
Structurally Recursive Descent Parsing

(Draft)

Nils Anders Danielsson∗

University of Nottingham

Ulf Norell
Chalmers University of Technology

December 29, 2008

Abstract

Recursive descent parsing does not terminate for left recursive gram-
mars. We turn recursive descent parsing into structurally recursive de-
scent parsing, acceptable by total dependently typed languages like Agda,
by using the type system to rule out left recursion.

The resulting library retains much of the flavour of ordinary “list of
successes” combinator parsers. In particular, the type indices used to rule
out left recursion can in many cases be inferred automatically, so that
library users do not have to write them out manually.

1 Introduction

Parser combinators (Burge 1975; Wadler 1985; Fairbairn 1987; Hutton 1992;
Meijer 1992; Fokker 1995; Röjemo 1995; Swierstra and Duponcheel 1996; Koop-
man and Plasmeijer 1999; Leijen and Meijer 2001; Ljunglöf 2002; Hughes and
Swierstra 2003; Claessen 2004; Frost et al. 2008; Wallace 2008, and many others)
can provide an elegant and declarative method for specifying parsers. Because
these specifications are directly executable the method is also light-weight: no
separate tools are necessary, only the standard tool-chain of the host language.
Furthermore parser combinator libraries are often embedded in an advanced
programming language, in which case their users get the added advantage that
it is easy to abstract over and reuse recurring grammatical or parsing patterns;
this may be the most important advantage of parser combinator libraries, as op-
posed to standard parser generators. Finally parser combinators are nowadays
often fast enough to be used in practice.

There is a problem with the description above, though. All parsers written
using parser combinator libraries are not executable, at least not in a satisfying
way. An attempt to parse something using a left recursive grammar often leads
to non-termination. This problem can be fixed by using a more sophisticated

∗The author would like to thank EPSRC and the Royal Swedish Academy of Sciences’
funds for financial support.

1

parser backend which can handle left recursion (Frost et al. 2008), or it can be
fixed by ruling out left recursive grammars. We take the second approach.

We use dependent types to add information in the form of type indices to the
parser type, and use these indices to ensure that left recursion is not possible.
The information is

1. whether or not the parser accepts the empty string, and

2. an approximation of the parser’s proper left corners, i.e. the parsers (non-
terminals) which the parser can invoke without first consuming any input
(see Section 2).

A parser is left recursive iff it is a proper left corner of itself. Many parser combi-
nator libraries are based on recursive descent parsing (Burge 1975), which fails
to terminate if an attempt is made to descend on a left-recursive non-terminal,
since this leads to an infinite loop. We make use of the structure of the proper
left corner representation to turn recursive descent parsing into structurally re-
cursive descent parsing, thereby ensuring termination (see Section 4).

Dependent types are in general hard to infer automatically, and the exercise
outlined above risks being of mostly academic value if the programmer using
the resulting library has to construct and maintain tricky type annotations.
However, this is not the case. For many uses of our library the type indices can
be inferred automatically. Sections 5 and 6 illustrate this through a series of
examples.

Taking a step back one can note that parser combinator libraries provide
good examples of domain-specific embedded languages (Hudak 1996), for all
the reasons outlined above. In this setting the failure to rule out left recur-
sion amounts to a lack of static checking for these languages. By using a host
language with dependent types we are able to capture more domain-specific
constraints in the embedded type system, thereby providing a more faithful
embedding of the domain-specific language (Oury and Swierstra 2008).

To summarise, our contributions are as follows:

• We show how parser combinators which guarantee1 termination can be
implemented and used.

• Dependent types are used to rule out left recursion, but the extra type
information can often be inferred automatically.

To keep things concrete the total, dependently typed functional language Agda
(Norell 2007; Agda Team 2008) is used to explain our methods; the language
is introduced as we go along. A parser combinator library implemented using
these methods is (at the time of writing) available from the first author’s web
page.

The rest of the paper is structured as follows: Section 2 explains left recursion
in more detail. Section 3 defines an embedded language of parser combinators
coinductively, Section 4 shows how this language can be interpreted, and Sec-
tion 5 outlines some differences between these and ordinary parser combinators
through a series of examples. As an alternative or complement to the coinduc-
tive approach Section 6 introduces a grammar-based variant of total parsing,
and Section 7 concludes with a discussion of related work.

1Assuming that the host language can be proved total and its implementation is bug-free.
Similar assumptions apply to other statements below.

2

2 Left recursion

Parsers based on recursive descent or similar top-down, left-to-right techniques
fail to terminate for left recursive grammars. Let us illustrate this through
an example, expressed using a monadic parser combinator interface based on
Hutton and Meijer’s presentation (1998). In a language like Haskell the following
simple expression parser is unproblematic:

expr = do
l ← term
theToken ’+’
r ← expr
return (Add l r)

term = . . .

(Here theToken t is a parser for the token t .) However, if the parser is changed
to

expr = do
l ← expr
theToken ’+’
r ← term
return (Add l r)

term = . . .

in order to make addition left associative, then parsing fails to terminate. The
reason is that expr , when evaluated, immediately descends on itself, without
consuming any input tokens. In this case it is easy to see that expr is left
recursive, but in the case of indirect left recursion, where a parser descends on
itself after several steps without having consumed any tokens, it can be harder.

In order to define left recursion more precisely, consider a non-terminal N
in a context-free grammar. If N can be rewritten, in one or more steps, to a
sequence of terminals and non-terminals headed by X , then X is a proper left
corner of N (this definition matches the one given by Moore (2000) if empty
productions are disallowed). A non-terminal is left recursive if it is a proper left
corner of itself. Even though monadic combinator parsing is not restricted to
context-free grammars we reuse this terminology for parsers: The parsers that
a given parser can evaluate to in at least one step without consuming any input
are called its proper left corners; a parser is left recursive if it is “at the head”
of a proper left corner of itself.

In Section 3 below we will make use of proper left corners to rule out left
recursion, but first we note a second problem with the definitions of expr above:
Agda, the language used for our implementation, would reject both of them,
also the unproblematic one. The reason is that the definitions are cyclic; there
is nothing which gets obviously smaller in the recursive calls to expr , so Agda’s
termination checker would not accept the given code.

There are at least two ways to work around this problem. One is to view a
parser as a possibly infinite value of a coinductive type, and ensure that parser
definitions are productive. However, the productivity checker of Agda currently
only accepts guarded corecursion (Coquand 1994), which can be somewhat re-
strictive.

3

Another approach is to avoid the cyclic definitions altogether by representing
grammars explicitly in the form of functions from non-terminals to parsers.
This approach is more heavyweight, but does not require language support for
coinductive types, and avoids issues with productivity. (It would perhaps be
incorrect to apply the term parser combinators to this approach, though.)

We will use both approaches above, in an attempt to make the resulting
library as easy to use as possible, starting with the coinductive approach in
Section 3.

3 Coinductive parser combinators

We will aim for a standard monadic parser combinator interface, like the follow-
ing one (Claessen 2004), where Parser Token R is the type of parsers parsing
Token strings and returning values of type R:

return : ∀ {T R} → R → Parser T R
>>= : ∀ {T R1 R2} →

Parser T R1 → (R1 → Parser T R2)→ Parser T R2

fail : ∀ {T R} → Parser T R
| : ∀ {T R} → Parser T R → Parser T R → Parser T R

token : ∀ {T} → Parser T T
parse : ∀ {T R} → Parser T R → List T → List (R × List T)

Here return and >>= (bind) are the monadic combinators, | is symmetric
choice with fail as unit, token returns the next token (if any), and parse applies a
parser to a (finite) list of tokens, returning a list containing all possible parses,
paired up with the corresponding remaining input. (Arguments enclosed in
{. . .} are implicit ; they do not need to be given explicitly if Agda can infer
them. Names containing underscores () are mixfix operators; the underscores
stand for argument positions.)

This section defines our variant of the Parser type, and Section 4 shows how
parse can be defined. In order to ensure totality the interface defined below is
more restrictive than the one above, though.

3.1 Corners

As discussed in Section 2 we want to make sure that a parser is not a proper left
corner (henceforth simply corner) of itself. Consider the expression p1 >> p2,
where p1 >> p2 = p1 >>= λ → p2, and assume that c1 and c2 are the sets of
corners of p1 and p2, respectively. The set of corners of p1 >> p2 depends on
whether or not p1 accepts the empty string. If it does, then the set of corners
is c1 ∪ c2, and otherwise it is just c1. In order to keep track of whether or not
a given parser accepts the empty string we will use booleans:

Empty : Set
Empty = Bool

The value true means that a parser accepts the empty string, and false that it
does not. (Constructors of an inductive data type are typeset using a sans serif
font. Set is a type of small types.)

4

We will only represent the corners of a parser approximately. Every parser
will be annotated with a tree of “positions” in which it is not allowed to call
itself:

data Corners : Set where
ε : Corners
∪ : Corners → Corners → Corners

For instance, if c1 and c2 encode where p1 and p2 are not allowed to call them-
selves, and p1 accepts the empty string, then c1 ∪ c2 encodes where p1 >> p2

may not call itself. If p1 does accept the empty string, then c1 ∪ ε is used
instead. In Agda values of inductive types like Corners are always finite. This
implies that it will not be possible to form directly left recursive parsers like
p = p >> p, because the representation of p’s corners would have to satisfy
either c = c ∪ ε or c = c ∪ c, and these equations have no finite solutions.
Indirect left recursion like

mutual
p1 = p2 >> . . .
p2 = p1 >> . . .

leads to similar equations, and is also ruled out.
One form of left recursion is not ruled out by the use of Corners: p = p

and similar definitions are accepted. However, such definitions are rejected by
Agda’s termination checker. Some readers may now worry that there is some
corner case which we have not taken into consideration, and that therefore
the termination guarantees are void. However, take note of the following: All
programs accepted by Agda are total,2 so the worst thing that can happen
is that the parser combinators defined in this paper are unusable; they will
guarantee termination.

The two types Empty and Corners are wrapped up in a record, along with
a convenient constructor function:

record Index : Set where
field

empty : Empty
corners : Corners

� : Empty → Corners → Index
e � c = record {empty = e; corners = c}

Note that Agda records come with definitional η equality. This means that the
equality empty i � corners i = i is automatically used when type checking
Agda programs. A reader familiar with dependent types may note that this
equality is used repeatedly below.

3.2 Basic combinators

In order to allow cyclic definitions of parsers we let the basic parser combinators
be constructors of a coinductive type:

2Modulo any bugs in the implementation, use of the flag turning off the termination checker,
etc.

5

codata Parser (Tok : Set) : Index → Set → Set1 where

The Parser type takes three arguments: the token type, the Index and the
return type (the parameter Tok scopes over all the constructors; Set1 is a type
of large types with Set : Set1). Let us consider one constructor at a time:

return : ∀ {R} → R → Parser Tok (true � ε) R

The parser return x immediately returns x , so it does accept the empty string,
and it has no sub-parsers, so ε is used as the Corner index. (Constructors of a
coinductive type are typeset using a typewriter font.)

fail : ∀ {R} → Parser Tok (false � ε) R

Because fail always fails it does not accept the empty string.

token : Parser Tok (false � ε) Tok

Whenever the parser token succeeds it consumes one token, so token does not
accept the empty string.

| : ∀ {e1 e2 c1 c2 R} →
Parser Tok (e1 � c1) R →
Parser Tok (e2 � c2) R →
Parser Tok (e1 ∨ e2 � c1 ∪ c2) R

The parser p1 | p2 accepts the empty string when either p1 or p2 does, and
c1 ∪ c2 represents the union of the corners of p1 and p2.

The only remaining combinator is >>= . Here we have a problem. Consider
p1 >>= p2. What should the type of p2 be? We are working in a dependently
typed language, so it is not unreasonable to want the index of p2 to depend on
the result of p1, as captured by the type (x : R1) → Parser Tok (i2 x) R2

(where i2 is a function of type R1 → Index). However, if p2 is allowed such a
general type then we cannot give a type to p1 >>= p2, because the argument
x is not known statically. In an important special case p2 can have this type,
though: when p1 does not accept the empty string the Index of p2 is irrelevant,
because all corners of p1 >>= p2 have to come from p1. Hence we include two
variants of >>= :

!>>= : ∀ {c1 R1 R2} {i2 : R1 → Index} →
Parser Tok (false � c1) R1 →

((x : R1)→ Parser Tok (i2 x) R2)→
Parser Tok (false � c1 ∪ ε) R2

In p1 !>>= p2 the exclamation mark is meant to indicate that p1 is “strict”; it
does not accept the empty string. Note that p1 !>>= p2 does not accept the
empty string either, and that its corners come only from p1.

?>>= : ∀ {e2 c1 c2 R1 R2} →
Parser Tok (true � c1) R1 →

(R1 → Parser Tok (e2 � c2) R2)→
Parser Tok (e2 � c1 ∪ c2) R2

6

The parser p1 ?>>= p2 can accept the empty string iff p2 can, and its corners
include both those from p1 and those from p2.

Given the two variants of >>= above it is straightforward to define a further
variant which works regardless of the first parser’s index:

· : Index → Index → Index
i1 · i2 = (empty i1 ∧ empty i2)

�
(if empty i1 then corners i1 ∪ corners i2

else corners i1 ∪ ε)
>>= : ∀ {e1 c1 i2 Tok R1 R2} → let i1 = e1 � c1 in

Parser Tok i1 R1 →
(R1 → Parser Tok i2 R2)→

Parser Tok (i1 · i2) R2

>>= {false} = !>>=
>>= {true} = ?>>=

Note that the resulting index i1 · i2 is not inferred automatically by Agda
here, because >>= pattern matches on e1 (one can pattern match on implicit
arguments by enclosing the patterns in {. . .}). When the index depends on the
input in a less complicated way it can often be inferred automatically, though:

>> : ∀ {Tok i1 i2 R1 R2} →
Parser Tok i1 R1 → Parser Tok i2 R2 → Parser Tok R2

p1 >> p2 = p1 >>= λ → p2

The character in the type signature is a request to Agda to try to infer the
corresponding expression; Agda complains if it cannot do this. (This limited
inference is performed by Agda’s unification mechanism. The value of can be
inferred if it is uniquely determined, up to definitional equality, by other parts
of the program.)

4 A simple backend

Let us now define a backend, i.e. a parse function, for the Parser type defined
in Section 3. We will define a simple, very inefficient backtracking backend, but
it should not be too hard to implement a more efficient, memoising one (Frost
and Szydlowski 1996).3

4.1 Bounded vectors

The parser backend uses bounded vectors, i.e. lists with a specified maximum
length:

data BoundedVec (A : Set) : N→ Set where
[] : ∀ {n} → BoundedVec A n

:: : ∀ {n} → A→ BoundedVec A n → BoundedVec A (suc n)

3Unfortunately our attempt at implementing a memoising backend currently triggers a
performance problem in the Agda type checker.

7

(Here suc is the successor function on natural numbers.)
If the bound of a BoundedVec needs to be adjusted upwards, then ↑ can be

used:

↑ : ∀ {A m} → BoundedVec A m → BoundedVec A (suc m)
↑ [] = []
↑ (x :: xs) = x :: ↑ xs

Using a non-constant-time function just to modify a type index may seem waste-
ful, but note that the backend implemented in this section is exponentially slow
for many parsers anyway. The code presented in this paper is aimed at clarity
rather than efficiency. Instead we take the opportunity to explain the basics of
how Agda’s pattern matching works. When pattern matching on a constructor
the constructor’s type is unified with the corresponding type in the function’s
type signature. In the second case of ↑ this means that the m in the type sig-
nature of ↑ is unified with suc n from the type signature of :: . The expected
type for the right-hand side is thus transformed to BoundedVec A (suc (suc n)),
which matches the actual type of the right-hand side.

Sometimes one also needs to evaluate expressions in order to see that they
are type correct. This is the case for fromList , which converts an ordinary list
to a bounded vector:

fromList : ∀ {A} (xs : List A)→ BoundedVec A (length xs)
fromList [] = []
fromList (y :: ys) = y :: fromList ys

(Note that lists and vectors use the same constructor names; constructors can
be overloaded in Agda.) In the second case xs in the type signature is unified
with y :: ys, so the expected type for the right-hand side is BoundedVec A
(length (y :: ys)) (where length calculates the length of a list). The actual type
of the right-hand side is BoundedVec A (suc (length ys)), which matches the
expected type because length (y :: ys) evaluates to suc (length ys).

It is also possible to convert bounded vectors to ordinary lists:

toList : ∀ {A n} → BoundedVec A n → List A
toList [] = []
toList (x :: xs) = x :: toList xs

4.2 Parser monad

Bounded vectors representing the remaining input are used as the state compo-
nent of a parser monad. This monad is built from a backtracking list monad to
which a state monad transformer has been applied (this implies that changes to
the state are not preserved when backtracking occurs). The monad is parame-
terised (Atkey 2006) on the initial and final upper bounds of the vector:

P : Set → N→ N→ Set → Set
P Tok i f A = BoundedVec Tok i → List (A × BoundedVec Tok f)

The implementation of the monad, which is standard, is not given here, just
the type signatures of the operations. The monad operations are primed to
distinguish them from the parser combinators defined above:

8

return ′ : ∀ {Tok i A} → A→ P Tok i i A
>>=′ : ∀ {Tok i m f A B} →

P Tok i m A→ (A→ P Tok m f B)→ P Tok i f B
>>′ : ∀ {Tok i m f A B} →

P Tok i m A→ P Tok m f B → P Tok i f B
fail ′ : ∀ {Tok i A} → P Tok i f A
|′ : ∀ {Tok i f A} →

P Tok i f A→ P Tok i f A→ P Tok i f A
get ′ : ∀ {Tok i} → P Tok i i (BoundedVec Tok i)
put ′ : ∀ {Tok i f } → BoundedVec Tok f → P Tok i f >
modify ′ : ∀ {Tok i f } →

(BoundedVec Tok i → BoundedVec Tok f)→ P Tok i f >

(Here > is a unit type.)

4.3 The parse function

The parse function can now be defined. It uses the functions parse↓ and parse↑
which are defined by mutual lexicographic structural recursion over

1. the upper bound of the length of the input string, and

2. the corners.

The corner indices are written out as subscripts below in order to make the code
easier to follow, but Agda does not need this information; in the actual code
the indices are inferred automatically from the Parser arguments.

The type of parse↓ forces non-zero bounds to decrease if the parser does not
accept the empty string (pred is the predecessor function on natural numbers):

parse↓ : ∀ {e c Tok R} n →
Parser Tok (e � c) R → P Tok n (if e then n else pred n) R

This type states that parse↓ never decreases the upper bound by more than one.
However, a parser can consume more than one token from the input string, so
it is necessary to be able to artificially increase the upper bound. This is taken
care of by parse↑:

parse↑ : ∀ {e c Tok R} n → Parser Tok (e � c) R → P Tok n n R
parse↑c {true} n p = parse↓c n p
parse↑c {false} zero p = fail ′

parse↑c {false} (suc n) p = parse↓c (suc n) p >>=′ λr →
modify ′ ↑ >>′

return ′ r

Note that it is safe to fail immediately if the upper bound is zero and the parser
does not accept the empty string.

Let us now turn to the implementation of parse↓. The return and fail
cases use return ′ and fail ′ from the parser monad:

parse↓ε n (return x) = return ′ x
parse↓ε n fail = fail ′

9

In the token case parse↓ gets the current input string from the state and, if
possible, replaces it with its tail and returns its head:

parse↓ε n token = get ′ >>=′ eat
where
eat : ∀ {Tok n} → BoundedVec Tok n → P Tok n (pred n) Tok
eat [] = fail ′

eat (c :: s) = put ′ s >>′ return ′ c

In the p1 | p2 case we distinguish between three different sub-cases, correspond-
ing to different Empty indices for p1 and p2:

parse↓c1 ∪ c2 n (| {true} p1 p2) = parse↓c1 n p1 |′ parse↑c2 n p2

parse↓c1 ∪ c2 n (| {false} {true} p1 p2) = parse↑c1 n p1 |′ parse↓c2 n p2

parse↓c1 ∪ c2 n (| {false} {false} p1 p2) = parse↓c1 n p1 |′ parse↓c2 n p2

When pattern matching on true and false here the return type of parse↓ gets
instantiated; for instance, in the last case it gets instantiated to

P Tok n (if (false ∨ false) then n else pred n) R

(for some R), and this evaluates to P Tok n (pred n) R. The expected type for
the right-hand side then determines whether the recursive calls need to go via
parse↑ or not. The results are combined using the choice combinator |′ from
the parser monad. Note also that the upper bound is preserved in the recursive
calls and that the corner index always becomes structurally smaller.

Finally we have the cases for the two bind constructors. The ?>>= case is
straightforward:

parse↓c1 ∪ c2 n (p1 ?>>= p2) = parse↓c1 n p1 >>=′ parse↓c2 n ◦ p2

The bind from the parser monad is used to combine the results from the two
sub-parsers. (Here ◦ binds tighter than >>=′ .) In the !>>= case we make use
of the knowledge that the first parser has to consume a token when it succeeds,
which implies that the upper bound is lower in the second recursive call (the
corner index can be anything):

parse↓c ∪ ε zero (p1 !>>= p2) = fail ′

parse↓c ∪ ε (suc n) (p1 !>>= p2) = parse↓c (suc n) p1 >>=′ parse↑ n ◦ p2

Given parse↓ we can define parse by massaging the input and output a little:

parse : ∀ {Tok i R} →
Parser Tok i R → List Tok → List (R × List Tok)

parse p toks = map (map-× id toList) (parse↓ p (fromList toks))

(Here map-× f g (x , y) = (f x , g y).)

5 Examples

Given the parser combinators defined in Section 3 we can start to build up a
library of reusable combinators. For instance, we can define the Kleene star, i.e.

10

a combinator ? such that p ? parses p zero or more times. This combinator is
defined mutually with +, which stands for one or more repetitions:

mutual
? : ∀ {Tok c R} → Parser Tok (false � c) R → Parser Tok (List R)

p ? ∼ return [] | p +
+ : ∀ {Tok c R} → Parser Tok (false � c) R → Parser Tok (List R)

p + ∼ p !>>= λx →
p ? ?>>= λxs →
return (x :: xs)

Note that we require that the argument parser p does not accept the empty
string; parsing the empty string many times is not useful, and the parsers would
be left recursive if p did accept the empty string. Note also that Agda can figure
out the indices of p ? and p + automatically (they are true � ε ∪ (c ∪ ε) and
false � c ∪ ε, respectively). The index of p cannot be inferred, because the
Corners index could be anything, and Agda only infers values when they are
uniquely determined. The Empty index could be inferred, though.

The definitions of ? and + use guarded corecursion; corecursive definitions
in Agda use ∼ instead of =. The corecursive calls are accepted by Agda because
they are guarded, which roughly means that they take place under coinductive
constructors. Unfortunately Agda’s termination checker is not smart enough to
see that it is safe to replace the constructors !>>= and ?>>= with >>= in
the definition of +. The following variant is rejected:

p + ∼ p >>= λx →
p ? >>= λxs →
return (x :: xs)

This problem implies that it can be tricky to use derived parser combinators, so
in Section 6 we show how one can work around it by using grammars (functions
from non-terminals to parsers).

It should be noted that in many cases corecursion does not need to be used.
Often the parser being defined is not recursive, like the parser p sepBy sep,
which parses one or more ps separated by separators:

sepBy : ∀ {Tok i c R R′} →
Parser Tok i R → Parser Tok (false � c) R′ →
Parser Tok (List R)

p sepBy sep = p >>= λx →
(sep >> p) ? >>= λxs →
return (x :: xs)

In other cases the parser is defined by recursion over some argument. This is
the case for exactly n p, which parses p exactly n times (Vec R n is the type of
lists of length n containing values of type R):

exactly-index : Index → N→ Index
exactly-index i zero =
exactly-index i (suc n) =
exactly : ∀ {Tok i R} n →

11

Parser Tok i R →
Parser Tok (exactly-index i n) (Vec R n)

exactly zero p = return []
exactly (suc n) p = p >>= λx →

exactly n p >>= λxs →
return (x :: xs)

When a parser is defined by pattern matching Agda often fails to infer its
index automatically, so a function which computes the index needs to be given.
However, it often suffices to give the pattern matching structure of the index
function. Note that the right-hand sides of exactly-index above are inferred.

Let us now define the parser sat p, which accepts a token tok if it satisfies
the predicate p, i.e. if p tok is just something (and in that case something is
returned):

sat : ∀ {Tok R} → (Tok → Maybe R)→ Parser Tok R
sat {Tok} {R} p = token !>>= λc → ok (p c)

where
ok-index : Maybe R → Index
ok-index nothing =
ok-index (just) =
ok : (x : Maybe R)→ Parser Tok (ok-index x) R
ok nothing = fail
ok (just x) = return x

Note that it is crucial that the index of the second argument to !>>= can
depend on the return value of the first parser. By using sat it is easy to define
the parser theChar c, which only accepts the character c:

theChar : Char → Parser Char Char
theChar c = sat (λc′ → if c == c′ then just c′ else nothing)

The typing discipline imposed by the library can sometimes make parsers
harder to implement. Consider the following attempt at defining the language
{ anbncn | n ∈ N } (which, incidentally, is not context-free):

anbncn = theChar ’a’ ? >>= λas →
let n = length as in
exactly n (theChar ’b’) >>
exactly n (theChar ’c’) >>
return n

Here Agda complains that the index of the body of the lambda expression
depends on as, which is not allowed by the type of >>= . The problem can be
worked around by separating out the case where n is zero:

anbncn = return zero
| theChar ’a’ + !>>= λas →

let n = length as in
exactly n (theChar ’b’) >>
exactly n (theChar ’c’) >>
return n

12

Workarounds like this one have the potential to be annoying, but they are only
necessary when the monadic bind is used in an essential way, i.e. when the
result of one parser is used to influence how to parse the remaining input. The
problem does not exist for parsers defined using an applicative functor interface
(McBride and Paterson 2008). Furthermore the problem disappears if the first
argument to >>= is known to consume at least one token, because then !>>=
can be used. Similarly, if the second argument to >>= is known to consume
a token before the result of the first argument is used, then the problem also
disappears, because the dependency does not show up in the second argument’s
index.

The typing discipline causes other problems as well. Consider p sepBy sep.
The requirement that sep must reject the empty string is fairly arbitrary; one
could just as well put the requirement on p. However, the implementation has
to be modified, because the Empty index of sep >> p, empty i ′ ∧ false, does
not evaluate to false (∧ pattern matches on its first argument). One possible
implementation is as follows:

<~ : ∀ {Tok i1 i2 R1 R2} →
Parser Tok i1 R1 → Parser Tok i2 R2 → Parser Tok R1

p1 <~ p2 = p1 >>= λr → p2 >> return r
sepBy ′ : ∀ {Tok c i ′ R R′} →

Parser Tok (false � c) R → Parser Tok i ′ R′ →
Parser Tok (List R)

p sepBy ′ sep = (p <~ sep) ? >>= λxs →
p >>= λx →
return (xs ++ x :: [])

Having two separate functions for almost the same task is not very elegant,
though. The functions can be unified by requiring the user to supply a proof
showing that the empty string is rejected by at least one of p and sep. The
propositional equality type ≡ can be used to represent such proofs:

data ≡ {A : Set} (x : A) : A → Set where
refl : x ≡ x

The unified version of sepBy can then be defined by using a function which
casts a parser’s Empty index to a provably equal variant:

cast : ∀ {Tok e1 e2 c R} →
e1 ≡ e2 → Parser Tok (e1 � c) R → Parser Tok (e2 � c) R

cast refl p = p
sepBy〈 〉 : ∀ {Tok i i ′ R R′} →

Parser Tok i R →
empty i ′ ∧ empty i ≡ false→
Parser Tok i ′ R′ →
Parser Tok (List R)

p sepBy〈 nonEmpty 〉 sep =
p >>= λx →
cast nonEmpty (sep >> p) ? >>= λxs →
return (x :: xs)

However, sepBy〈 〉 is more awkward to use than the version of sepBy found
in ordinary parser combinator libraries.

13

6 Grammars

As noted in Section 5 the coinductive approach, based on guarded coinduction,
does not always interact well with abstraction. This section shows how one can
avoid the problem by working with explicit grammars, at the expense of more
verbosity for the cases which are handled well by the coinductive approach.
Fortunately the two approaches can easily be combined. Note also that if the
source language does not support coinductive types, then one can work solely
with the grammar-based approach by using an inductive definition of Parser .

Consider the following simple expression recogniser:

addOp = theChar ’+’ | theChar ’-’
mulOp = theChar ’*’ | theChar ’/’

mutual
expr ∼ term sepBy addOp
term ∼ factor sepBy mulOp
factor ∼ theChar ’0’

| theChar ’(’ >> expr >> theChar ’)’

Agda does not accept the last mutual definition because the corecursion is not
guarded. In the grammar-based approach this recogniser is instead defined as
follows (leaving the definitions of addOp and mulOp unchanged):

data NT : NonTerminalType where
expr : NT
term : NT
factor : NT

grammar : Grammar NT Char
grammar expr = ! term sepBy addOp
grammar term = ! factor sepBy mulOp
grammar factor = theChar ’0’

| theChar ’(’ >> ! expr >> theChar ’)’

Note that the corecursion in the previous definition has been removed in favour
of explicit references to non-terminals (values of type NT), and that the non-
terminal indices and return types (the arguments to NT) are automatically
inferred.

Let us now explain the grammar-based definition. NonTerminalType, the
type of non-terminal types, just requires non-terminal types to have the same
indices as parsers:

NonTerminalType : Set2
NonTerminalType = Index → Set → Set1

The type Grammar NT Tok specifies that a grammar for the non-terminal type
NT maps non-terminals to parsers:

Grammar : NonTerminalType → Set → Set1
Grammar NT Tok = ∀ {i R} → NT i R → Parser NT Tok i R

Parsers are parameterised on a type of non-terminals, and there is a new con-
structor ! which lifts non-terminals to parsers:

14

codata Parser (NT : NonTerminalType) (Tok : Set) :
NonTerminalType where

. . .
! : ∀ {e c R} → NT (e � c) R → Parser NT Tok (e � step c) R

Here step : Corners → Corners is a new Corners constructor. A grammar is
passed around by parse↓ and used when non-terminals are encountered:

parse↓ : ∀ {NT Tok} (g : Grammar NT Tok) {e c R} n →
Parser NT Tok (e � c) R →
P Tok n (if e then n else pred n) R

. . .
parse↓step c g n (! x) = parse↓c g n (g x)

Note that the corner index is smaller in the recursive call. Finally the parse
function also needs to be updated:

parse : ∀ {NT Tok i R} →
Grammar NT Tok → Parser NT Tok i R →
List Tok → List (R × List Tok)

parse g p toks = map (map-× id toList) (parse↓ g p (fromList toks))

The use of a grammar can sometimes be isolated to one part of a larger
parser, because when the Parser type is coinductive it is possible to remove all
non-terminals from a parser by corecursively instantiating them:

drop-steps : Corners → Corners
drop-steps ε = ε
drop-steps (step c) = drop-steps c
drop-steps (c1 ∪ c2) = drop-steps c1 ∪ drop-steps c2

J K : ∀ {Tok NT 1 NT 2 e c R} →
Parser NT 1 Tok (e � c) R → Grammar NT 1 Tok →
Parser NT 2 Tok (e � drop-steps c) R

J return x K g = return x
J fail K g = fail
J token K g = token
J p1 | p2 K g = J p1 K g | J p2 K g
J p1 ?>>= p2 K g = J p1 K g ?>>= λx → J p2 x K g
J p1 !>>= p2 K g ∼ J p1 K g !>>= λx → J p2 x K g
J ! nt K g = J g nt K g

Note that corecursion is only used for the !>>= case; in all other cases the
Corners index decreases. The function is defined by a lexicographic mixture
of guarded corecursion and structural recursion. Note also that NT 2 can be
instantiated with any non-terminal type, including an empty one. By using J K
one can define an expression recogniser which can be used with any non-terminal
type:

expression : ∀ {NT} → Parser NT Char
expression = J ! expr K grammar

The expression example does not explain how one can define parser com-
binators using the grammar-based approach. However, note that non-terminal

15

constructors can take arguments, which means that the non-terminals can be
parameterised (and hence that the grammars can be infinite). By parameteris-
ing the non-terminals on parsers one can construct grammars corresponding to
parser combinator libraries. In order to make it possible to use non-terminals
from other grammars as arguments to these parser combinators it is important
that any non-terminal type is accepted by the parsers:

data LibraryNT (NT : NonTerminalType) (Tok : Set) :
NonTerminalType where

? : ∀ {c R} → Parser NT Tok (false � c) R →
LibraryNT NT Tok (List R)

+ : ∀ {c R} → Parser NT Tok (false � c) R →
LibraryNT NT Tok (List R)

A library grammar can then be defined by parameterising it on a function lifting
library non-terminals to other non-terminals:

library : ∀ {NT Tok} →
(∀ {i R} → LibraryNT NT Tok i R → NT i R)→
∀ {i R} → LibraryNT NT Tok i R → Parser NT Tok i R

library lift (p ?) = return [] | ! (lift (p +))
library lift (p +) = p >>= λx →

! (lift (p ?)) >>= λxs →
return (x :: xs)

Finally a library grammar can be “imported” into another one by including a
non-terminal lib which is parameterised on library non-terminals:

data NT : NonTerminalType where
lib : ∀ {i R} → LibraryNT NT Char i R → NT i R
a : NT Char
as : NT (List Char)

grammar : Grammar NT Char
grammar (lib nt) = library lib nt
grammar a = theChar ’a’
grammar as = ! (lib ((! a) ?))

Note that + was defined using >>= rather than !>>= and ?>>= above;
the problem with reuse identified in Section 5 is solved by the grammar-based
approach. This approach does impose some notational overhead, but can be
quite convenient, at least until the methods used to establish productivity in
languages like Agda have matured. The approach has for instance been used to
define a parser for mixfix operators (Danielsson and Norell 2008).

7 Discussion

We have presented a parser combinator library which guarantees termination,
and discussed some consequences of working with our more rigidly typed parser
combinators.

There does not seem to be much prior work on formally verified termination
for parser combinators (or other general parsing frameworks). We only know of

16

McBride and McKinna (2002), which is based on similar ideas as this paper, but
seems to be more of a proof of concept. McBride and McKinna also use types to
rule out left recursion, but in a different way. They define parsers and grammars
inductively and allow only a single (non-parameterised) non-terminal, so they
get away with only keeping track of whether or not a token has been consumed.
Furthermore their implementation is arguably harder to understand than ours;
at least it differs more from ordinary list of successes combinator parsers.

It is also interesting to compare this paper with the work of Frost et al.
(2008), who have implemented parser combinators which can handle left recur-
sion. On the one hand their interface is more general than ours, since they do
not need to avoid left recursion. On the other hand their users get fewer guar-
antees about termination: if the parser combinators are used in the right way,
and the informal termination proof given by Frost et al. is correct, then parsing
will terminate. Furthermore more precise type information can sometimes be
useful, even if termination is not at stake. For instance, if ? is applied to a
parser which accepts the empty string, then this is likely to be a semantic error,
even if the underlying parsing mechanism can cope with it. Fortunately the two
approaches are not mutually exclusive; it should be possible to formally prove
termination for parser combinators which can handle left recursion.

Acknowledgements

We would like to thank Andres Löh, whose presentation of this work gave some
ideas about how to write this paper.

References

The Agda Team. The Agda Wiki. Available at http://www.cs.chalmers.se/
~ulfn/Agda/, 2008.

Robert Atkey. Parameterised notions of computation. In Workshop on Mathe-
matically Structured Functional Programming (MSFP 2006), 2006.

William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

Koen Claessen. Parallel parsing processes. Journal of Functional Programming,
14:741–757, 2004.

Thierry Coquand. Infinite objects in type theory. In Types for Proofs and
Programs, International Workshop TYPES ’93, volume 806 of LNCS, pages
62–78, 1994.

Nils Anders Danielsson and Ulf Norell. Parsing mixfix operators. Submitted for
publication, 2008.

Jon Fairbairn. Making form follow function: An exercise in functional program-
ming style. Software: Practice and Experience, 17(6):379–386, 1987.

Jeroen Fokker. Functional parsers. In Advanced Functional Programming, vol-
ume 925 of LNCS, pages 1–23, 1995.

17

Richard A. Frost and Barbara Szydlowski. Memoizing purely functional top-
down backtracking language processors. Science of Computer Programming,
27(3):263–288, 1996.

Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. Parser combinators
for ambiguous left-recursive grammars. In PADL 2008: Practical Aspects of
Declarative Languages, volume 4902 of LNCS, pages 167–181, 2008.

Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4es), 1996.

R. John M. Hughes and S. Doaitse Swierstra. Polish parsers, step by step. In
ICFP ’03: Proceedings of the eighth ACM SIGPLAN international conference
on Functional programming, pages 239–248, 2003.

Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2:323–343, 1992.

Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal of Func-
tional Programming, 8:437–444, 1998.

Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers. In IFL’98:
Implementation of Functional Languages, volume 1595 of LNCS, pages 120–
136, 1999.

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-35, Department of Infor-
mation and Computing Sciences, Utrecht University, 2001.

Peter Ljunglöf. Pure functional parsing; an advanced tutorial. Licentiate thesis,
Department of Computing Science, Chalmers University of Technology and
Göteborg University, 2002.

Conor McBride and James McKinna. Seeing and doing. Presentation (given
by McBride) at the Workshop on Termination and Type Theory, Hind̊as,
Sweden, 2002.

Conor McBride and Ross Paterson. Applicative programming with effects. Jour-
nal of Functional Programming, 18:1–13, 2008.

Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University, 1992.

Robert C. Moore. Removing left recursion from context-free grammars. In Pro-
ceedings of the 1st Meeting of the North American Chapter of the Association
for Computational Linguistics, pages 249–255, 2000.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology and Göteborg Uni-
versity, 2007.

Nicolas Oury and Wouter Swierstra. The power of pi. In ICFP ’08: Proceedings
of the 13th ACM SIGPLAN international conference on Functional program-
ming, pages 39–50, 2008.

18

Niklas Röjemo. Garbage collection, and memory efficiency, in lazy functional
languages. PhD thesis, Chalmers University of Technology and University of
Göteborg, 1995.

S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting com-
binator parsers. In Advanced Functional Programming, volume 1129 of LNCS,
pages 184–207, 1996.

Philip Wadler. How to replace failure by a list of successes; a method for ex-
ception handling, backtracking, and pattern matching in lazy functional lan-
guages. In Functional Programming Languages and Computer Architecture,
volume 201 of LNCS, pages 113–128, 1985.

Malcolm Wallace. Partial parsing: Combining choice with commitment. In IFL
2007: Implementation and Application of Functional Languages, volume 5083
of LNCS, pages 93–110, 2008.

19

