
Book Title will be set

Book Editors will be set

PTI, 2015

Improving Dependability of Embedded

Software Systems using Fault Bypass

Modeling (FBM)

Rakesh Rana, Miroslaw Staron, Christian Berger

Department of Computer Science and Engineering

Chalmers | University of Gothenburg

Gothenburg, Sweden

rakesh.rana@gu.se

Abstract. Fault injection techniques are important and widely used for verifying the

dependability of computer systems. Traditionally fault injection has been
successfully applied for evaluating dependability of hardware electronics and is now

increasingly been used for software systems. At the same time increasing

complexity of embedded software systems such as in automotive sector has driven
these domains to use Model Based Development and using virtual simulation to

build and test models before actual code is generation from these models. In this

paper we conclude that fault injection techniques can be effectively used for
assessing and thus increasing the dependability of embedded software systems and

analyze a problem that is faced when using fault injection within a virtual simulation

of these systems. We also discuss a framework referred to as Fault Bypass Modeling
(FBM) as one possible solution to the described problem with the help of

autonomous vehicle simulation case study.

Keywords. Fault injection, testing

1. Introduction

Embedded software today plays a very significant role in our daily lives. Everything

from our mobile devices, telecommunications infrastructure, satellites to home appliance

and automotive products depends heavily on the embedded software to provide their

functionality and services. Over the last two decades, there has been an enormous

increase in the complexity of embedded software, shorter innovation cycle times, while

the demands for their reliability and dependability have anything but grown [1].

Due to requirements of real time behavior and stringent demands for quality and

dependability, embedded software’s are much more complex than their counterparts in

IT applications or desktop software. Also given that the late defect correction costs

higher in embedded software development and testing of software after code completion

costs about 30-50% of all resources [2], verification and validation holds special

significance in this domain. Model driven or model based development (MBD) is now

widely adopted within the domains of embedded software/systems development. Good

overview on embedded software development and model based approach within it can

be found in [3], [4], [5], while [2] provides important facts, figures and the expected

future for embedded software.

2 Rana et al. / Improving Dependability of Embedded Software…

The problem and challenges related to verification and validation of models,

specifically how to verify, validate and test the behavioral/implementation models that

are used for code generation is also well recognized within the research community of

model driven engineering [6]. The predominant form of testing within embedded

software using MBD is done using test cases and test scenarios. Model based testing

(MBT) approach attempts to use data models to generate the tests where data models

intends to capture the requirements and input configurations [7]. While test automation

and MBT provides considerable reduction in cost of test generation, importance of real-

time issue and need for testing using continuous signals calls for reactive or closed loop

testing.

Closed loop testing offers many advantages for testing systems which depend or

interact closely with their environment. By modeling the environment and interacting the

system under test with its environment through controlled interface(s) - provides

possibility of reactive testing, identification/generation of multiple system-environment

test cases/scenarios automatically and tests the system for its real time characteristics.

Fault injection techniques can further enhance the effectiveness of closed loop

testing and thus help in evaluating and increasing the dependability of system in their

early stage of development, but injecting faults into system (in closed loop configuration)

may make system behavior and its output unrealistic and thus unreliable for making

analysis or testing hypothesis. The problem occurs mainly due to dependencies between

the system and its environment and feedback loops between the two. In this paper we

highlight the problem and discuss how framework referred as fault bypass modeling can

be used as a potential solution to this problem.

2. Related work

The fault bypass modeling idea presented here is introduced by the authors of this paper

in [8], with a case study using a behavioral model of anti-lock braking system in Simulink.

In this paper we highlight the need of closed loop testing and evaluate the applicability

of fault bypass principle to a case of virtual simulation of autonomous vehicle case

Although using fault injection techniques for dependability evaluation of

behavioral/functional models is at its infancy, Svenningsson et al. [9] introduce the tool

called MODIFI which can be used to apply fault injection methodology on

functional/behavioral models in Simulink. The tool is capable of injecting single or

multiple faults into the signals of a given system to evaluate the fault propagation

properties and analyze the effectiveness of fault tolerance mechanism of system under

test. But as described in our earlier work [8], using such tools in closed loop mode need

careful consideration to fault bypass principle to ensure that system output is realistic

and reliable. Such a modelling is important even for other domains, e.g. measurement

system or software modelling in general [10, 11].

Trawczynski et al. [12] presented an approach for modelling software systems in

cars using closed loops in the context of security engineering. Their approach provides

another example from a similar domain.

2.1. Need for closed loop testing

The main form of traditional software testing is open loop testing using test case and

scenarios approach. But in number of industrial domains and types of applications where

 Author running / Title running 3

program/system under test is non-deterministic or where the behavior of given

function/system depends on its operational environment – open loop testing is not an

effective approach. In such cases the problem of test case generation even using the MBT

or automated test generation tools is much more complex than for deterministic type of

applications [13].

Stockmann et al. [14] documents the need for closed loop testing in the automotive

industry. Focusing on the domain of electric vehicles and testing electronic control units

(ECUs), the authors propose methodology and tool chain for simulating virtual ECUs to

enable functional testing under different conditions. Requirement of using closed loop

testing for testing model based development in automotive domain due to real time issues

behavior and need for using continuously changing signals is also expressed in [15]. The

need for testing in the virtual space (in closed loop configuration) due to advancements

in autonomous driving, vehicle to infrastructure and vehicle to vehicle communication

is further established in [16].

The problem of non-deterministic factors of testing and need for closed loop testing

in the area of medical devices is explained and highlighted in [13]. The authors refer

implantable devices increasing complexity as a factor leading to large amount of device

recalls. Safety critical nature of such systems calls for effective testing, to allow for

physically relevant model based test generation for such devices they describe a closed

loop testing environment for testing pacemakers. The capability and effectiveness of the

approach is demonstrated by system’s ability to test for common and complex heart

conditions for different pacemaker models.

Fig 1: Simulated heart and pacemaker model in closed loop configuration as presented in [13].

A common approach to test systems with human elements in closed loop is to couple

the human subject to the simulated system. Using virtual human models as a cheaper

alternative is an area of active research [17]. Thus closed loop testing is also important

in areas with man-machine interface which constitutes a large part of day to day products

with embedded software.

2.2. Fault Injection

Fault injection has been used with good results for verification of dependability attributes

of hardware and software systems [18]. Fault injection is widely used to identify

bottlenecks related to dependability, study the behavior of system under faulty operating

conditions and examining the coverage of fault tolerance or error detection and recovery

mechanisms within software systems.

For applications which are safety, mission or business critical, dependability

evaluation is especially important activity. Fault injection techniques have been much

studied and used for safety critical applications development. SCADE or Safety-Critical

Application Development Environment is a modeling language developed to simulate

hardware failure scenarios. SCADE have been used in projects such as ESACS and

4 Rana et al. / Improving Dependability of Embedded Software…

ISAAC for identification of fault combinations leading to safety case violations. A plug-

in called FISCADE [19] have also been developed for SCADE language for introducing

faults into using the SCADE simulator.

3. Improving closed loop testing using fault injection

As described in 2.1, there is high need for using closed loop testing for number of

domains and applications. Closed loop testing can be achieved by developing/modeling

the environment (with which the system interacts) and simulating the system and

environment coupled through interfaces in the virtual space. Using MBD and MBT

approaches in conjunction can be used to generate tests for system in closed loop

configuration which works well under normal (specified) working conditions.

But in order to achieve dependability evaluation of a system; for example running a

fault based scenarios, we need to go one step further to the closed loop testing. This could

be easily done by injecting faults into the system many scenarios can be created for

instance a system with inputs from n sensors may run scenarios with individual failure

of x (0 < 𝑥 < 𝑛) sensors input and their combinations. Different types of sensor/input

failure modes could be modeled and so does the failure related to reading parameters and

system dependencies onto other system which simulates reading, writing or memory

errors. All these fault operating conditions can be used to identify failure modes under

which system output is unacceptable and test cases/scenarios generated to ensure that

final implementation code have error handling or tolerance capabilities to avoid such

scenarios.

Thus by coupling fault injections techniques with close loop testing, the efficiency

and effectiveness of testing real-time systems with non-deterministic or environmental

dependent properties can be enhanced significantly. Model based development and

closed loop configuration allows for automated running the system against large number

of normal and fault scenarios which are not possible in open loop configuration or using

manually crafted test cases.

But the main challenge in using fault injection in a close loop configuration is to

differentiate between correct system’s behaviors from the system failure under fault

mode. The problem is described in the next section using a simple case study, while

detailed description using a behavioral Simulink model is also available in [20].

4. Case study: problem description and proposed solution

In this section we describe the challenge when using fault injection in close loop

configuration. We use the miniature vehicle/car and its environment model described in

[16].

The implementation of system-environment model for the autonomous miniature

car and its environment is represented in Fig 2. The modules named monitor, lanedetector

and driver are the parts constituting the system within the car, while the vehicle, camgen

and irus forms the environment simulator (environment model). The environment

simulator can take inputs form scenario modeling GUI which gives flexibility of

designing and running test scenarios.

 Author running / Title running 5

Fig 2: Representation of model-based system-environment model capable of simulating vehicle-

environment model in virtual space, as presented in [16].

When simulating the autonomous miniature car in the virtual space, the

lanedetectorM module takes input from environment simulator module CamGen (which

produces virtual image data similar to a camera input during on-road conditions). Using

data from CamGen and controlling commands input by the user in virtual space or using

the test scenario model, the driverM module determines the current vehicle position.

driverM moduel also calculate the demand velocity (Vd), desired steering wheel angle

(𝜃𝑑) to be applied using inputs from lanedetectorM and driving instructions.

Fig 3: Miniature vehicle in running condition (open loop).

Fig 4: Vehicle in virtual simulation mode (closed loop).

The output of driver module is used to control the vehicle movement in case of on-

track mode, or in virtual simulation is feed back to the vehicleS module to calculate the

new vehicle position using linear bicycle model. The new position from vehicleS module

is then used by CamGen to generate new image data and irus to re-calculate the obstacles

distance to be used by lanedetectorM and driverM modules. Fig 3 and Fig 4 represents

working mode in on-track and virtual simulation mode.

6 Rana et al. / Improving Dependability of Embedded Software…

4.1. Injecting fault into the system

Now consider a simple scenario, we wish to simulate how the vehicle would act in

case of faulty speed sensor (sensor output is zero). In the real vehicle/miniature vehicle

on track, even though the speed sensor has failed at t=t0, we can reasonably assume that

vehicle would continue in motion with initial velocity, v0 and process the observed

camera images to navigate the lane according to lanedetectorM input. Although due to

failure in vehicle speed sensor the vehicle speed would be assumed by driverM (system)

as zero and thus demand maximum speed resulting in full throttle leading to vehicle

accelerating and continuing operation in full speed mode.

But if we simulate the same condition in virtual space, the fault condition of zero

vehicle speed would be interpreted in above described manner (like in real case) by the

vehicleS model to simulate a condition with full acceleration demand, but the wrong

signal (zero vehicle speed) will make incorrect new vehicle speed and thus also the

distance traveled from the point of fault injection leading to faulty position interpretation

by CamGen and thus the vehicle speed and trajectory in simulated case will not reflect

the actual behavior and thus unreliable to make analysis.

Using simplified 1D model, the current velocity and distance can be calculated using

Newton’s law of motion,

𝑣 = 𝑣0 + 𝑎𝑡

𝑆 = 𝑆0 + 𝑣0𝑡 +
1

2
𝑎𝑡2

In case of actual vehicle on track, due to faulty vehicle velocity input (v = 0 m/s) the

driverM module will demand maximum acceleration (assumed here 𝑎𝑚𝑎𝑥 = 5 𝑚/𝑠2),

but the initial velocity irrespective of the state (working or faulty) will be 𝑣0 (assumed

below to be 40m/s) will follow the laws of motion. Also the observations from camera

unit will be normal and thus the vehicle would be able to navigate the obstacles and

follow the lane.

Fig 5: Vehicle in virtual simulation mode with fault injected.

While in case of simulated environment the initial velocity will be wrongly taken to

be zero and although the driverM module will demand similar condition of maximum

acceleration, in this case the simulated velocity and distance traveled would be wrongly

calculated. And since in simulated case the module CamGen is used instead of real

camera, the generated image based on wrong position data from vehicle module will

result in faulty image generation thus vehicle would not navigate or follow lane correctly.

Fig 6 shows the difference between velocity and distance in actual and simulated case.

 Author running / Title running 7

Fig 6: Velocity and distance traveled (actual and simulated).

Such inconsistencies occurs due to dependencies and superficial feedback loops

between the system and its environment where a system state/signal is used to

calculate/control a natural parameter which in normal circumstances would not depend

on that signal/ state of the system [20]. In the given case study, the problem occurs due

to virtual vehicle dynamics simulator (vehicleS) will take wrong input of current velocity

(as zero) in fault scenario which is used to calculate the new velocity and new vehicle

position, which is further utilized to generate the virtual image data by CamGen and thus

producing incorrect simulated outcome.

Fig 7: Vehicle simulation closed loop testing using FBM.

The solution for such problems is easily achieved by using principle of fault bypass

modeling where the part of signal or its derivative, which is used to calculate/control the

environment parameter (in this case correct initial velocity) is made fault free to break

the unrealistic feedback loop. Thus in above case applying FBM principle, the initial

velocity of moving vehicle is a parameter independent of injected fault, thus while to

simulate the given fault scenario, fault (v=0) needs to be inputted to the driver module,

but the fault free current value of initial velocity should be bypassed to the simulated

environment (vehicleS module) so that the new velocity and position data is correctly

generated and thus the output of CamGen (generated virtual image data). The

implementation of FBM in given case is represented in Fig 7.

This is a simple example but for many embedded systems that require closed loop

testing – transient properties are important or even critical. Consider testing for if the

vehicle stops safely under scenario of failed brakes or how the pacemaker or some

implantable device would react to an intermittent discharge from the battery. Using fault

injection methodology to test for these fault scenarios under closed loop strictly depend

8 Rana et al. / Improving Dependability of Embedded Software…

on ensuring that the system-environment simulated output is reliable and reflects the true

behavior of system under test. Thus FBM principle outlined here can be useful for closed

loop testing for dependability of non-deterministic systems and systems with high

dependence on their environment.

5. CONCLUSION

We established that there is significant need for using closed loop testing of embedded

software systems in many domains and applications. It is also discussed that fault

injection can be used to enhance the effectiveness of closed loop testing by making it

possible to do dependability evaluation of the system in early development stages. But

injecting faults into closed loop configurations can generate outputs that are unreliable

and may be unrealistic, to overcome this problem framework referred to as fault bypass

modeling is demonstrated with a simple case study. Although the example discussed here

is very simple, the use of closed loop testing is most often needed for testing of safety

critical applications where dependability and reliability is of utmost importance thus

FBM can prove to be a useful tool in ensuring dependability of embedded systems.

ACKNOWLEDGMENTS

The work presented here has been funded by Vinnova and Volvo Cars jointly under the

FFI programme (VISEE, Project No: DIARIENR: 2011-04438).

References

[1] P. Liggesmeyer and M. Trapp, "Trends in embedded software engineering," Software, IEEE, vol. 26, pp.

19-25, 2009.

[2] C. Ebert and C. Jones, "Embedded software: Facts, figures, and future," Computer, pp. 42-52, 2009.
[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, "Model-integrated development of embedded

software," Proceedings of the IEEE, vol. 91, pp. 145-164, 2003.

[4] B. Graaf, M. Lormans, and H. Toetenel, "Embedded software engineering: the state of the practice,"
Software, IEEE, vol. 20, pp. 61-69, 2003.

[5] G. Buttazzo, "Research trends in real-time computing for embedded systems," ACM SIGBED Review,

vol. 3, pp. 1-10, 2006.
[6] R. Van Der Straeten, T. Mens, and S. Van Baelen, "Challenges in model-driven software engineering,"

in Models in Software Engineering, ed: Springer, 2009, pp. 35-47.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton, et al., "Model-based testing in
practice," in Proceedings of the 21st international conference on Software engineering, 1999, pp. 285-

294.

[8] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, "Improving Fault Injection in
Automotive Model Based Development using Fault Bypass Modeling," in GI-Jahrestagung, 2013, pp.

2577-2591.

[9] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, MODIFI: a MODel-implemented fault
injection tool: Springer, 2010.

[10] L. Kuzniarz and M. Staron, "On Practical Usage of Stereotypes in UML-Based Software Development,"

in Forum on Design and Specification Languages, Marseille, 2002, pp. 262-270.
[11] M. Staron and W. Meding, "Using Models to Develop Measurement Systems: A Method and Its

Industrial Use," presented at the Software Process and Product Measurement, Amsterdam, NL, 2009.

 Author running / Title running 9

[12] D. Trawczynski, J. Zalewski, and J. Sosnowski, "Design of Reactive Security Mechanisms in Time-
Triggered Embedded Systems," SAE International Journal of Passenger Cars-Electronic and Electrical

Systems, vol. 7, pp. 527-535, 2014.

[13] Z. Jiang, M. Pajic, and R. Mangharam, "Model-based closed-loop testing of implantable pacemakers,"
in Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems,

2011, pp. 131-140.

[14] L. Stockmann, D. Holler, and D. Spenneberg, "Early simulation and testing of virtual ECUs for electric
vehicles," in International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS26), 2012.

[15] E. Bringmann and A. Kramer, "Model-based testing of automotive systems," in Software Testing,

Verification, and Validation, 2008 1st International Conference on, 2008, pp. 485-493.
[16] C. Berger, M. Chaudron, R. Heldal, O. Landsiedel, and E. M. Schiller, "Model-based, composable

simulation for the development of autonomous miniature vehicles," in Proceedings of the Symposium

on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, 2013, p. 17.
[17] W. F. Van Der Vegte and I. Horváth, "Achieving closed-loop control simulation of human-artefact

interaction: a comparative review," Modelling and Simulation in Engineering, vol. 2011, p. 24, 2011.
[18] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, et al., "Fault injection for

dependability validation: A methodology and some applications," Software Engineering, IEEE

Transactions on, vol. 16, pp. 166-182, 1990.
[19] J. Vinter, L. Bromander, P. Raistrick, and H. Edler, "Fiscade-a fault injection tool for scade models," in

Automotive Electronics, 2007 3rd Institution of Engineering and Technology Conference on, 2007, pp.

1-9.
[20] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, "Increasing efficiency of iso

26262 verification and validation by combining fault injection and mutation testing with model based

development," in 8th International Joint Conference on Software Technologies-ICSOFT-EA, Reykjavík,
Iceland, July 2013, 2013, pp. 251-257.

