showing that
P is impossible:

data Dec (P : Set) : Set where
yes : P→ Dec P
no : ¬ P→ Dec P

Here logical negation is represented as a function into the empty
type: ¬ P = P→⊥.

3.3 Backend
Let us now consider how the relation ∈ can be decided, or al-
ternatively, how the language of recognisers can be interpreted. No
attempt is made to make this recogniser backend efficient, the focus
is on correctness. (Efficiency is discussed further in Section 4.2.)

The backend will be implemented using so-called derivatives
(Brzozowski 1964). The derivative D t p of p with respect to t is the
“remainder” of p after p has matched the token t; it should satisfy
the equivalence

s ∈ D t p ⇔ t :: s ∈ p.

By applying the derivative operator D to t1 and p, then to t2 and
D t1 p, and so on for every element of the input string s, one can
decide if s ∈ p is inhabited.

The new recogniser constructed by D may not have the same
nullability index as the original one, so D has the following type
signature:

D : ∀ {n} (t : Tok) (p : P n)→ P (D-nullable t p)

The function D-nullable decides whether the derivative accepts
the empty string or not. Its extensional behaviour is uniquely con-
strained by the definition of D; its definition is included in Figure 1.

The derivative operator is implemented as follows. The combi-
nators fail and empty never accept any token, so they both have the
derivative fail:

D t fail = fail
D t empty = fail

The combinator sat f has a non-zero derivative with respect to t iff
f t is true:

D t (sat f) with f t
. . . | true = empty
. . . | false = fail

(Here the with construct is used to pattern match on the result of
f t.) The derivative of a choice is the choice of the derivatives of its
arguments:

D t (p1 | p2) = D t p1 | D t p2

The derivatives of nonempty p and cast eq p are equal to the
derivative of p:

D t (nonempty p) = D t p
D t (cast eq p) = D t p

The final and most interesting case is sequencing:

D t (p1 · p2) with forced? p1 | forced? p2
. . . | true | false = D t p1 ·]

? ([p2)

. . . | false | false =] D t ([p1) ·]
? ([p2)

. . . | true | true = D t p1 ·]
? p2 | D t p2

. . . | false | true =] D t ([p1) ·]
? p2 | D t p2

Here we have four cases, depending on the indices of p1 and p2:

• In the first two cases the right argument is not forced, which
implies (given the type of ·) that the left argument is not
nullable. This means that the first token accepted by p1 · p2 (if
any) has to be accepted by p1, so the remainder after accepting
this token is the remainder of p1 followed by p2.
• In the last two cases p1 is nullable, which means that the first

token could also be accepted by p2. This is reflected in the
presence of an extra choice D t p2 on the right-hand side.

In all four cases the operator]? is used to conditionally delay
p2, depending on the nullability index of the derivative of p1; the
implicit argument b to]? is inferred automatically.

The derivative operator D is total: it is implemented using a
lexicographic combination of guarded corecursion and structural
recursion (as in Section 2). Note that in the first two sequencing
cases p2 is delayed, but D is not applied recursively to [p2 because
p1 is known not to accept the empty string.

D-nullable : ∀ {n} → Tok→ P n→ Bool
D-nullable t fail = false
D-nullable t empty = false
D-nullable t (sat f) = f t
D-nullable t (p1 | p2) = D-nullable t p1 ∨

D-nullable t p2
D-nullable t (nonempty p) = D-nullable t p
D-nullable t (cast p) = D-nullable t p
D-nullable t (p1 · p2) with forced? p1 | forced? p2
. . . | true | false = D-nullable t p1
. . . | false | false = false
. . . | true | true = D-nullable t p1 ∨ D-nullable t p2
. . . | false | true = D-nullable t p2

Figure 1. The index function D-nullable.

The index function D-nullable uses recursion on the inductive
structure of the recogniser. Note that D-nullable does not force any
delayed recogniser (it does not use [). Readers familiar with de-
pendent types may find it interesting that this definition relies on
the fact that ∧ is defined by pattern matching on its right ar-
gument. If ∧ were defined by pattern matching on its left argu-
ment, then the type checker would no longer reduce the open term
D-nullable ([p1) t ∧ false to false when checking the definition of
D. This problem could be fixed by using an equality proof in the
definition of D, though.

It is straightforward to show that the derivative operator D
satisfies both directions of its specification:

D-sound : ∀ {n s t} {p : P n} → s ∈ D t p→ t :: s ∈ p
D-complete : ∀ {n s t} {p : P n} → t :: s ∈ p→ s ∈ D t p

These statements can be proved by induction on the structure of the
semantics.

Once the derivative operator is defined and proved correct it is
easy to decide if s ∈ p is inhabited:

∈? : ∀ {n} (s : List Tok) (p : P n)→ Dec (s ∈ p)
[] ∈? p = nullable? p
t :: s ∈? p with s ∈? D t p
. . . | yes s∈Dtp = yes (D-sound s∈Dtp)
. . . | no s/∈Dtp = no (s/∈Dtp ◦ D-complete)

In the case of the empty string the nullability index tells us whether
the string should be accepted or not, and otherwise ∈? is recur-
sively applied to the derivative and the tail of the string; the specifi-
cation of D ensures that this is correct. (Note that s∈Dtp and s/∈Dtp
are normal variables with descriptive names.)

As an aside, note that the proof returned by ∈? when a string
matches is actually a parse tree, so it would not be entirely incorrect
to call these recognisers parsers. However, in the case of ambiguous
grammars at most one parse tree is returned. The implementation
of parse in Section 4.2 returns all possible results.

3.4 Laws
Given the semantics above it is easy to prove that the combinators
satisfy various laws. Let us first define that two recognisers are
equivalent when they accept the same strings:

≈ : ∀ {n1 n2} → P n1 → P n2 → Set
p1 ≈ p2 = p1 6 p2 × p2 6 p1

Here × is conjunction, and 6 encodes language inclusion:

6 : ∀ {n1 n2} → P n1 → P n2 → Set
p1 6 p2 = ∀ {s} → s ∈ p1 → s ∈ p2

It is straightforward to show that ≈ is an equivalence relation,
if the definition of “equivalence relation” is generalised to accept
indexed sets. (Such generalisations are silently assumed in the
remainder of this text.) It is also easy to show that ≈ is a
congruence—i.e. that it is preserved by all the primitive recogniser
combinators—and that 6 is a partial order with respect to ≈ .

The following definition provides an alternative, coinductive
characterisation of equality:

data ≈c {n1 n2} (p1 : P n1) (p2 : P n2) : Set where
:: : n1 ≡ n2 → (∀ t→∞ (D t p1 ≈c D t p2))→

p1 ≈c p2

Two recognisers are equal iff they agree on whether the empty
string is accepted, and for every token the respective derivatives
are equal (coinductively). Note that the values of this data type are
infinite proofs5 witnessing the equivalence of the two parsers. Note
also that this equality is a form of bisimilarity: the “transitions” are
of the form

p
(n,t)
−−−→ D t p,

where p : P n. It is easy to show that ≈ and ≈c are equivalent.
When proving properties of recognisers one can choose the equality
which is most convenient for the task at hand. For an example of a
proof using a coinductively defined equality, see Section 4.4.

The type of the sequencing combinator is not quite right if we
want to state properties such as associativity, so let us introduce the
following variant of it:

� : ∀ {n1 n2} → P n1 → P n2 → P (n1 ∧ n2)

� {n1 = n1} p1 p2 =]? p1 ·]
?
{b = n1} p2

(Agda does not manage to infer the value of the implicit argument
b, but we can still give it manually.) Using the combinator � it
is easy to prove that the recognisers form an idempotent semiring:

p | p ≈ p p1 | p2 ≈ p2 | p1
fail | p ≈ p p1 | (p2 | p3) ≈ (p1 | p2) | p3
p � empty ≈ p p1 � (p2 � p3) ≈ (p1 � p2) � p3
empty � p ≈ p p1 � (p2 | p3) ≈ p1 � p2 | p1 � p3
fail � p ≈ fail (p1 | p2) � p3 ≈ p1 � p3 | p2 � p3
p � fail ≈ fail

It is also easy to show that the order 6 coincides with the natural
order of the join-semilattice formed by | :

p1 6 p2 ⇔ p1 | p2 ≈ p2

By using the generalised Kleene star F from Section 3.1 one
can also show that the recognisers form a F-continuous Kleene
algebra (Kozen 1990): p1 � (p2 F) � p3 is the least upper
bound of the set { p1 � (p2 ˆ i) � p3 | i ∈ N }, where p ˆ i is the
i-fold repetition of p:

〈 ˆ 〉-nullable : Bool→ N→ Bool
〈 n ˆ zero 〉-nullable =
〈 n ˆ suc i 〉-nullable =

ˆ : ∀ {n} → P n→ (i : N)→ P (〈 n ˆ i 〉-nullable)
p ˆ zero = empty
p ˆ suc i = p � (p ˆ i)

(Here zero and suc are the two constructors of N. Note that Agda
can figure out the right-hand sides of 〈 ˆ 〉-nullable automatically,
given the definition of ˆ ; see Section 4.6.)

3.5 Expressive strength
Is the language of recognisers defined above useful? It may not
be entirely obvious that the restrictions imposed to ensure totality

5 If Tok is non-empty.

do not rule out the definition of many useful recognisers. Fortu-
nately this is not the case, at least not if Tok, the set of tokens, is
finite, because then it can be proved that every function of type
List Tok → Bool which can be implemented in Agda can also
be realised as a recogniser. For simplicity this will only be shown
in the case when Tok is Bool. The basic idea is to turn a function
f : List Bool → Bool into a grammar representing an infinite
binary tree, with one node for every possible input string, and to
make a given node accepting iff f returns true for the correspond-
ing string.

Let us first define a recogniser which only accepts the empty
string, and only if its argument is true:

accept-if-true : ∀ b→ P b
accept-if-true true = empty
accept-if-true false = fail

Using this recogniser we can construct the “infinite binary tree”
using guarded corecursion:

grammar : (f : List Bool→ Bool)→ P (f [])
grammar f = cast (lemma f) (

]? (sat id) ·] grammar (f ◦ :: true)

|]? (sat not) ·] grammar (f ◦ :: false)
| accept-if-true (f []))

Note that sat id recognises true, and sat not recognises false. The
following lemma is also used above:

lemma :
∀ f → (false ∧ f [true] ∨ false ∧ f [false]) ∨ f [] ≡ f []

The final step is to show that, for any string s, f s ≡ true iff
s ∈ grammar f . The “only if” part can be proved by induction on
the structure of s, and the “if” part by induction on the structure of
s ∈ grammar f .

Note that the infinite grammar above has a very simple struc-
ture: it is LL(1). I suspect that this grammar can be implemented
using a number of different parser combinator libraries.

As an aside it may be interesting to know that the proof above
does not require the use of lemma. The following left recursive
grammar can also be used:

grammar : (f : List Bool→ Bool)→ P (f [])
grammar f =

] grammar (λ xs→ f (xs ++ [true])) ·]? (sat id)
|] grammar (λ xs→ f (xs ++ [false])) ·]? (sat not)
| accept-if-true (f [])

This shows that nonempty and cast are not necessary to achieve
full expressive strength, because neither grammar nor the backend
rely on these operators.

Finally let us consider the case of infinite token sets. If the
set of tokens is the natural numbers, then it is quite easy to see
that it is impossible to implement a recogniser for the language
{ nn | n ∈ N }. By generalising the statement to “it is impossible
that p accepts infinitely many identical pairs, and only identical
pairs and/or the empty string” (where an identical pair is a string
of the form nn) one can prove this formally by induction on the
structure of p (see the accompanying code). Note that this restric-
tion does not apply to the monadic combinators introduced in the
next section, which have maximal expressive strength also for infi-
nite token sets.

4. Parsers
This section describes how the recogniser language above can be
extended to actual parser combinators, which return results.

Consider the monadic parser combinator bind, >>= : The
parser p1 >>= p2 successfully returns a value y for a given string
s if p1 parses a prefix of s, returning a value x, and p2 x parses
the rest of s, returning y. Note that p1 >>= p2 accepts the empty
string iff p1 accepts the empty string, returning a value x, and p2 x
also accepts the empty string. This shows that the values which a
parser can return without consuming any input can be relevant for
determining if another parser is nullable.

This suggests that, in analogy with the treatment of recognisers,
a parser should be indexed by its “initial set”—the set of values
which can be returned when the input is empty. However, some-
times it is useful to distinguish two grammars if the number of
parse trees corresponding to a certain string differ. For instance,
the parser backend defined in Section 4.2 returns twice as many re-
sults for the parser p | p as for the parser p. In order to take account
of this distinction parsers are indexed by their return types and their
“initial bags” (or multisets), represented as lists:

mutual
data Parser : (R : Set)→ List R→ Set1 where
. . .

(Set1 is a type of large types; Agda is predicative.)
The first four combinators have relatively simple types. The

return combinator is the parser analogue of empty. When accept-
ing the empty string it returns its argument:

return : ∀ {R} (x : R)→ Parser R [x]

(Note that [] is the return function of the list monad.) The fail
parser, which mirrors the fail recogniser, always fails:

fail : ∀ {R} → Parser R []

(Note that [] is the zero of the list monad.) The token parser accepts
any single token, and returns this token:

token : Parser Tok []

This combinator is not as general as sat, but a derived combinator
sat is easy to define using token and bind, see Section 4.6. The
analogue of the choice recogniser is | :

| : ∀ {R xs1 xs2} → Parser R xs1 → Parser R xs2 →
Parser R (xs1 ++ xs2)

The initial bag of a choice is the union of the initial bags of its two
arguments.

The bind combinator’s type is more complicated than the types
above. Consider p1 >>= p2 again. Here p2 is a function, and we
have a function f : R1 → List R2 which computes the initial
bag of p2 x, depending on the value of x. When should we allow
p1 to be coinductive? One option is to only allow this when f x
is empty for every x, but I do not want to require the user of the
library to prove such a property just to define a parser. Instead I
have chosen to represent the function f with an optional function
f : Maybe (R1 → List R2),6 where nothing represents λ → [],
and to make p1 coinductive iff f is nothing. The same approach is
used for xs, the initial bag of p1:

>>= : ∀ {R1 R2} {xs : Maybe (List R1)}
{f : Maybe (R1 → List R2)} →
∞〈 f 〉Parser R1 (flatten xs)→
((x : R1)→∞〈 xs 〉Parser R2 (apply f x))→
Parser R2 (bind xs f)

The helper functions flatten, apply and bind, which interpret
nothing as the empty list or the constant function returning the

6 The type Maybe A has the two constructors nothing : Maybe A and
just : A→ Maybe A.

flatten : {A : Set} → Maybe (List A)→ List A
flatten nothing = []
flatten (just xs) = xs

apply : {A B : Set} → Maybe (A→ List B)→ A→ List B
apply nothing x = []
apply (just f) x = f x

bind : {A B : Set} →
Maybe (List A)→ Maybe (A→ List B)→ List B

bind xs nothing = []
bind xs (just f) = bindL (flatten xs) f

Figure 2. Helper functions used in the type signature of >>= .
Note that there is a reason for not defining bind using the equation
bind xs f = bindL (flatten xs) (apply f); see Section 4.6.

empty list, are defined in Figure 2; bind is defined in terms of bindL,
the standard list monad’s bind operation. The function∞〈 〉Parser
is defined as follows, mutually with Parser:

∞〈 〉Parser : {A : Set} → Maybe A→
(R : Set)→ List R→ Set1

∞〈 nothing 〉Parser R xs = ∞ (Parser R xs)
∞〈 just 〉Parser R xs = Parser R xs

(∞ works also for Set1.) It is straightforward to define a variant of
[? for this type. It is not necessary to define]?, though: instead of
conditionally delaying one can just avoid using nothing.

Just as in Section 3 two additional constructors are included in
the definition of Parser:

nonempty : ∀ {R xs} → Parser R xs→ Parser R []
cast : ∀ {R xs1 xs2} → xs1 ≈bag xs2 →

Parser R xs1 → Parser R xs2

Here ≈bag stands for bag equality between lists, equality up to
permutation of elements; the cast combinator ensures that one can
replace one representation of a parser’s initial bag with another. Bag
equality is defined in two steps. First list membership is encoded
inductively as follows:

data ∈ {A : Set} : A→ List A→ Set where
here : ∀ {x xs} → x ∈ x :: xs
there : ∀ {x y xs} → y ∈ xs→ y ∈ x :: xs

Two lists xs and ys are then deemed “bag equal” if, for every
value x, x is a member of xs as often as it is a member of ys:

≈bag : ∀ {R} → List R→ List R→ Set
xs ≈bag ys = ∀ {x} → x ∈ xs ↔ x ∈ ys

Here A ↔ B means that there is an invertible function from A to
B, so A and B must have the same cardinality.

4.1 Semantics
The semantics of the parser combinators is defined as a relation
∈ · , such that x ∈ p · s is inhabited iff x is one of the results of

parsing the string s using the parser p. This relation is defined in
Figure 3. Note that values of type x ∈ p · s can be seen as parse
trees.

The parsers come with two kinds of equivalence. The weaker
one, language equivalence (≈), is a direct analogue of the equiv-
alence used for recognisers in Section 3.4:

≈ : ∀ {R xs1 xs2} →
Parser R xs1 → Parser R xs2 → Set1

p1 ≈ p2 = ∀ {x s} → x ∈ p1 · s ⇔ x ∈ p2 · s

data ∈ · : ∀ {R xs} →
R→ Parser R xs→ List Tok→ Set1 where

return : x ∈ return x · []
token : t ∈ token · [t]
|-left : x ∈ p1 · s→ x ∈ p1 | p2 · s
|-right : x ∈ p2 · s→ x ∈ p1 | p2 · s
>>= : x ∈ [? p1 · s1 → y ∈ [? (p2 x) · s2 →

y ∈ p1 >>= p2 · s1 ++ s2
nonempty : x ∈ p · t :: s→ x ∈ nonempty p · t :: s
cast : x ∈ p · s→ x ∈ cast eq p · s

Figure 3. The semantics of the parser combinators. To avoid clut-
ter the declarations of bound variables are omitted in the construc-
tors’ type signatures.

Here A ⇔ B means that A and B are equivalent: there is a function
of type A → B and another function of type B → A. We immedi-
ately get that language equivalence is an equivalence relation.

As mentioned above language equivalence is sometimes too
weak. We may want to distinguish between grammars which define
the same language, if they do not agree on the number of ways
in which a given value can be produced from a given string. To
make the example given above more concrete, the parser backend
defined in Section 4.2 returns one result when the empty string is
parsed using return true (parse tree: return), and two results when
return true | return true is used (parse trees: |-left return and
|-right return). Based on this observation two parsers are defined
to be parser equivalent (∼=) if, for all values and strings, the
respective sets of parse trees have the same cardinality:
∼= : ∀ {R xs1 xs2} →

Parser R xs1 → Parser R xs2 → Set1
p1 ∼= p2 = ∀ {x s} → x ∈ p1 · s ↔ x ∈ p2 · s

From its definition we immediately get that parser equivalence is
an equivalence relation. Parser equivalence is strictly stronger than
language equivalence: the former distinguishes between return
true and return true | return true, while the latter is idempotent.

Just as in Section 3.2 the initial bag index is correct:

index-correct : ∀ {R xs x} {p : Parser R xs} →
x ∈ p · [] ↔ x ∈ xs

Note the use of ↔ : the number of parse trees for x matches
the number of occurrences of x in the list xs. One direction of
the inverse can be defined by recursion on the structure of the
semantics, and the other by recursion on the structure of ∈ .

From index-correct we easily get that parsers which are parser
equivalent have equal initial bags:

same-bag : ∀ {R xs1 xs2}
{p1 : Parser R xs1} {p2 : Parser R xs2} →

p1 ∼= p2 → xs1 ≈bag xs2

Similarly, language equivalent parsers have equal initial sets.

4.2 Backend
Following Section 3.3 it is easy to implement a derivative operator
for parsers:

D : ∀ {R xs} (t : Tok) (p : Parser R xs)→
Parser R (D-bag t p)

The implementation of the function D-bag which computes the
derivative’s initial bag can be seen in Figure 4. Both D and D-bag
use analogues of the forced? function from Section 3:

D-bag : ∀ {R xs} → Tok→ Parser R xs→ List R
D-bag t (return x) = []
D-bag t fail = []
D-bag t token = [t]
D-bag t (p1 | p2) = D-bag t p1 ++ D-bag t p2
D-bag t (nonempty p) = D-bag t p
D-bag t (cast eq p) = D-bag t p
D-bag t (p1 >>= p2) with forced? p1 | forced?′ p2
. . . | just f | nothing = bindL (D-bag t p1) f
. . . | just f | just xs = bindL (D-bag t p1) f ++

bindL xs (λ x→ D-bag t (p2 x))
. . . | nothing | nothing = []
. . . | nothing | just xs = bindL xs (λ x→ D-bag t (p2 x))

Figure 4. The index function D-bag. Note that its implementation
falls out almost automatically from the definition of D.

forced? : ∀ {A R xs m} → ∞〈 m 〉Parser R xs→ Maybe A
forced? {m = m} = m

forced?′ : ∀ {A R1 R2 : Set} {m} {f : R1 → List R2} →
((x : R1)→∞〈 m 〉Parser R2 (f x))→ Maybe A

forced?′ {m = m} = m

The non-recursive cases of D, along with choice, nonempty and
cast, are easy:

D t (return x) = fail
D t fail = fail
D t token = return t
D t (p1 | p2) = D t p1 | D t p2
D t (nonempty p) = D t p
D t (cast eq p) = D t p

The last case, >>= , is more interesting. It makes use of the
combinator return?, which can return any element of its argument
list:

return? : ∀ {R} (xs : List R)→ Parser R xs
return? [] = fail
return? (x :: xs) = return x | return? xs

The code is very similar to the code for sequencing in Section 3.3:

D t (p1 >>= p2) with forced? p1 | forced?′ p2
. . . | just f | nothing = D t p1 >>= (λ x→ [(p2 x))
. . . | nothing | nothing =] D t ([p1) >>= (λ x→ [(p2 x))
. . . | just f | just xs = D t p1 >>= (λ x→ p2 x)

| return? xs >>= (λ x→ D t (p2 x))
. . . | nothing | just xs =] D t ([p1) >>= (λ x→ p2 x)

| return? xs >>= (λ x→ D t (p2 x))

There are two main differences. One is the absence of]?. The
other difference can be seen in the last two cases, where p1 is
potentially nullable (it is if xs is nonempty). The corresponding
right-hand sides are implemented as choices, as before. However,
the right choices are a bit more involved than in Section 3.3. They
correspond to the cases where p1 succeeds without consuming any
input, returning one of the elements of its initial bag xs. In this
case the elements of the initial bag index of p1 are returned using
return?, and then combined with p2 using bind.

The implementation of D-bag is structurally recursive, while the
implementation of D uses a lexicographic combination of guarded
corecursion and structural recursion, just as in Section 3.3. It is
straightforward to prove the following correctness property:

D-correct : ∀ {R xs x s t} {p : Parser R xs} →
x ∈ D t p · s ↔ x ∈ p · t :: s

Both directions of the inverse can be defined by recursion on the
structure of the semantics, with the help of index-correct.

Given the derivative operator it is easy to define the parser
backend:

parse : ∀ {R xs} → Parser R xs→ List Tok→ List R
parse {xs = xs} p [] = xs
parse p (t :: s) = parse (D t p) s

The correctness of this implementation follows easily from index-
correct and D-correct:

parse-correct : ∀ {R xs x s} {p : Parser R xs} →
x ∈ p · s ↔ x ∈ parse p s

Both directions of the inverse can be defined by recursion on the
structure of the input string. Note that this proof establishes that
a parser can only return a finite number of results for a given
input string (because the list returned by parse is finite)—infinitely
ambiguous grammars cannot be represented in this framework.

As mentioned in Section 4.1 we have

parse (return true | return true) [] ≡ true :: true :: [] .

It might seem reasonable for parse to remove duplicates from the
list of results. However, the result type is not guaranteed to come
with decidable equality (consider functions, for instance), so such
filtering is left to the user of parse.

The code above is not optimised, and mainly serves to illustrate
that it is possible to implement a Parser backend which guarantees
termination. It is not too hard to see that, in the worst case, parse
is at least exponential in the size of the input string. Consider the
following parser:

p : Parser Bool []
p = fail >>= λ (b : Bool)→ fail

The derivative D t p is p | p, for any token t. After taking n deriva-
tives we get a parser with 2n

−1 choices, and all these choices have
to be traversed to compute the parser’s initial bag. The parser p may
seem contrived, but similar parsers can easily arise as the result of
taking the derivative of more useful parsers.

It may be possible to implement more efficient backends. For in-
stance, one can make use of algebraic laws like fail >>= p ∼= fail
(see Section 4.4) to simplify parsers, and perhaps avoid the kind of
behaviour described above, at least for certain classes of parsers.
Exploring such optimisations is left for future work, though.

4.3 Coinductive equivalences
In Section 3.4 a coinductive characterisation of recogniser equiva-
lence is given. This is possible also for parser equivalence:

data ∼=c {R xs1 xs2} (p1 : Parser R xs1)
(p2 : Parser R xs2) : Set where

:: : xs1 ≈bag xs2 →
(∀ t→∞ (D t p1 ∼=c D t p2))→
p1 ∼=c p2

Two parsers are equivalent if their initial bags are equal, and,
for every token t, the respective derivatives with respect to t are
equivalent (coinductively). Using index-correct and D-correct it is
easy to show that the two definitions of parser equivalence, ∼=
and ∼=c , are equivalent.

By replacing the use of ↔ in the definition of bag equality
with ⇔ we get set equality instead. If, in turn, the use of bag
equality is replaced by set equality in ∼=c , then we get a coinduc-
tive characterisation of language equivalence (≈).

By using the coinductive characterisations of equivalence I have
proved that all primitive parser combinators preserve both language
and parser equivalence, i.e. the equivalences are congruences.

4.4 Laws
Let us now discuss the equational theory of the parser combinators.
Many of the laws from Section 3.4 can be generalised to the setting
of parser combinators. To start with we have a commutative monoid
formed by fail and | :

p1 | p2 ∼= p2 | p1
fail | p ∼= p
(p1 | p2) | p3 ∼= p1 | (p2 | p3)

If language equivalence is used this monoid is also idempotent:

p | p ≈ p

We also have a monad, with fail as a left and right zero of bind, and
bind distributing from the left and right over choice:

return x >>= p ∼= p x
p >>= return ∼= p
p1 >>= (λ x→ p2 x >>= p3) ∼= (p1 >>= p2) >>= p3
fail >>= p ∼= fail
p >>= (λ → fail) ∼= fail
p1 >>= (λ x→ p2 x | p3 x) ∼= p1 >>= p2 | p1 >>= p3
(p1 | p2) >>= p3 ∼= p1 >>= p3 | p2 >>= p3

Unlike in Section 3.4 there is no need to define a special variant
of >>= to state the laws above: if the types of the argument parsers
are given (as for >>=-left-identity below), then Agda automatically
infers that bind’s implicit arguments xs and f should have the form
just something.

Analogues of most of the laws from Section 3.4 are listed
above. However, assuming that the token type is inhabited, it is
not possible to find a function

f : ∀ {R xs} → Parser R xs→ List (List R)

and a Kleene-star-like combinator

F : ∀ {R xs} (p : Parser R xs)→ Parser (List R) (f p)

such that

return [] | (p >>= λ x→ pF >>= λ xs→ return (x :: xs))
6 pF

holds for all p. (Here 6 is defined as in Section 3.4.) The reason
is that p may be nullable, in which case the inequality above implies
that xs ∈ pF · [] must be satisfied for infinitely many lists xs,
whereas parse-correct shows that a parser can only return a finite
number of results. (A combinator F satisfying the inequality
above can easily be implemented if it is restricted to non-nullable
argument parsers.)

Before leaving the subject of equational laws, let me take a
moment to explain how one of the laws above—the left identity
law for bind—can be proved. Assume that we have already proved
some of the other laws, along with the following property of bindL:

bindL-left-identity :
{A B : Set} (x : A) (f : A→ List B)→
bindL [x] f ≈bag f x

I have found the coinductive characterisations of the equivalences
to be convenient to work with, so I have proved the law roughly as
follows:

>>=-left-identity :
{R1 R2 : Set} {f : R1 → List R2}
(x : R1) (p : (x : R1)→ Parser R2 (f x))→
return x >>= p ∼=c p x

>>=-left-identity {f = f} x p =
bindL-left-identity x f :: λ t→] (

D t (return x >>= p) ∼=c
fail >>= p | return? [x] >>= (λ x→ D t (p x)) ∼=c
fail | return x >>= (λ x→ D t (p x)) ∼=c

return x >>= (λ x→ D t (p x)) ∼=c
D t (p x) �)

(To avoid clutter the proof above uses the equational reason-
ing notation . . . ∼=c . . . ∼=c . . . �, and the sub-proofs for the
individual steps have been omitted.) The proof has two parts.
First bindL-left-identity is used to show that the initial bags of
return x >>= p and p x are equal, and then it is shown, for every
token t, that D t (return x >>= p) and D t (p x) are equivalent. The
first step of the latter part uses a law relating D and >>= , the sec-
ond step uses the left zero law (fail >>= p ∼=c fail) and the right
identity law for choice (p | fail ∼=c p), the third step uses the left
identity law for choice (fail | p ∼=c p), and the last step uses the
coinductive hypothesis.

The proof as written above would not be accepted by Agda,
because the coinductive hypothesis is not guarded by constructors
(due to the uses of transitivity implicit in the equational reasoning
notation). However, this issue can be addressed (Danielsson 2010).
For details of how all the properties above have been proved, see
the code accompanying the paper.

4.5 Expressive strength
This subsection is concerned with the parser combinators’ ex-
pressiveness. By using bind one can strengthen the result from
Section 3.5 to arbitrary sets of tokens: every function of type
List Tok → List R can be realised as a parser (if bag equality
is used for the lists of results). The grammar is similar to the con-
struction in Section 3.5:

grammar : ∀ {R} (f : List Tok→ List R)→ Parser R (f [])
grammar f = token >>= (λ t→] grammar (f ◦ :: t))

| return? (f [])

The function grammar satisfies the following correctness property:

grammar-correct : ∀ {R x s} (f : List Tok→ List R)→
x ∈ grammar f · s ↔ x ∈ f s

One direction of the inverse can be defined by induction on the
structure of the semantics, and the other by induction on the struc-
ture of the input string. If we combine this result with parse-correct
we get the expressiveness result:

maximally-expressive : ∀ {R} (f : List Tok→ List R) {s} →
parse (grammar f) s ≈bag f s

Assume for a moment that the primitive parser combinators in-
cluded sat and applicative functor application (McBride and Pater-
son 2008) instead of token and bind. Then, for finite sets of tokens,
we could have defined grammar roughly as in Section 3.5. This
means that, for finite sets of tokens, the inclusion of the monadic
bind combinator does not provide any expressive advantage; the
applicative functor interface is already sufficiently expressive. This
comparison does not take efficiency into account, though.

4.6 Examples
Finally let us consider some examples, along with some practical
remarks.

Let us start with the left recursive grammar in the introduction.
Note that it does not require any user annotations, except for the
three uses of] . Agda infers all the type signatures and all the im-
plicit arguments, including several functions, automatically. Agda’s
inference mechanism is based on unification (a variant of pattern
unification (Pfenning 1991)), and an omitted piece of code is only
“filled in” if it can be uniquely determined from the constraints pro-
vided by the rest of the code. In general there is no guarantee that
implicit arguments can be omitted, and it is not uncommon that the
exact form of a definition affects how much can be inferred.

Consider the definition of bind in Figure 2. It is set up so that
bind xs nothing evaluates to the empty list, even if xs is a neutral
term. If bind had instead been defined by the equation

bind xs f = bindL (flatten xs) (apply f),

then the example in the introduction would have required man-
ual annotations: the example gives rise to the constraint xs =
bind (just xs) nothing, which with the alternative definition of
bind reduces to xs = bindL xs (λ → []), and Agda cannot solve
this unification problem.

As an example of a definition for which the initial bag is not
inferred automatically, consider the following definition of sat:

sat : ∀ {R} → (Tok→ Maybe R)→ Parser R
sat {R = R} p = token >>= λ t→ ok (p t)

where
ok-bag : Maybe R→ List R
ok-bag nothing =
ok-bag (just x) =
ok : (x : Maybe R)→ Parser R (ok-bag x)
ok nothing = fail
ok (just x) = return x

The parser sat p matches a single token t iff p t evaluates to just x,
for some x; the value returned is x. The initial bag function ok-bag
is not inferred by Agda. However, the right-hand sides of ok-bag,
and the initial bag of sat, are inferred.

The example in the introduction uses the derived combinators
tok and number. The parser tok, which accepts a given token, is
easy to define using sat (assuming that equality of tokens can be
decided using the function ==):

tok : Tok→ Parser Tok
tok t = sat (λ t′ → if t == t′ then just t′ else nothing)

Given a parser for digits (which is easy to define using sat) the
parser number, which accepts an arbitrary non-negative number,
can also be defined:

number : Parser N
number = digit + >>= return ◦ foldl (λ n d→ 10 ∗ n + d) 0

Here foldl is a left fold for lists, and p + parses one or more ps (as
in Section 3.1).

The examples above are quite small; larger examples can also be
constructed. For instance, Danielsson and Norell (2009) construct
mixfix operator parsers using a parser combinator library which is
based on some of the ideas described here.

5. Conclusions
A parser combinator library which handles left recursion and guar-
antees termination of parsing has been presented, and it has been
established that the library is sufficiently expressive: every finitely
ambiguous parser on finite input strings which can be implemented
using the host language can also be realised using the combinators.

I believe that the precise treatment of induction and coinduction
which underlies the definition of the parser combinators gives a

good framework for understanding lazy programs. To take one
example, Claessen (2004) defines the following parser data type
using Haskell:

data P′ s a = SymbolBind (s → P′ s a)
| Fail
| ReturnPlus a (P′ s a)

He notes that it is isomorphic to the stream processor type used in
Fudgets (Carlsson and Hallgren 1998), and that this isomorphism
“inspired the view of the parser combinators being parsing process
combinators”. However, in a total setting I would define these two
types differently. The stream processors were defined in Section 2,
with an inductive get constructor and a coinductive put constructor.
I find it natural to define P′ in the opposite way:

data P′ (S A : Set) : Set where
symbolBind : (S→∞ (P′ S A))→ P′ S A
fail : P′ S A
returnPlus : A→ P′ S A→ P′ S A

The reason for the difference is that the types are used differently.
Stream processors are interpreted using J K, and parsers using
parse′, which works with finite lists:

parse′ : ∀ {S A} → P′ S A→ List S→ List (A × List S)
parse′ (symbolBind f) (c :: s) = parse′ ([(f c)) s
parse′ (returnPlus x p) s = (x, s) :: parse′ p s
parse′ = []

The definition of J K in Section 2 would not be total if get were
coinductive, because then we could not guarantee that the result-
ing colist would be productive. On the other hand, if returnPlus
were coinductive and symbolBind inductive, then parsers like the
one used in the proof of maximal expressiveness in Section 4.5
could not be implemented (consider the case when the argument to
grammar is λ → []).

The use of lazy data types and general recursion in Haskell is
very flexible—for instance, Carlsson and Hallgren (1998) use their
stream processors in ways which would not be accepted if the type
SP were used in Agda—but I find it easier to understand how and
why programs work when induction and coinduction are separated
as in this paper. The use of mixed induction and coinduction has
been known for a long time (Park 1980), but does not seem to be
well-known among functional programmers. It is my hope that this
paper provides a compelling example of the use of this technique.

Acknowledgements
I would like to thank Ulf Norell for previous joint work on total
parsing, and for improving Agda’s unification mechanism. Another
person who deserves thanks is Thorsten Altenkirch, with whom I
have had many discussions about mixed induction and coinduction.
Thorsten also suggested that I should allow left recursive parsers,
which I might otherwise not have tried, and gave feedback which
improved the presentation; such feedback was also given by several
anonymous reviewers.

Finally I would like to acknowledge financial support from
EPSRC and the Royal Swedish Academy of Sciences’ funds
(EPSRC grant code: EP/E04350X/1).

References
The Agda Team. The Agda Wiki. Available at http://wiki.portal.

chalmers.se/agda/, 2010.
Thorsten Altenkirch and Nils Anders Danielsson. Termination checking in

the presence of nested inductive and coinductive types. Note support-
ing presentation given at the Workshop on Partiality and Recursion in
Interactive Theorem Provers, Edinburgh, UK, 2010.

Arthur Baars, S. Doaitse Swierstra, and Marcos Viera. Typed transforma-
tions of typed grammars: The left corner transform. In Preliminary Pro-
ceedings of the Ninth Workshop on Language Descriptions Tools and
Applications, LDTA 2009, pages 18–33, 2009.

Marcello Bonsangue, Jan Rutten, and Alexandra Silva. A Kleene theo-
rem for polynomial coalgebras. In Foundations of Software Science
and Computational Structures, 12th International Conference, FOS-
SACS 2009, volume 5504 of LNCS, pages 122–136, 2009.

Kasper Brink, Stefan Holdermans, and Andres Löh. Dependently typed
grammars. In Mathematics of Program Construction, Tenth Interna-
tional Conference, MPC 2010, volume 6120 of LNCS, pages 58–79,
2010.

Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11(4):481–494, 1964.

William H. Burge. Recursive Programming Techniques. Addison-Wesley,
1975.

Magnus Carlsson and Thomas Hallgren. Fudgets – Purely Functional
Processes with applications to Graphical User Interfaces. PhD thesis,
Chalmers University of Technology and Göteborg University, 1998.

Koen Claessen. Embedded Languages for Describing and Verifying Hard-
ware. PhD thesis, Chalmers University of Technology, 2001.

Koen Claessen. Parallel parsing processes. Journal of Functional Program-
ming, 14:741–757, 2004.

Koen Claessen and David Sands. Observable sharing for functional circuit
description. In Advances in Computing Science — ASIAN’99, volume
1742 of LNCS, pages 62–73, 1999.

Thierry Coquand. Infinite objects in type theory. In Types for Proofs and
Programs, International Workshop TYPES ’93, volume 806 of LNCS,
pages 62–78, 1994.

Nils Anders Danielsson. Beating the productivity checker using embedded
languages. In Workshop on Partiality and Recursion in Interactive
Theorem Provers, Edinburgh, UK, 2010.

Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declarative-
ly: An exercise in mixed induction and coinduction. In Mathematics
of Program Construction, Tenth International Conference, MPC 2010,
volume 6120 of LNCS, pages 100–118, 2010.

Nils Anders Danielsson and Ulf Norell. Structurally recursive descent
parsing. Unpublished note, 2008.

Nils Anders Danielsson and Ulf Norell. Parsing mixfix operators. To
appear in the proceedings of the 20th International Symposium on the
Implementation and Application of Functional Languages (IFL 2008),
2009.

Jon Fairbairn. Making form follow function: An exercise in functional
programming style. Software: Practice and Experience, 17(6):379–386,
1987.

Jeroen Fokker. Functional parsers. In Advanced Functional Programming,
volume 925 of LNCS, pages 1–23, 1995.

Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. Parser combina-
tors for ambiguous left-recursive grammars. In PADL 2008: Practical
Aspects of Declarative Languages, volume 4902 of LNCS, pages 167–
181, 2008.

Tatsuya Hagino. A Categorical Programming Language. PhD thesis,
University of Edinburgh, 1987.

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream
processors using nested fixed points. Logical Methods in Computer
Science, 5(3:9), 2009.

R. John M. Hughes and S. Doaitse Swierstra. Polish parsers, step by step.
In ICFP ’03: Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming, pages 239–248, 2003.

Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2:323–343, 1992.

Mark Johnson. Memoization in top-down parsing. Computational Linguis-
tics, 21(3):405–417, 1995.

Oleg Kiselyov. Parsec-like parser combinator that handles left recursion?
Message to the Haskell-Cafe mailing list, December 2009.

Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers. In
IFL’98: Implementation of Functional Languages, volume 1595 of
LNCS, pages 120–136, 1999.

Adam Koprowski and Henri Binsztok. TRX: A formally verified parser
interpreter. In Programming Languages and Systems, 19th European
Symposium on Programming, ESOP 2010, volume 6012 of LNCS, pages
345–365, 2010.

Dexter Kozen. On Kleene algebras and closed semirings. In Mathematical
Foundations of Computer Science 1990, volume 452 of LNCS, pages
26–47, 1990.

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combina-
tors for the real world. Technical Report UU-CS-2001-35, Department
of Information and Computing Sciences, Utrecht University, 2001.

Paul Lickman. Parsing with fixed points. Master’s thesis, University of
Cambridge, 1995.

Peter Ljunglöf. Pure functional parsing; an advanced tutorial. Licentiate
thesis, Department of Computing Science, Chalmers University of Tech-
nology and Göteborg University, 2002.

Antoni W. Mazurkiewicz. A note on enumerable grammars. Information
and Control, 14(6):555–558, 1969.

Conor McBride and James McKinna. Seeing and doing. Presentation (given
by McBride) at the Workshop on Termination and Type Theory, Hindås,
Sweden, 2002.

Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18:1–13, 2008.

Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University,
1992.

Paul Francis Mendler. Inductive Definition in Type Theory. PhD thesis,
Cornell University, 1988.

Muad`Dib. Strongly specified parser combinators. Post to the Muad`Dib
blog, 2009.

Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Chalmers University of Technology and
Göteborg University, 2007.

David Park. On the semantics of fair parallelism. In Abstract Software
Specifications, volume 86 of LNCS, pages 504–526, 1980.

Frank Pfenning. Unification and anti-unification in the calculus of construc-
tions. In Proceedings of the Sixth Annual IEEE Symposium on Logic in
Computer Science, pages 74–85, 1991.

J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra).
In CONCUR’98, Concurrency Theory, 9th International Conference,
volume 1466 of LNCS, pages 547–554, 1998.

Niklas Röjemo. Garbage collection, and memory efficiency, in lazy func-
tional languages. PhD thesis, Chalmers University of Technology and
University of Göteborg, 1995.

Marvin Solomon. Theoretical Issues in the Implementation of Programming
Languages. PhD thesis, Cornell University, 1977.

S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting
combinator parsers. In Advanced Functional Programming, volume
1129 of LNCS, pages 184–207, 1996.

Wouter Swierstra. A Hoare logic for the state monad. In Theorem Proving
in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
volume 5674 of LNCS, pages 440–451, 2009.

Philip Wadler. How to replace failure by a list of successes; a method for ex-
ception handling, backtracking, and pattern matching in lazy functional
languages. In Functional Programming Languages and Computer Ar-
chitecture, volume 201 of LNCS, pages 113–128, 1985.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to
a strict language, without even being odd. In Proceedings of the 1998
ACM SIGPLAN Workshop on ML, 1998.

Malcolm Wallace. Partial parsing: Combining choice with commitment.
In IFL 2007: Implementation and Application of Functional Languages,
volume 5083 of LNCS, pages 93–110, 2008.

