
RAW FP: Productivity and Performance through
Resource Aware Functional Programming

John Hughes, Mary Sheeran, Koen Claessen and Patrik Jansson

November 24, 2010

1 Main goals

Earlier this year, Swedsoft (an industrial network of
large Swedish software developers) called for an or-
der of magnitude improvement in software develop-
ment productivity over the next decade, if Sweden is
to remain competitive. Coincidentally, an improve-
ment of roughly an order of magnitude in produc-
tivity over conventional programming languages is
the claim that has been made for functional pro-
gramming since the 1980s. In the early days,
that claim was based on the brevity of functional
programs—the implementation of QuickSort is two
lines in Haskell, but twenty lines in Java—and the
well-known observation that developers produce ap-
proximately the same number of lines of code per
day, regardless of programming language. Today,
evidence of improved productivity is much more di-
rect.

Functional programming is seeing rapid growth in in-
dustry today. Ericsson were pioneers in the area,
designing Erlang around 1990, and using it for the
first time in a large product in the mid 1990s—
the AXD 301 ATM switch, with around 1,500,000
lines of Erlang code. Writing about the outcome
of that project, Wiger estimated a 4 to 10 times
productivity improvement over traditional methods
[Wiger et al., 2002], supporting the earlier claims.
Since then, many other companies worldwide have
used the technology to attain business success via
higher productivity, notable Swedish examples in-
cluding BlueTail, sold less than 18 months after
start-up for $152 million, and Klarna, which offers
invoicing services to web shops and has grown to
350 people in just five years. In recent years Mi-
crosoft have adopted functional programming fea-
tures in their .NET languages C# and Visual Ba-
sic, and this year released a functional program-
ming language of their own, F#, as part of Visual
Studio 2010. On the JVM, Scala and Clojure of-
fer functional programming with smooth interoper-
ability with Java, and high profile applications have
appeared—such as Twitter’s back-end processing,
which is mostly done in Scala using a concurrency
library inspired by Erlang. A major motivation for
all this growth is the improved productivity that func-
tional programming brings.

Problem solved? Unfortunately, no—it would be
naive to suggest that the Swedish software indus-
try can solve all its problems just by adopting func-
tional programming. Even in the AXD 301, only
part of the system is programmed in Erlang—the
“control plane”, which sets up and tears down calls,
and responds to protocol requests, is nicely imple-
mented in Erlang, but the “data plane”, which ac-
tually transmits data streams at gigabytes per sec-
ond, is programmed in C and C++ to meet extreme
performance demands. In the baseband process-
ing of a radio base station, the signal processing is
done by C code full of compiler pragmas and tailored
exquisitely to the hardware. In ABB’s robot control
software, and SAAB’s avionics, the software must
meet hard real-time deadlines. Functional program-
ming languages such as Erlang cannot meet these
demands, and so are not yet applicable in these do-
mains.
Does this mean that large parts of the Swedish soft-
ware industry can never use functional program-
ming? Fortunately, no—there is a way to cut the
Gordian knot, and attain the productivity benefits
of writing functional programs, without incurring the
costs of running them. The trick is to use functional
programming to provide a domain specific language
(DSL) for the application domain concerned.

1.1 Domain Specific Languages

DSLs have become popular recently [Fowler, 2010],
as a way to improve productivity by providing a lan-
guage tailored to the task in hand, while assuring
performance by exploiting domain specific optimiza-
tions. Functional programmers advocate domain
specific embedded languages (DSELs), which pro-
vide a DSL via a library in a host language [Hudak,
1996]. This is partly just a shift in perspective—
we view the API of the library as the constructs of
a DSL—but with a sufficiently expressive host lan-
guage, and careful design of the API, then the DSLs
that result can be very attractive indeed. The great
advantage of the approach is that a DSEL inher-
its the tool chain of its host language, the “look
and feel” (so it is familiar to host language devel-
opers), and generic features such as modules, in-
terfaces, abstract data types, or higher-order func-

1

2

tions. Moreover, the DSEL implementation is very
“lightweight”—the DSEL designer can add features
just by implementing a new function in the library,
and can easily move functionality between the DSEL
library and its clients. The ease of experimentation
with such a DSEL helps implementors fine tune the
design, and enables (some) end-users to customize
the implementation with domain specific optimiza-
tions.
A DSEL can either implement the DSL’s features
directly in the host language—or, it can generate
code from the DSEL program in any other target lan-
guage, a so-called domain specific embedded com-
piler. In the latter case, the host language is used
only at “compile time”; the developer can use the full
power of the host language to express the program,
but at run-time, only the target language need be
executed—for example, Paradise [Augustsson et al.,
2008], a DSEL embedded in Haskell, generates Ex-
cel user interfaces to C++ algorithms for valuing fi-
nancial contracts at Credit Suisse. (There is a clear
analogy with the “platform independent model” and
“model compiler” used in the model-driven develop-
ment community.)
Of course, achieving this requires careful design
of the DSEL, but in return we gain the expressive
power of functional programming, while retaining the
fine control of resources that is needed in so many
industrial applications. We have considerable expe-
rience of using Haskell as a host language in this
way, to implement DSELs such as Lava (for configur-
ing Field Programmable Gate Arrays [Bjesse et al.,
1998]), Obsidian (for programming graphics proces-
sors), and Feldspar (for baseband signal process-
ing [Axelsson et al., 2010]).
To illustrate the potential of the approach, in one
experiment at Ericsson, Feldspar was used to im-
plement part of the reference signal generation for
channel estimation in the LTE Advanced testbed.
(LTE, or “Long Term Evolution” is commonly referred
to as 4G.) The Feldspar implementation could be
structured naturally as a series of cascading pro-
cessing steps, matching well the domain expert’s
view of the problem. Not only that, it also generated
C code that was 30% faster than the hand-coded
reference model, because it permitted optimization
(in the form of removal of unnecessary data struc-
tures) between the steps. It is this effect that we
are striving for: high level descriptions that match
the thinking of the domain expert, leading to efficient
generated code.
Resource aware (RAW) functional programming us-
ing DSELs is a broad research agenda, too broad to
address in one project. Therefore

The goal of this proposal is to de-
velop domain specific embedded languages
for resource-aware functional programming,
with associated end-to-end tool-chains, that
can deliver an order of magnitude improved
productivity in three domains of importance
to Swedish industry:

• signal processing and low-level control
in products such as radio base stations
(Feldspar),

• programming highly parallel heteroge-
neous architectures containing graph-
ics processors for tasks such as medi-
cal image processing (Obsidian),

• real-time automotive software built
around the AUTOSAR standard.

These areas have been chosen for the following rea-
sons. The Feldspar component builds on our very
promising collaboration with Ericsson, and will re-
quire architecture awareness to meet very high per-
formance demands. The heterogenous architecture
part builds on our current work with Obsidian, and
because it should be useful to anyone with a dual
core laptop and a suitable graphics card, offers a
possibility of broad impact. The automotive compo-
nent builds on our collaboration with Quviq AB, and
requires us to address the important area of real-
time systems. Together, these areas require sup-
port for awareness of time, memory, and architec-
ture, and so will force us to solve most of the prob-
lems that resource-aware programmers face.

1.2 Verification

Our goal cannot be achieved without reducing ver-
ification costs as well as development costs, since
they typically make up at least half the cost of a
software project. Therefore we plan to combine our
DSELs with property-based testing, a form of au-
tomated testing in which individual test cases are
replaced by general properties, from which many
test cases can be generated. We have developed a
property-based testing tool, QuickCheck, originally
for Haskell, and now commercialised for Erlang by
our associated company Quviq. Generating tests
from properties improves test coverage at the same
time as the volume of test code is reduced, thus im-
proving quality and reducing cost. On a test failure,
we can also minimize the test case by searching for
similar, smaller cases that also fail, which automates
a costly part of fault diagnosis. For example, when
QuickCheck rediscovered a bug in gcc’s parameter
passing, we found from the Bugzilla records that the
original discoverers spent two days minimizing the

3

failing case to the same example that QuickCheck
found in minutes—followed by a mere few hours to
fix the bug and release a patch.

QuickCheck uses a DSEL for formal specifications
to express the properties to be tested, which we
have extended considerably over the years. The
first versions only supported simple properties, such
as equations over pure functions, but later versions
directly support state-machine specifications, trace
properties of asynchronous systems, and atomic-
ity properties to test for race conditions. Such ex-
tensions to the formal specification language make
properties much easier to write, and are essential
for wide adoption of the property-based testing ap-
proach. Today, QuickCheck is notching up suc-
cess stories: at Erlang Solutions, finding faults ear-
lier in an email gateway [Boberg, 2008]; at Gemini
Mobile and Basho, testing the NoSQL databases
Hibari and Riak for the computing cloud; at Pro-
cess One, testing asynchronous behaviour in the
leading XMPP instant messaging server [Hughes
et al., 2010]; at Ericsson, testing the control soft-
ware of the new LTE base stations. In September,
QuickCheck revealed two subtle race conditions that
have plagued users of Erlang’s bundled database
system for years—at least six weeks of fruitless ef-
fort has been spent hunting these bugs in the last
few years, but QuickCheck enabled them to be found
and fixed with just a few days’ work. The impact of
our work has been considerable—this year the first
QuickCheck paper received a Most Influential Paper
award from ACM SIGPLAN, ten years after publica-
tion.

An important lesson from these successes is that
a domain specific property language is necessary
to enable developers to write QuickCheck specifica-
tions quickly and easily. We plan therefore to de-
velop such languages for our target domains. We
will address both the expressivity of properties—
how easily we can specify correct behaviour—and
the generation of good test data for this domain.
An important question that arises when test cases
are generated, and are never inspected by a per-
son, is what has actually been tested? A closely
related question is when have we tested enough?
Such questions are often addressed by coverage
measures—but we know that source code coverage
is a poor measure of testing quality, more useful
for identifying problems than for determining when
testing is sufficient. Of more interest is require-
ments coverage—have we tested all the require-
ments? Yet determining this without manual inspec-
tion of the test cases demands that requirements
be formalised, which may mean we need a require-
ments DSEL as well. For this to work well, we must
ensure that requirements are expressed at an ap-
propriate level of abstraction—if low-level require-
ments correspond closely to test cases, as is some-
times the case, then the cost of formalising require-

ments and checking that they have been tested may
dominate the cost of formulating and testing proper-
ties. If not addressed, this could prevent us reaching
the goal of an overall order of magnitude improve-
ment in productivity.
Testing using QuickCheck brings the benefits of for-
mal specifications, without incurring the cost of for-
mal proofs. Indeed, we believe manual—or even
machine assisted—formal proofs of software prop-
erties to be too costly in our chosen domains. How-
ever, fully automated formal tools are making strong
inroads in industrial scale software analysis, through
widely used tools such as Microsoft’s Static Driver
Verifier, Prefix, and ESC/Java. As we have consid-
erable expertise in building and exploiting proof en-
gines (miniSAT [Eén and Sörensson, 2003], Para-
dox [Claessen and Sörensson, 2003], Equinox), we
will investigate the use of fully automated formal ver-
ification of carefully selected software components.
Our goals demand both system oriented and dis-
ciplinary research on two main themes: resource
awareness and verification. In both cases, DSELs
will be the approach on which we build, and this will
demand disciplinary research on how to design and
build DSELs, and system research on how to build
and deploy a domain specific tool-chain based on
multiple DSELs. While our approach is domain spe-
cific, we will also seek common abstractions that can
be used to ease the development of future DSELs.

2 Description of the project
2.1 Disciplinary research

2.1.1 Resource awareness

Memory awareness. In the kinds of application
areas that we target, there is a growing trend to-
wards a high degree of parallelism combined with
demands on the programmer to explicitly manage
memory and caches. For example, when one pro-
grams a GPU in a language like openCL, some
memory access patterns lead to high speed, while
others lead to memory bank conflicts and have a dis-
astrous effect on performance. Any useful DSL tar-
geting openCL must generate good access patterns
where possible. We would like the user to be able
to write a program with a structure that matches the
problem being solved, but to generate code that is
“folded” into a different shape that matches the ma-
chine structure, and in particular exploits memory in
an efficient manner. We will develop combinators (or
higher order functions) to capture commonly used
memory access patterns, and to enable both opti-
mization of and easy experimentation with memory
use.
The problems multiply when the available memory
close to computational units is severely limited, as
happens in some telecoms platforms and even to

4

some extent in GPUs. In that case, it becomes nec-
essary to overlay data, swapping parts of data struc-
tures in and out as they are needed. Here, again,
we propose a DSL to capture the necessary data
movements, and a type-based technique to deter-
mine dynamic memory use, enabling the avoidance
of dangling pointers. It will be necessary to give the
programmer feedback on memory use, cache be-
haviour and compliance with memory bounds, and
this will entail the development of a suitable cost
model that captures both space and time use (see
below). This demands also that the architectural
models should capture memories and caches at a
sufficiently fine level of detail.

Time awareness. In all of our chosen domains,
the programmer must be aware of a notion of time,
and must reason about the time behaviour of his
programs. The exact nature of the requirements
on time behaviour varies between applications. In
graphics processing on GPUs for realistic image
rendering, sheer speed is what drives the program-
mer. In radio processing, different standards have
different granularities of time, and how hard the de-
mands are may depend on whether one is program-
ming the uplink or the downlink. Typically, one is
aiming to service many users simultaneously, so
the computations must not only be timely but also
efficient in the use of other resources like mem-
ory or communication. Failure to meet deadlines
may cause the link to go silent very briefly, or the
dropping of calls. In the automotive industry, static
scheduling is used to guarantee completion of tasks
in a cycle, and the AUTOSAR standard aims to pro-
vide components that can be combined in ways that
give the required timing behaviour. Our aim here is
to consider ways to add real time to a simple func-
tional DSL and to experiment with ways to specify
and control timing behaviour. We will develop ways
to test programs for compliance with timing speci-
fications, and this in turn demands the creation of
a DSL for the specification of performance require-
ments.

Architecture awareness. High-performance
implementations often require architecture-aware
compilation: we need to model computer archi-
tectures and their memory hierarchies, taking
into account costs of communicating data across
and between levels of the hierarchy, and costs of
accessing data in particular locations with particular
access patterns. As we have long experience of
hardware modelling in functional languages, we
will extend that work to architectures. If we think
of compilation as reshaping the program to fit the
architecture, then information about the architecture
must flow upwards and guide those program trans-
formations. We see an opportunity for yet another
DSL here, to capture the necessary information.

We plan to collaborate in the development of this
DSL and its use in architecture-aware compilation
with Sally A. McKee (a computer architect who is
an expert on memory hierarchies and an author of
the classic “memory wall” paper [Wulf and McKee,
1995]).

Cost models and analyses. If the programmer is
to gain fine control of resource use (memory, time,
communication, exploitation of architecture), it will
be necessary to develop cost models that allow for
analyses of his program to provide early feedback
about how near or far he is from his goals. Sim-
ply looking at the generated code, or running it and
measuring some of these properties is not enough.
One needs to also give feedback that is related to
the structures and types in the user program, We
expect to perform these analyses by various forms
of abstract interpretation. (Note that in the system-
oriented research, we will need to develop a good
understanding, in each domain, of how best the pro-
grammer should work, refining his implementation
towards one that meets his functionality and perfor-
mance goals. There, we expect both cost models
and more standard profiling of actual runs to play an
important role.)

Optimization by search. We will investigate the
use of search to optimize the choice of a combi-
nation of program sub-parts that performs well on
the given architecture. Work on Spiral [Püschel
et al., 2005], a DSL and tool for auto-generation
of platform-tuned libraries for DSP and other trans-
forms was a major inspiration at the beginning of
the Feldspar project. Our data-flow style algorithmic
descriptions and use of combinators to capture al-
gorithmic structure should permit a very similar ap-
proach to the tuning of transform implementations.
Working directly in Haskell, we have shown that the
use of lazy dynamic programming enables the dis-
covery of parallel prefix (or scan) networks that im-
prove on current best known networks [Sheeran,
2010]. In the above examples, one is exploiting
the fact that the algorithms being implemented have
a great variety of possible implementations, but all
built using a relatively simple top level structure. The
challenge in this project will be to generalise the ap-
proach to cover a broader range of Feldspar or other
RAW programs.

Robustness. Handling errors is the bane of soft-
ware development: in many systems, error handling
code makes up 2

3 of the code, accounts for more
than 2

3 of the bugs (because it is often poorly tested),
and is responsible for 2

3 of system crashes. Erlang’s
“let it crash” philosophy reduces error handling code
drastically, by isolating failures to single processes
and recovering at a higher-level using a supervision
tree structure. We plan to borrow the idea for our

5

DSELs, but it does require language support in the
form of processes and links. We will investigate
ways to add these features to a DSEL, and gen-
erate efficient implementations. This will result in
a strongly-typed Erlang-like language, with compi-
lation to C.

2.1.2 Verification

We plan to develop verification tools for our DSELs,
and also to verify our own tools using property-
based testing. This will require disciplinary research
on a variety of topics.

Domain specific specifications. We plan to com-
plement each DSEL with a domain specific specifi-
cation language, making important properties of the
code easy to specify and test. The three challenges
are expressing what it means to be correct, gener-
ating good test data, and finding powerful shrinking
strategies for minimizing failing test cases.

Correctness is often surprisingly hard to specify, at
least without reimplementing the software under test
(which defeats the purpose since the reimplementa-
tion is likely to suffer the same bugs as the original).
However, the task can be eased by finding reusable
abstractions, such as finite state machines and the
“temporal relations” we have developed to specify
asynchronous systems [Hughes et al., 2010]. We
plan to develop additional abstractions motivated by
our chosen application domains. For example,
we have as yet no good approach to mocking in
property-based testing—the replacement of a com-
ponent which is called by the software under test by
a mock version which makes valid responses to the
calls generated by the test. In a random test we do
not know what these calls will be, making mocking
harder. As a result we can easily test a server with
a random client, but it is much harder to test a client
with a random server. Finding a good approach to
property-based mocking is one of our goals.

We generate test cases dynamically and at random,
which enables us to continue running new tests
long after all reasonable coverage criteria have been
fulfilled—and it is surprising how often one of these
“superfluous” tests (by coverage criteria) reveals a
subtle bug. However, we are always careful to con-
trol the distribution of generated data, so as to test
efficiently. Good test data is test data that reveals
faults fast—but what characterizes good test data
varies from domain to domain. For example, for
finite state machines we distribute testing effort as
evenly as possible across all the transitions, which
requires weighting transitions at each state to di-
rect testing towards hard-to-reach parts of the state
space. Determining these weights is a difficult op-
timization problem. This situation arises frequently:
local random choices must achieve a good global

distribution, which makes the assignment of proba-
bilities tricky.
Another challenge is satisfying complex invariants
on the generated data, because random choices at
one point may restrict the choices available at an-
other point, perhaps in unfortunate ways. For ex-
ample, when generating random programs to test
compilers (or to test our DSELs!), if variable and
function types are chosen independently, then most
variables will never be used—because no function
accepts an argument of the right type. By studying
the test data generation problems in our application
domains, we hope to develop a systematic approach
to these problems.
Shrinking failing tests to minimal examples is crit-
ical to QuickCheck’s usefulness. But shrinking
strategies differ from domain to domain. Sim-
ple strategies—replacing numbers by smaller ones,
or replacing data structures by sub-structures—are
quite widely applicable, but need to be supple-
mented by domain specific ones. For example, to
minimize failing tests of a soft real-time system, we
found we had to shrink API calls to sleeps, which
would make no sense in other contexts. Shrinking
data while preserving invariants can also be chal-
lenging: shrinking one part of the test may make
another part invalid, or may require it to be shrunk
correspondingly. Broken invariants can be fixed in
a variety of ways: we plan to investigate systematic
approaches to this problem based on domain spe-
cific shrinking in our application domains.

Non-functional properties. In a RAW program-
ming language, resource properties such as time
and space bounds, or memory access patterns, are
important. In some cases these may be verified stat-
ically (our own work on sized types [Hughes et al.,
1996] has been applied to this problem [Hammond
and Michaelson, 2003]). However, we also plan to
check resource properties by testing.

Test quality assessment. At present, it is hard
to assess the quality of QuickCheck testing, or to
determine how many tests to run—whether 10,000
tests are enough, or 100,000 tests, or 1,000,000
tests. High source code coverage is too easy to
achieve to be really useful. We will investigate more
appropriate coverage measures, especially with re-
spect to coverage of requirements, perhaps result-
ing in a requirements DSEL whose purpose is to as-
sess the quality of testing. One useful approach to
measuring test quality is mutation testing: once all
tests pass, then one generates a large number of
“mutants” (i.e. small variations that simulate faults)
of the software under test, and measures the pro-
portion of mutants that are “killed” by the test suite—
i.e. fail at least one test. The more mutants killed,
the better the test suite. We will integrate mutation
testing into our DSELs—since our DSELs already

6

generate code, then it will not be difficult to generate
mutated code also.

Specification validation. Like programs, specifi-
cations are often wrong when first written. In prac-
tice, QuickCheck specifications are debugged by
testing them against the code they specify. Failing
tests reveal an inconsistency between the specifica-
tion and the implementation, but the error may lie in
either one. This approach works well in an agile de-
velopment process, where properties and the code
they specify are developed together, but is problem-
atic if the specification is developed first. To support
this kind of development, we will investigate ways to
analyse and debug such a specification before the
corresponding code is written.

Mining specifications. Property-based testing
replaces many individual test cases by a few general
properties. Yet experiments show that some devel-
opers find test cases—which are really examples—
easier to write than general properties [Claessen
et al., 2010a]. Moreover, the lack of a QuickCheck
specification for legacy code can make developers
reluctant to write properties to test new functional-
ity. It is tempting simply to add a few test cases for
the new functionality, even though this risks failing
to discover bugs caused by interactions between the
old and the new [Rivas et al., 2010]. Both observa-
tions motivate the development of methods to mine
specifications from existing code. We have already
developed a prototype tool called QuickSpec which
can discover equational specifications of pure func-
tions by automated testing [Claessen et al., 2010b];
we plan to extend it to handle a much wider class of
specifications and programs.

Testing concurrency. Concurrent programs are
bedevilled by race conditions, which require explor-
ing alternative schedules during testing. Concur-
rent behaviour is also, in general, hard to specify.
We have found serializability to be a useful generic
property that many concurrent APIs ought to satisfy,
and used it to find race conditions in industrial code
[Claessen et al., 2009]. We are now extending this
work to test random schedules that are particularly
likely to fail. A particularly important problem is the
automated simplification of a failing test when a race
condition is detected—we must simplify both the test
case, and the schedule, together. We plan to de-
velop these methods further, and apply them to the
DSELs.

Exploiting proof engines. At Intel, there has
been a recent breakthrough in formal firmware verifi-
cation using SMT solvers [Franzen et al., 2010]. We
see opportunities for fully automated formal analy-
sis of some carefully chosen algorithmic software

components. With our strong background in for-
mal verification [Sheeran et al., 2000], model check-
ing, SAT solving [Eén and Sörensson, 2003] and
first order model finding and theorem proving (Para-
dox [Claessen and Sörensson, 2003], Equinox), our
group is uniquely qualified to develop new forms of
formal software verification. The fact that we are
working in strictly restricted domains and have a
very simple, purely functional intermediate language
greatly increases the chances of success in using
automated formal verification. It may be possible to
significantly boost verification efficiency by replac-
ing a huge number of tests with one call to a proof
engine. However, the choice of when to use these
engines is not trivial; for example, verifying a pro-
gram performing a computation on an array of any
length might be infeasible, but choosing a specific
upper bound on the size of the array might make the
problem tractable. In this sense, we might have to
pick some of the inputs to the program as concrete
values (as we do in testing), while other inputs are
verified symbolically. Our DSLs typically allow such
symbolic evaluation to take place, and this in turn
can assist the verification by providing additional in-
formation about the structure of the program. We
plan to identify as many such “exploitable corners”
in our verification problems as possible.

2.1.3 DSEL framework

Building a DSL as an embedded language has many
advantages, in particular the reuse of features of the
host language (syntax, type system, module sys-
tem, compiler, debugger, libraries, testing tools, etc.)
However, many embedded DSLs have more in com-
mon than just their host language. We have identi-
fied many questions that come up again and again
as we build DSELs. We cannot list them all here, but
choose a small number of important topics and indi-
cate the kinds of question that arise in those areas:

Comprehensible Error messages A known
weakness of embedded DSLs is that the user can
be faced with baffling error messages because the
embedded compiler does not have access to the
original names of functions and variables (and their
locations) of the user program. The user wishes to
debug his program at the level of his source code,
and not in terms of the generated code, so there is
a strong analogy with source level debugging. Can
a generic solution to maintaining a link between
generated code and source program be developed
and implemented as a library?

How to represent and manipulate parallel arrays
DSLs often capture data parallelism using a spe-
cial parallel array data structure. Our work on Ob-
sidian (for GPU programming) and on Feldspar has
brought home to us the importance of choosing an

7

appropriate representation that gives the user both
a simple high level interface and access to the com-
putation patterns that he would like to attain in the
generated code. We are currently prototyping a new
form of array that separates the concepts of push-
ing to and pulling from arrays, giving greater expres-
siveness. Further work on this will influence the de-
sign of Feldspar and Obsidian, probably leading to
a convergence. When we started work on Feldspar,
we were unaware of the importance of this research
topic, but we now feel that the question of how to
represent arrays is central to resource aware pro-
gramming.

Simplification of generated code Generated
code is often unnecessarily complicated. For exam-
ple, a program such as “if (0 = 1) then p else q”
can be simplified to just “q”. Many back-ends need
a simplification pass like this, but relying on a sepa-
rate compiler for the back-end is often not sufficient,
because it is important to exploit invariants guaran-
teed by the DSL.

We will perform a systematic study to document,
generalize and implement key components that are
common to many DSELs. We will build a DSEL
framework that will allow the DSEL builder to com-
bine generic building blocks for large parts of the
implementation, leaving him to concentrate on the
question of what exactly the embedded DSL should
express. Our aims are similar to those of Language
Workbenches [Fowler, 2010].

2.2 Demonstrator

The demonstrator will consist of complete tool-
chains for each of the three chosen application ar-
eas. Each tool-chain will support formulation of re-
quirements, design, implementation and debugging
of the code, and verification through testing and,
where appropriate, automated proof. By adopting
this end-to-end approach we strive to improve pro-
ductivity throughout the software development pro-
cess, not just in writing the code.
The Feldspar DSEL targets multicore DSP proces-
sors, and is intended to express both the signal
processing algorithms used in base stations, and
the coordination of the algorithmic blocks. Today’s
version of Feldspar can express signal processing
algorithms elegantly, and generate ANSI C imple-
mentations, but the demonstrator will also apply
architecture-specific optimisations using a separate
architectural model, and will support the coordina-
tion layer. The coordination must be achieved us-
ing limited memory and meeting real-time deadlines,
and is the motivating application for our work on
memory-aware Erlang-like DSELs discussed above.
Since the Feldspar work is already quite advanced,

then we plan to complete this part of the demonstra-
tor within two years after the start of the project, giv-
ing us an opportunity to apply the lessons learned
from it to the other two.

The Obsidian DSEL targets manycore systems with
one or many graphics processors, and is intended to
support data-parallel and cache aware programming
for applications such as medical image processing
and on- or off-line image rendering. Today’s version
of Obsidian allows the programmer to specify single
so-called “kernels” of computation more concisely
and at a higher level than, for example, NVIDIA’s
CUDA language, but is somewhat restricted in the
kernels it can express. The demonstrator will be
much more expressive, and will also support co-
ordination between the kernels to implement much
larger and more complex highly parallel computa-
tions. The key to high performance (either in CUDA
or in Obsidian) lies in the memory access patterns
used. Apparently similar programs with slightly dif-
ferent access patterns can exhibit widely different
performance. Yet because these patterns are im-
plicit, then optimizing them is something of a black
art. The demonstrator will support such patterns ex-
plicitly, enabling programmers to adapt their code
easily in this respect. This is a prime motivation for
the work on memory awareness above.

The automotive DSEL targets the electronic con-
trol units (ECUs) which run the embedded soft-
ware in vehicles, and is intended for programming
AUTOSAR components. The AUTOSAR standard
specifies a component-based architecture, with de-
tailed requirements on each component, but it is
proving difficult to establish that component imple-
mentations actually conform to the standard. Quviq
is developing open QuickCheck specifications to ad-
dress this problem; the demonstrator will combine
these specifications with a DSEL for implement-
ing AUTOSAR components, with high confidence in
their conformance. Since AUTOSAR is an evolv-
ing standard, there will be a continuing need to up-
date specifications and implementations, motivating
the development of a DSEL to ease this task. AU-
TOSAR components are real-time systems which
must meet important timing requirements, motivat-
ing our work on time awareness described above.
One of the problems of a component-based ap-
proach is that standardised interfaces between com-
ponents can impose a run-time and memory cost,
that bespoke software for the same task would not
encounter. To mitigate this, AUTOSAR allows com-
ponents to be clustered, so that the cluster provides
the standardised interface at its borders, but inter-
nally may be implemented more efficiently. One
of the goals of our AUTOSAR DSEL is to support
component fusion, so that this clustering can be
achieved automatically.

8

2.3 System research

Our way of working is case study driven. We first
build prototype tools and try them on industrial case
studies. This in turn places new demands on the
tools, demanding new disciplinary research, which
feeds the next version of the tool and the next round
of experiments.

2.3.1 years 1 and 2
Mobile broadband. In Mobile broadband, our
most mature domain, system research in the first
two years of the project will concern the deployment
of the Feldspar tool, including support and observa-
tion of real users. This will give vital feedback on
usability, and will likely lead to significant changes
in the tool itself. We will need to develop a detailed
understanding of what the user needs in the form of
early analyses and profiling. Real case studies will
drive this work, and it is important to have access
to real users, to try to ensure that a higher level of
programming still gives access to code of compa-
rable performance to that produced in the current
development process. We will take advantage of
the fact that we have one captive real user in the
form of A. Persson (industrial doctoral student and
baseband expert). Initial experiments with the use
of Feldspar by Ericsson research engineers at Base-
band Research were simultaneously very promising
and very revealing of issues that need to be ad-
dressed. We hope to continue this collaboration, in
particular, aiming to measure productivity improve-
ments, since this is, after all, our ultimate goal.

Expanding into new domains. In the first six
months of the project, we will hold workshops with
interested companies in the automotive and image
and media processing areas. Our aim will be to de-
fine the specific properties of these domains, and
to attract industrial collaborators who are willing to
specify their requirements on a tool chain, so that
our prototypes can be made to address the right
problems.

2.3.2 years 3 to 5
Mobile broadband. The initial phase of the project
will have produced a complete tool chain for low level
DSP plus the lowest levels of control. We aim to
study its effectiveness in real use, provided Erics-
son (or another company) are interested in taking
part at that time. This study will give valuable insight
into the effects of introducing new programming lan-
guage technology to users whose background is in
low level C or C++ programming. It will guide us in
our attempts both to broaden the application of the
Feldspar tool chain, and to apply similar techniques
in other domains.
Simultaneously, we will begin to analyse of needs
of the next layer of the software stack by performing

initial case studies and developing prototype exten-
sions to the tool chain.

Automotive and/or image processing We will
choose one or both of these domains and apply a
similar tool development process to that used in the
case of Feldspar in the previous phase: case stud-
ies, observation and measurement feeding the dis-
ciplinary research and the development of the two
corresponding DSELs.

3 Competitiveness

The Swedsoft report calls for a ten times improve-
ment in the efficiency of software development by
2020, and the foundation’s call focusses on meth-
ods that will transform the development of software
intensive systems. The goals of this project are to
develop methods of precisely this sort.
We are targeting specific application domains of
great national importance:

• Infrastructure for mobile broadband, the first pri-
ority area named in the foundation s call for
proposals, and the core business of Ericsson,
the world s fifth largest software developer. Our
work in this area is actively supported (and par-
tially funded) by Ericsson.

• Automotive software, the second priority area
named in the call, and of critical importance to
Volvo, Saab, and many of their suppliers 25-
35% of the value of a vehicle now consists of
software.

Success in these domains has the potential to im-
prove competitiveness dramatically in a substantial
part of the Swedish software industry.

4 Milestones (what and when)
Two years:

• A complete tool chain for digital signal process-
ing (based on current Feldspar) including pre-
liminary industrial case studies.

• A prototype tool chain for part of the automotive
application area.

• A prototype tool chain for functional many-core
graphics processor programming.

Five years:

• Broadened applicability (within the software
stack) for the future Feldspar tool chain

• Real case studies of the application of Feldspar
technology within Ericsson

• A complete tool chain for the Automotive DSL

9

• A complete tool chain for many-core graphics
processor programming.

• A general framework and design principles for
DSL development (making it applicable for new
domains)

5 Research group and forms for
cooperation

The work in this proposal will be carried out in the
Functional Programming Group at Chalmers. The
group consists of four senior researchers (the appli-
cants, three of whom are professors), one research
assistant, one industrial research assistant (IFA),
three postdocs, and eight doctoral students. The
four applicants have more than 10,000 citations in
total, according to Google Scholar. John Hughes is
the project leader, with Mary Sheeran as co-leader.
Because John Hughes is 50% employed at Quviq,
co-leadership is necessary. In addition, this arrange-
ment ensures that work on testing and on resource
aware DSLs will be well integrated.
The applicants have a long track record of working
together successfully: however, John Hughes will
take primary responsibility for the automotive DSEL,
Mary Sheeran will be responsible for Feldspar, Koen
Claessen for Obsidian, and Patrik Jansson for the
DSEL framework.
In 2010 the group was funded by VR (5.6 MSEK),
SSF (Mobility award for Sheeran, 0.96 MSEK), EU
FP7 (mainly ProTest, about 1.4 MSEK) and Erics-
son (Feldspar project, 1.5 MSEK)—about 9.5 MSEK
of external funding in total. SSF funding for this
project would increase the group’s annual funding by
around 4 MSEK, taking into account projects which
are ending. This represents substantial, but man-
ageable growth.
The funding requested will cover 25% of each of the
applicants’ salaries, two research assistants, one
postdoc, and four doctoral students. This trans-
lates to one senior person and one student for each
DSEL, and for the DSEL framework, averaged over
the project. The intention is to recruit the two re-
search assistants at the beginning of the project
(possibly from among our existing postdocs), to-
gether with two new doctoral students. The post-
doc funding will partly be used to fund shorter term
visitors. The remaining funding for two doctoral stu-
dents will initially be used to support students al-
ready working in the group, then to recruit new stu-
dents as those students complete their doctorates.
Ericsson has promised an additional 166kSEK for
work on Feldspar in 2011 should we be successful
in obtaining funding of this proposal.
We have long experience in DSEL design and
in property-based testing, as described above.
Through Quviq, we enjoy insights into the problems

of applying property-based testing in industry. We
have access to expertise in baseband signal pro-
cessing through our collaboration with Ericsson, and
also through Anders Persson, an industrial PhD stu-
dent in our group, who has 8 years of experience
in this area at Ericsson. We plan to collaborate
with Sally A. McKee (Chalmers) to exploit the mem-
ory hierarchy, and with Ulf Assarsson (Chalmers)
in the area of image processing and graphics pro-
cessor programming. Automotive software is new
to us, but Quviq is testing AUTOSAR components
with QuickCheck, and has a strong interest in the
area, and the new Software Centre at Chalmers will
involve automotive companies. We plan to gain ex-
pertise in real-time systems through our colleagues
in the Dependable Real Time Systems Group (who
have long worked with the automotive industry, and
recently started an AUTOSAR-related project) and
through Johan Nordlander (Luleå University of Tech-
nology), who is visiting both our groups. In the area
of functional programming in general, and of domain
specific embedded compilers, we collaborate with
Simon Peyton Jones and Satnam Singh at Microsoft
Research in Cambridge, where Koen Claessen is
currently on a three-month secondment. Work with
Colin Runciman from York (an expert on profiling of
functional programs) is planned, funded by the Eric-
sson Foundation.
The RAW FP project will be governed by a steer-
ing group with representatives from Swedish in-
dustry (from Ericsson, the automotive industry and
the Swedsoft community) and the international aca-
demic community.
We have good experience of researchers (both se-
niors, postdocs and PhD students) working part time
on industrial projects and we have seen clear ben-
efits of actually sitting part time at Ericsson. In the
RAW FP project we want to continue and broaden
this industrial collaboration with possibilities for post-
docs and doctoral students to spend some time
working for Quviq and other associated companies
(in the Automotive and Image Processing areas).

6 Handling of IPR issues

The IPR produced in the project will be the prop-
erty of the individual researchers, according to the
Swedish lärarundantag, except for research directly
funded by Ericsson, which belongs to Ericsson. At
present, Ericsson is funding the development of
Feldspar and the results of that project are owned
by Ericsson. At Ericsson’s initiative, the Feldspar
implementation is released as open source software
under the BSD3 licence. Hitherto Feldspar has been
released by Ericsson (and not by the academic part-
ners in the project).
Our intention is to release the implementations of
all three DSELs as open source software, under a

10

BSD3 licence to facilitate commercial use. (Experi-
ence suggests that programming languages, even
innovative ones, are difficult to sell as products).
Some parts of the surrounding tools may however
be commercialised via Quviq or another spin-off in-
stead. These decisions will be made by agree-
ment between the company and the researchers
concerned at the relevant time.

7 Industry references

“Ericsson has successful ongoing collabora-
tion with the Functional Programming group at
Chalmers on the topics of property based test-
ing and Domain Specific Languages. The re-
search content of this proposal is in line with our
research needs and we look forward to further
collaboration with the group.”
Anders Caspár, Director Ericsson SW Re-
search, Ericsson AB, Färögatan 6, SE-164 80
Stockholm. (Phone) +46 10 715 3844. (eMail)
anders.caspar@ericsson.com

“Ericsson is a world leader in the production of
mobile radio products. Software development is
by far the biggest part of product development
in this area. In order to keep our competitive
edge, we must continuously work with and eval-
uate state of the art software technology. Our
low level, high performance, embedded base-
band software must be tailored closely to the
hardware on which it runs, particularly with re-
gard to the memory hierarchy. Yet we would
like to raise the level of abstraction at which it
is developed, in order to increase programmer
productivity and ease verification. Thus, the re-
search goals in this proposal are closely aligned
to those of Ericsson’s Development Unit Radio
(DURA), and are therefore of strategic impor-
tance for the company.”
Mike Williams, Ericsson AB, Dept FJT/W,
DURA Systems and Technology, SE-164 80
Stockholm. (Phone) +46 10 717 1855 (eMail)
michael.williams@ericsson.com.

References
L. Augustsson, H. Mansell, and G. Sittampalam. Paradise: a

two-stage DSL embedded in haskell. In ICFP ’08: Int. Conf.
on Functional programming, pages 225–228. ACM, 2008.

E. Axelsson, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda.
Feldspar: A Domain Specific Language for Digital Signal Pro-
cessing algorithms. In Proc. Eighth ACM/IEEE International
Conference on Formal Methods and Models for Codesign,
MemoCode. IEEE Computer Society, 2010.

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hard-
ware design in Haskell. In Int. Conf. on Functional Program-
ming, ICFP, pages 174–184. ACM, 1998.

J. Boberg. Early fault detection with model-based testing. In Proc.
7th ACM SIGPLAN workshop on Erlang, pages 9–20, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-065-4.

K. Claessen and N. Sörensson. New techniques that improve
MACE-style model finding. In Proc. of Workshop on Model
Computation (MODEL), 2003.

K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson,
T. Arts, and U. Wiger. Finding race conditions in Erlang with
QuickCheck and PULSE. SIGPLAN Not., 44, August 2009.

K. Claessen, J. Hughes, M. Pałka, N. Smallbone, and H. Svens-
son. Ranking programs using black box testing. In Proc. 5th
Workshop on Automation of Software Test, AST ’10, pages
103–110, New York, NY, USA, 2010a. ACM.

K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guess-
ing formal specifications using testing. In G. Fraser and A. Gar-
gantini, editors, Tests and Proofs, volume 6143 of LNCS,
chapter 3. Springer-Verlag, Berlin, Heidelberg, 2010b.

N. Eén and N. Sörensson. An extensible SAT-solver. In The SAT
Conference, 2003.

M. Fowler. Domain Specific Languages. Addison-Wesley Profes-
sional, 1st edition, 2010.

A. Franzen, A. Cimatti, A. Nadel, R. Sebastiani, and J. Shalev.
Applying SMT in Symbolic Execution of Microcode. In Proc.
Formal Methods in Computer Aided Design (FMCAD), 2010.

K. Hammond and G. Michaelson. Hume: a domain-specific lan-
guage for real-time embedded systems. In Proc. 2nd int.
conf. on Generative programming and component engineer-
ing. Springer, 2003.

P. Hudak. Building domain-specific embedded languages. ACM
Comput. Surv., 28, December 1996. ISSN 0360-0300.

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness
of reactive systems using sized types. In Proc. 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’96, pages 410–423, New York, NY, USA,
1996. ACM. ISBN 0-89791-769-3.

J. Hughes, U. Norell, and J. Sautret. Using temporal relations
to specify and test an instant messaging server. In Proc. 5th
Workshop on Automation of Software Test, AST ’10, pages
95–102, New York, NY, USA, 2010. ACM.

M. Püschel et al. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, special issue on “Program Genera-
tion, Optimization, and Adaptation”, 93(2):232–275, 2005.

S. Rivas, M. A. Francisco, and V. M. Gulías. Property driven de-
velopment in Erlang, by example. In Proc. 5th Workshop on
Automation of Software Test, AST ’10, New York, NY, USA,
2010. ACM.

M. Sheeran. Functional and dynamic programming in the design
of parallel prefix networks. Journal of Functional Program-
ming, (accepted for publication, in press), 2010.

M. Sheeran, S. Singh, and G. Stålmarck. Checking safety prop-
erties using induction and a SAT-solver. In Proc. Int. Conf. on
Formal Methods in Computer Aided Design, volume 3312 of
LNCS. Springer Verlag, 2000.

U. Wiger, G. Ask, and K. Boortz. World-class product certifica-
tion using Erlang. In ERLANG ’02: Proc. of the 2002 ACM
SIGPLAN workshop on Erlang, pages 24–33. ACM, 2002.

W. A. Wulf and S. A. McKee. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News, 23, March
1995.

11

Other costs
The project starts in September 2011 and runs for five years. The
total budget of 33M SEK is almost exclusively used to partially
fund 11 researchers ranging from seniors to PhD students. The
other costs (525 kSEK/year for five years) come from travel and
computer equipment:

Travel: We will be active in international research events like
conferences, workshops and developers’ meetings. We base our
estimate (440 kSEK/y) on current travelling within similar projects.

Equipment: The development of advanced software proto-
types requires good personal computer equipment and access
to the hardware platforms we target (both multi-core and many-
core). We calculate an average of 23k SEK / year / computer and
a life-time of three years resulting in a total of 85k SEK / year for
the whole project.

