ARCA - Automated Analysis of AUTOSAR
Meta-Model Changes

Darko Durisic
Dept. of Electrical Systems Design
Volvo Car Corporation
Gothenburg, Sweden
Darko.Durisic @volvocars.com

Abstract—The software architecture of automotive software
systems on the European market and wider is designed following
the AUTOSAR standard. This requires continuous adoption
of new AUTOSAR releases in the development projects in
order to enable new innovative solutions in cars. Under these
circumstances, the analysis of impact of the AUTOSAR meta-
model changes on the modeling tools used in the development
is crucial for avoiding delays and increased cost. However due
to tens of new features combined with thousands of meta-model
changes between consecutive releases of AUTOSAR, tool support
is needed for such analysis. In this paper we present a systematic
method and a tool - ARCA - for automated analysis of the
AUTOSAR meta-model changes. The tool is able to identify
relevant changes affecting modeling tools used by different roles
in the development process and present the optimal set of new
features to be adopted in the projects. The goal of the tool is to
enable faster and cheaper software innovation cycles in cars.

I. INTRODUCTION

The development of automotive software systems and their
architectures on the European market and wider is mostly
based on the AUTOSAR [1] (AUTomotive Open System
ARchitecture) standard [2]. One reason is the possibility to
re-use the existing architectural components and their imple-
mentations (e.g. related to middleware and hardware [3]) but
also to more easily exchange the architectural models between
the tools of different software vendors. In order to facilitate
the exchange of these models, AUTOSAR defines a meta-
model and requires full compliance of the system models
to the AUTOSAR meta-model. We consider a model as an
abstract representation of a software system and a meta-model
as a model which defines the syntax and the semantics of a
particular domain-specific modeling environment [4], [5].

Development based on the standardized meta-model re-
quires constant adoption of new meta-model releases in the
development in order to enable new innovative solutions in
car projects. A good example of such a solution is Ethernet
as a communication medium between different Electronic
Control Units (ECUs) responsible for one or more vehicle
functions (e.g. engine control) in a distributed automotive
system. However as new releases of AUTOSAR usually bring
thousands of changes to the AUTOSAR meta-model (e.g. more
than 33 000 changes between two consecutive releases 4.1.3
and 4.2.1 as shown later), careful analysis of the impact of

Miroslaw Staron
Software Engineering Division
Chalmers | University of Gothenburg
Gothenburg, Sweden
Miroslaw.Staron @cse.gu.se

Matthias Tichy
Software Engineering Division
Chalmers | University of Gothenburg
Gothenburg, Sweden
Matthias.Tichy @cse.gu.se

these changes on different modeling tools supporting these
solutions is required before their implementation [6].

In particular, automotive software designers are often con-
fronted with decisions about which newer AUTOSAR release
or subsets of new AUTOSAR features to adopt in the devel-
opment projects. They also want to know which roles in the
development process will be mostly affected by the changes.
Due to the constant increase in the size and complexity of the
AUTOSAR meta-model related to new features in cars [7] (e.g.
R4.2.1 is 4-5 times more complex than R3.2.3 for different
roles as shown later), tool support is needed to quickly identify
relevant changes for the most critical roles and facilitate the
cost-benefit analysis of adopting different features.

In this paper we present a systematic method and a tool -
ARCA (AutosaR Change Analyzer) - for automated analysis of
AUTOSAR meta-model changes affecting modeling tools used
by a set of defined roles. The tool has 3 main functionalities:

1) Quantifying and presenting the changes between differ-

ent versions of the AUTOSAR meta-model.

2) Presenting the results of a number of software metrics

characterizing the AUTOSAR meta-model evolution.

3) Quantifying and presenting the changes caused by spe-

cific features of a new AUTOSAR release.

Based on the first two functionalities, a decision about
the adoption of a specific new AUTOSAR release can be
made. This includes the identification of the most critical roles
affected by the changes. We studied in [6] the evolution of the
AUTOSAR meta-model for different roles and assessed the
applicability of the used metrics for monitoring its evolution
in [8]. In this paper we focus on the utilization of the results
from these studies in car projects. Using the third functionality,
a decision about the adoption of the optimal number of features
from a new AUTOSAR release can be made based on their
prioritization and estimated impact on the modeling tools.

This paper is structured as follows: Section 2 describes the
AUTOSAR based development of automotive software sys-
tems. Section 3 describes the related work. Section 4 describes
the ARCA tool. Finally section 5 presents our conclusions.

II. AUTOSAR BASED SOFTWARE DEVELOPMENT

The development of the automotive software systems is dis-
tributed as they are developed in a collaborative environment

which involves a number of actors. On one side we have car
manufacturers (OEMs - Original Equipment Manufacturers)
responsible for designing and verifying the architecture of
the system. On the other side we have different layers of
suppliers (e.g. application software suppliers, tool suppliers,
hardware suppliers) responsible for design, implementation
and verification of the specific architectural components [9].
As each party in the development process may use their own
tools for working with the architectural models, the exchange
of these models between different actors is quite challenging.

In order to facilitate this distributed development, the
AUTOSAR standard was introduced [10] as a partnership
of OEMs and their suppliers. One of the main goals of
AUTOSAR is to standardize the exchange format for the
architectural models of the system. This is done by defining
a meta-model which specifies the syntax and the semantics of
the automotive modeling environment [4], [5] and serves as a
basis for the development of the modeling tools.

Figure 1 shows a simplified example of the usage of the
AUTOSAR meta-model to allocate software components onto
ECUs. The meta-model to the left defines how to map software
components to ECUs while the model to the right instantiates
this meta-model by mapping the actual EnginePowerUnit
software components to EngineControlModule ECU.

Identifiable ' :Ecu

k}— + uuid :String

+ shortName :String shortName = EngineControlModule
uuid = A2CD0720
diagAddress = 12

busWakeUp = false

vecu 4\

shortName = Mapping32
uuid = A19FAB93

+swe
i

AN
Meta-Model | !

AUTOSAR Meta-Model example

| :SwcToEcuMapping
Ecu |
+ busWakeUp :Boolean
+ diagAddress :Integer

+ecu1\ 1 +swc1\ 1

SwcToEcuMapping

:SoftwareComponent

shortName = EnginePowerUnit
uuid = FOAAD679

Fig. 1.

The development of the AUTOSAR meta-model is done
with the help of two tools - a change management tool Bugzilla
and an SVN repository. For implementing changes related to
the new features, the process depicted in figure 2 is followed.

,?

r ? Software Designer
| ' hugzllla

Bugzilla IDs

SVN commit
with Bugzilla ID

‘J

Fig. 2. Linking meta-model changes to AUTOSAR features

Concept

EA files
Bugzilla comment

based on SVN commit

For each new feature to be implemented in the standard,
an entry in Bugzilla is created with a unique identifier (1)
which contains the description of the feature and the agreed
solution. Software designers implementing the changes in the
AUTOSAR meta-model use this identifier (2) in the commit
message when committing the new version of the meta-model
to the SVN (3). Several SVN commits of the meta-model may
be related to one feature. Every time a commit is made, a
comment is added to the Bugzilla entry with the identifier
from the commit message (4). To assure that no links are
omitted by the change implementers, the SVN repository shall
be configured to accept only certain structure of commit
messages, e.g. a regular expression starting with the unique
identifier of the Bugzilla entry (e.g. #12345).

III. RELATED WORK

A number of studies focus on the coupled evolution of
models and meta-models and assessing the impact of meta-
model changes on different artifacts. For example Ruscio et al.
[11] address the impact of meta-model evolution on the entire
meta-modeling eco-system, e.g. models, transformations and
modeling tools and Mendez et al. show how to perform the
automated transformation of models according to the meta-
model changes [12]. Our paper contributes to these studies by
analyzing the impact of meta-model changes on the modeling
tools with the focus on supporting new features.

A number of software tools exist today for supporting the
analysis of repository changes for different software artifacts
such as VCS-Analyzer presented by Fontana et al. [13] or the
change management tool presented by Li et al. [14]. However
most of these tools are not tailored to the analysis of meta-
model evolution and they are not capable of linking meta-
model changes to different system features.

Additionally Poncin et al. present FLASR - a framework
for analyzing software repositories by combining different
repositories and matching related software development events
[15]. We utilize a part of this framework (SVN-Bugzilla links)
for linking AUTOSAR meta-model changes to features.

IV. ARCA TooL

The description of the ARCA tool is organized in 5 subsec-
tions. The first one contains a description of the architecture
of the tool while the latter 3 contain the definition of the main
functionalities supported by the tool. The last section shows an
example of how to combine all functionalities in car projects.

A. Architecture of the ARCA Tool

For the analysis of changes between different versions of
the AUTOSAR meta-model, the ARCA tool uses the meta-
data model presented in figure 3 which represents a simplified
version of the MOF meta-model [16].

We define a change as an atomic modification, addition or
removal of the meta-data model elements and their properties
(e.g. Name, Note). For example if an Artribute changed both
its Name and Type, this represents two changes. Addition-
ally when introducing or removing meta-data elements (e.g.

+elements|

Package Element

0- ClassifierName :string| Attribute

Name :string + LowerBound :sting
Note :string o (emD CHE
* Stereotype :string 0.
+packages /[\0.. /[\0. e f |+ Note :string
+parentElement | U{ﬁ; 5"":9 + Type :sting
string + UpperBound :string
+ UUID string

+ Name :sting
UUID :string 0.*

+

+attributes

ok o+

+subPackages {

+source Connectors' 0.* 0.* +targetConnectors

Connector 0.
0.r

+annotations

Note :string
SourceCardinality :striing
Stereotype :string
TargetCardinality :stiing
Type :string

UUID :string [

MetaModel

+annotation

3 Annotation
+ Version :string

+annotations + Name :sting
+ Value :sting

ok o+ 4

Fig. 3. Meta-data model

Attributes) containing other meta-data elements (e.g. Annota-
tions), both changes to the containing and contained meta-data
elements are considered. The comparison is done based on the
unique element identifiers in the Enterprise Architect model.

Data-models instantiating this meta-data model (.mod files)
are obtained by extracting the data from the Enterprise Archi-
tect (.eap) files corresponding to a specific AUTOSAR meta-
model version (see 1 in figure 4). Two data-models need to be
loaded into the tool (see 2 in figure 4) before further analysis
of the changes is possible. The reason why the tool works only
with its own data-models is to increase the performance, i.e. it
is more than 100 times faster to load the extracted data-model
in comparison to querying the Enterprise Architect file.

Before using the ARCA tool for different types of change
analysis, two important aspects need to be configured: (i)
which types of changes shall be considered and (ii) which
roles shall be used in the analysis. The first aspect is important
as certain changes may not require any implementation effort
in the AUTOSAR meta-model based tools, e.g. changes in
the format of the unique identifiers of the meta-elements or in
their notes. The second aspect is important as the development
of automotive software systems involves a number of actors
so the role based analysis of the changes may indicate which
teams (i.e. their modeling tools) will be mostly affected.

The configuration of these two aspects is done by importing
the configuration file (.xml) before the analysis (see 5 in figure
4). Regarding the considered types of changes (referred to
as relevant changes), it is possible to specify which meta-
model packages shall be excluded from the analysis. It is also
possible to specify whether the changes in the element notes
shall be considered and which annotations shall be excluded.
Consideration of the relevant changes only can be enabled and
disabled via the 'Relevant only’ check-box (see 3 in figure 4).

As the AUTOSAR meta-model is organized in logical pack-
ages, roles in the configuration file are defined as collections of
packages affecting modeling tools used by the corresponding
role. We defined in [6] 7 major roles in the automotive
software development process but new roles can be defined.

The link between meta-model changes and AUTOSAR
features is established by analyzing the AUTOSAR meta-
model changes between the SVN commits referring to the
Bugzilla entry which corresponds to the analyzed feature.

B. Quantifying and Presenting Changes Between Versions

This functionality enables a comparison between two AU-
TOSAR meta-model versions (e.g. two different releases of
the AUTOSAR meta-model) for a selected role (see 7 in
figure 4) after the corresponding .mod files have been loaded.
By selecting the "Metrics’ check-box in the ’Show changes’
panel (see 9 in figure 4), we can see the total number of
changes between the chosen meta-model versions together
with the number of modified, added and removed elements,
attributes and packages (see 11 in figure 4). In addition to the
quantitative analysis of the changes, it is also possible to list all
changes and modified, added and removed elements, attributes
and packages by selecting the corresponding check-boxes in
the *Show changes’ panel (see 12 in figure 4).

There are two main use-cases for this functionality:

1) Analyzing the impact of switching from one AUTOSAR
release to another on the tools used by different roles in
the development process.

2) Constant follow-up of the changes in the AUTOSAR
meta-model between two releases in order to influence
their standardization (e.g. prevent the removal of an
element which is planned to be used in future).

Apart from the analysis of the changes between two AU-
TOSAR meta-model versions, the ARCA tool can be used
for generating .csv reports from the comparison of multiple
meta-model versions specified in the configuration file (i.e.
paths to the corresponding .mod files are provided) for all
defined roles (see Report changes’ under 6 in figure 4). Based
on these reports, heat-maps showing the number of changes
(or the number of modified, added and removed elements,
attributes and packages) which need to be implemented in the
AUTOSAR based tools to switch from one AUTOSAR release
to another can be created for each role.

The main use-case for the heat-maps is during the decision
making process of which new AUTOSAR release to adopt
in the development process. This is because they can serve
as a good indicator of potential cost needed to update the
AUTOSAR based modeling tools used by different roles. An
example of such a heat-map containing the number of relevant
changes for the AUTOSAR releases 3.0.1 - 4.2.1 for the entire
meta-model is shown in figure 5.

NoC [311]312[313[314]315[321[322][323[401[402[403[411][412][413]421
3.1.1 [66 66 | 317 | 582 | 7119 | 8384 | 9223 | 31251 | 35485 | 39606 | 52322 | 53138 | 53827 | 71287
3.1.2 20 | 274 | 539 | 7084 | 8349 | 9188 | 31265 | 35499 | 39620 | 52336 | 53152 | 53841 | 71301

3.13 0 274 | 539 | 7084 | 8349 | 9188 | 31265 | 35499 | 39620 | 52336 | 53152 | 53841 | 71301
314 0 0 317 | 6865 | 8134 | 8986 | 31357 | 35596 | 39722 | 52441 | 53257 | 53946 | 71405
3.15 0 0 0 | 6675 | 7944 | 8801 [31567 | 35696 | 39822 | 52551 | 53367 | 54056 | 71555
3.2.1 1422 | 2454 | 34922 | 38905 | 42913 | 55821 [56649 | 57342 | 75228

3.22 1109 | 35842 | 39805 | 43774 | 56637 | 57470 | 58162 | 76148
323 0 36326 | 40156 | 44125 | 56925 | 57742 | 58398 | 76359
4.0.1 0 0 5783 | 12235 | 29690 | 30696 | 31570 | 55690
402 0 0 0 | 7026 | 24900 [25927 | 26817 | 51706
403 18662 | 19765 | 20743 | 47619
411 0 1372 | 2472 | 35067
4.1.2 0 0 1104 | 33979
413 0 [0 [33281
421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 5. Heatmap example

We can see that most changes are needed when switching
from an AUTOSAR release 3.x to a release 4.x as these
branches have been developed in parallel for some time
leading to their divergence.

. AUTOSAR Change Analyzer

E=3 Ee8

Model Path: ~[C-\mySVNAAUTOSAR MMOD Releases\AUTOSAR_MMOD_MetaModel_412eap

Extract maltiple | Reportmetrics |

File Path: [C:\mySVN\AUTOSAR MMOD Releases\AUTOSAR_MMOD_MetaModel_£.1.2mod

Report changes | Reportfeatures |

Model paih 1: [C-\mySVN\AUTOSAR MMOD Releases\AUTOSAR_MMOD_Metabodel_4.1.1mad 5
Load Compare | 7 [Bppication Software Designer
Model path 2: [C-\mySVN\AUTOSAR MMOD Releases\AUTOSAR_MMOD_MetaModel_4 1 2mod | |
3| F Relevant only
.. ¥ Size [Length [~ Complexity
|Show metrics: 2 L
JSVN path: [C\AR\MMOD_MciaMode!_05%\master\AUTOSAR_MctaModel_Masier. EAP 4 ‘ I” Coupling I” Cohesion 8
Fealures
RfC Nofs): [#65579, 765580, #6551, 65582, 65583, #6554, 65585, #6586
ofs):) . B I . . . Showchanges: |V Metrics @ I All changes
' I~ Modifiedpacks | Modified elems [~ Modified attrs
= [~ Added packs I” Addedelems [~ Added atirs
Config: [C2\my VP D\implomentation\ALTOSAR MMOD Releases'NotRelovart ml 5 Read | I ik AT Fiomarrend otz [Harmenrod st

SIZE METRICS
Number of elements: 530 -> 542

m

Number of removed elements: 1
[Number of changed attributes: 27
Number of modified attributes: 4
Number of added attributes: 23
Number of removed atiributes: 0
(Number of packages: 28
Number of modified packages: 28
Number of added
Number of removed packages: 0
CHANGES ==
|All changes:
12
+ Bement M2-AUTOSAR Templates: GenericStructure: General TemplateClasses: Primiive Types: Cmm
+ Tagged Value M2:AUTOSAR Templates: General TemplateCl iy Ty il xsd customTy
+ Tagoed Value M2-AUTOSAR Templates: GenericStructure - General TemplateCl - Primit 'f' ami xed pattem
+ Tagged Value M2::AUTOSAR Templates: Generic Structure: General TemplateCl: T i xmi xsd type
-+ Bement M2::AUTOSAR Templates: Genesic Structure: General TemplateClasses: PmﬂweTyp& Pmﬁvelde!ﬂie(
+ Tagged Value M2:-AUTOSAR Templates: Genenic Structure: General TemplateCl -l xsd custom Type
+ Tagged Value M2-AUTOSAR Templates: General TemplateCl F i xed maxl ength
+ Tagged Value M2:-AUTOSAR Templates: General TemplateCl :Primitive Types::Primiti ifier-mi xsd pattem
+ Tagged Value M2:AUTOSAR Tendaﬁ Genem:ﬂmchle General TemplateCl: - Primitive Types:: Primii ifier-aami xsd type
™ Blement M2-AUTOSAR Templates: Generic Structure- Varianth muia
+Conneclor M2::AUTOSAR Templates: Generic! - Vari Sw S dentFormula->Blueprdnt Formula i
»
Fig. 4. ARCA tool

C. Presenting Results of Software Metrics

This functionality enables a comparison between results
of a number of software metrics applied on the chosen two
AUTOSAR meta-model versions for a selected role (see 7 in
figure 4) after the corresponding .mod files have been loaded.
However this time the presentation of the results (see 10 in
figure 4) depends on the selected check-boxes of the *Show
metrics’ panel (see 8 in figure 4). The metrics are divided into
5 categories according to the properties defined by Briand et
al. [17] and include the following metrics:

o Size: Number of elements, Number of attributes

o Length: Dept of inheritance

o Complex: Fan-in, Fan-out and Fan-IO (Fan-in + Fan-out)
o Coupling: Coupling between obj. and Package coupling
o Cohesion: Package cohesion and Cohesion ration

While the size and length metrics are based on the com-
monly used UML metrics [18], the complexity, coupling and
cohesion metrics are based on the interaction between different
elements (meta-classes) in the meta-model, i.e. based on
Connectors (associations). Even though in the modeling world
associations can be considered as attributes of the classes, in
case of industrial meta-models they may have slightly different
semantic as meta-classes there represent logical entities whose

instances may be modeled by separate teams. Therefore the
introduction / removal of one association may have a wider
impact than the introduction / removal of one attribute which
describes only one meta-class. For this reason, we analyzed the
connectors in the context of complexity, coupling and cohesion
rather than in the context of size. A detailed definition of all
presented metrics can be found in [8].

The main use cases for this functionality is to analyze the
impact of the AUTOSAR meta-model changes on different
roles and their interaction (model exchange). Therefore the dis-
tinction between the results of coupling and cohesion metrics
is especially important as high cohesion increase of one role
indicates high re-work of the modeling tools used by this role
while high coupling increase indicates possible interoperability
issues between the tools used by different roles.

Apart from the comparison of the results of metrics between
two AUTOSAR meta-model versions, the ARCA tool can be
used for generating .csv reports from the calculation of metrics
on multiple meta-model versions specified in the configuration
file (i.e. paths to the corresponding .mod files are provided)
for all defined roles (see ’Report metrics’ under 6 in figure 4).
Based on these reports, histograms and trend charts showing
the evolution of the AUTOSAR meta-model with respect to
the analyzed properties can be created for each role.

The main use-case for these charts is during planning
activities in order to identify places in the development (i.e.
exchange of models between two roles) where additional
resources, money or integration activities should take place.
An example of such a chart showing the complexity evolution
of the AUTOSAR meta-model between releases 3.0.1 - 4.2.1
for 4 roles defined in the configuration file (see the description
of roles and their mapping to different packages in [6]) based
on the results of the Fan-I0 metric is shown in figure 6.

3000
= Application software designers
2500

=—ECU communication designers
2000
ECU basic software configurators /—§/
1500
== Basic software designers //
1000
500 —___/_f

3.1.1 3.1.2 3.1.3 3.1.4 315 321 322 323 4.0.1 4.02 403 411 412 413 421

Fig. 6. Complexity evolution

We can see a big increase in the complexity between AU-
TOSAR releases 4.0.1 and 4.1.1 for all roles indicating higher
risk of faults. We can also see that the role of the Application
software designers is considered as the most complex.

D. Presenting and Quantifying Feature Related Changes

This functionality is similar to the first functionality, how-
ever this time it is possible to present the results of changes for
a selected role related to specific feature. This is done utilizing
the process presented in figure 2. Based on the provided SVN
path to the AUTOSAR meta-model and a list of Bugzilla
entries relevant for the analyzed feature (see 4 in figure 4), the
tool will analyze the changes between meta-model commits
where the commit message references at least one Bugzilla
entry from the list. In case the message references Bugzilla
entries related to more than one feature, the user is asked to
discard the changes not relevant for the analyzed feature.

The main use-case for this functionality is the impact assess-
ment of adopting only certain features from new AUTOSAR
releases on the modeling tools used in the development.
This is possible as AUTOSAR features are usually loosely
coupled and the implementation of changes is always done
in a backwards compatible way so it is not very likely that
changes caused by one feature will affect other existing and/or
new features. This functionality is important as it is often the
case that only certain features from new AUTOSAR releases
are actually needed so there is no need for adopting an entire
new release with thousands of changes to the meta-model.

Apart from the analysis of changes related to a specific
AUTOSAR feature, the ARCA tool can be used for generating
.csv reports from the analysis of multiple features specified
in the configuration file (i.e. relevant Bugzilla entries for each
feature are provided) for all defined roles (see 'Report features’
under 6 in figure 4). Based on these reports, histograms
showing the number of changes (or the number of modified,

added and removed elements, attributes and packages) needed
to be implemented in the AUTOSAR based tools to adopt each
feature can be created for each role.

The example of such a histogram containing the number of
relevant changes for 14 new features (referred to as concepts
according to the AUTOSAR terminology) of the AUTOSAR
release 4.2.1 is shown in figure 7.

NoC per feature

20000 17961
18000
16000
14000
12000
10000
8000
6000
4000 o1 5 1777 2327
2000 85: 553
° - ﬂ - 21_5 i 83 - - 2 . o : 62 69 24
,-&\o(‘ & ép (5@ ;’\oo c(‘\\‘v g&\% 6‘\)(\ \o‘\" é\e‘, qi”*" Q{\% $L &\é\
T LS & T EEE
& & & \,b&; & %*Qc ép & @*“@ 'xe’é ®°<\ &N N Q@‘k
IR NG <& RS N S
& @ O Q& & & & O XS
_\\é‘(' 28‘ (,0® @‘o §\§ (80‘ 0{\00 C;b@ &(\x @-‘\o(‘\\ @ 0\% v&o
N N ‘0 o e N < K NN
S ' & SO N A NN >
N P g QRS S & \4
O N & PG SRS
@ & S G N <
Q <& @ \\"\

Fig. 7. Number of changes per concept

We can see that feature 7 (SupportForPBECUConfig) re-
quires significantly more changes than all other features com-
bined, i.e. it represents an outlier. Without this tool, the amount
of work needed to adopt this feature in the development
projects could be underestimated.

Together with the generated .csv reports from the analysis of
multiple features, ARCA tool can used to identify and present
the optimal sets of new features (solutions) to be adopted in
the development projects based on two objectives [19]: (i) to
maximize the weighted number of features to be adopted and
(ii) to minimize the number of changes to the AUTOSAR
meta-model caused by the features. The weight of each feature
can be defined in the configuration file.

The optimal solutions are presented using the Pareto op-
timality chart which is created automatically by running the
generated R script using the R tool. The script also shows
which features are included in which solution. An example of
the Pareto chart with 14 optimal solutions containing features
of equal weight from the AUTOSAR release 4.2.7 is shown
in figure 8 and the mapping of features to solutions in table L.

Optimization

14

wNoF

2 4 6 8 10

T T T = T T
10000 15000 20000 25000

NoC (relevant)

Fig. 8. Pareto front

We can see that with a relatively small increase in the num-
ber of changes, car manufacturers can adopt several additional

TABLE 1
MAPPING OF FEATURES TO FEATURE SETS
Feature set Features
1 11
2 9, 11
3 9, 11, 14
4 9,11, 12, 14
5 9,11, 12, 13, 14
6 5,9, 11, 12, 13, 14
7 4,5,9, 11, 12, 13, 14
8 2,4,5,9,11, 12, 13, 14
9 2,4,5,8,9,11, 12, 13, 14
10 2,3,4,5,8,9, ll, 12, 13, 14
11 1,2,3,4,5,8,9, 11, 12, 13, 14
12 1,2,3,4,5,6,8,9, 11, 12, 13, 14
13 1,2,3,4,5,6,8,9, 10, 11, 12, 13, 14
14 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14

features (e.g. features 5, 9, 12, 13 and 14 from solution 6) in
comparison to only one feature 11 from solution 1. However
features 6, 10 and especially 7 from solutions 12, 13 and 14
respectively require significant re-work in the modeling tools
and they should be considered only in case of high demand.

E. Combining All Functionalities of the Tool in Car Projects

There are still car manufacturers today developing automo-
tive software systems based on an AUTOSAR release 3.x. In
order to decide which 4.x release to adopt in the development,
the results presented in figures 5 and 6 can be used. For
example if R4.1.1 contains the required features, we can see
that the increase in the number of changes and complexity
between this release and R4.1.3 is not that high. Therefore
it would make sense to adopt the newer R4.1.3 as some of
identified faults in previous releases have been fixed.

Due to its high increase in the number of changes and
complexity, there is a risk of high number of faults in R4.2.1
so it may be wise to wait for future 4.2.x releases of stable
complexity where most of them are fixed. However if there
are some required features from this release, Pareto optimality
chart can be used to identify which R4.2.] features can be
adopted on top of R4.7.3 without a high risk of late faults and
increased cost. These kinds of analysis would not be feasible
for the automotive software designers without the tool support.

V. CONCLUSION

Today automotive software designers need to know AU-
TOSAR in order to keep track of the change in its meta-model
and analyze their impact on different modeling tools used in
the development. With the ARCA tool, they can focus on the
implementation of car functions and get a quick feedback
about the cost of switching to a newer AUTOSAR release.
Additionally linking meta-model changes to different features
enables a quick overview of the optimal sets of AUTOSAR
features to be adopted in the development projects.

As the trend in the size and complexity increase of the
AUTOSAR meta-model is expected to continue in future, tools
like this become even more important for the car manufactur-
ers in order to assure high quality of the automotive electrical
systems and lower their development cost.

The ARCA tool can be downloaded from the following link:
http://web.student.chalmers.se/~durisic/ARCA.zip

ACKNOWLEDGMENT

The authors would like to thank Swedish Governmental
Agency for Innovation Systems (VINNOVA) for funding this
research (grant no. 2013-02630) and the AUTOSAR team at
Volvo Car Corporation for contributing to the work.

(1]
(2]

(31
(4]

&
“

[6

i}

[7

—_

[8

—

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

Automotive Open System Architecture, www.autosar.org, 2003.

M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving From Feder-
ated to Integrated Architectures in Automotive: The Role of Standards,
Methods and Tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603—
620, 2010.

S. Gal-Oz, “Standard API Would Significantly Accelerate Embedded
System Development,” Real-Time Magazine, vol. 5, pp. 81-87, 1999.
T. Kiihne, “Matters of (Meta-) Modeling,” Journal of Software and
Systems Modeling, vol. 5, no. 4, pp. 369-385, 2006.

G. Nordstrom, B. Dawant, D. M. Wilkes, and G. Karsai, “Metamodeling
- Rapid Design and Evolution of Domain-Specific Modeling Environ-
ments,” in Proceedings of the IEEE Conference on Engineering of
Computer Based Systems, 1999, pp. 68-74.

D. Durisic, M. Staron, M. Tichy, and J. Hansson, “Evolution of Long-
Term Industrial Meta-Models - A Case Study of AUTOSAR,” in
Proceedings of the Euromicro Conference on Software Engineering and
Advanced Applications, 2014, pp. 141-148.

M. Broy, 1. Kruger, A. Pretschner, and C. Salzmann, “Engineering
Automotive Software,” in Proceedings of the IEEE, ser. 2, vol. 95, 2007.
D. Durisic, M. Staron, and M. Tichy, “Quantifying Long-Term Evolution
of Industrial Meta-Models - A Case Study,” in Proceedings of the In-
ternational Conference on Software Process and Product Measurement,
2014, pp. 104-113.

B. Boss, “Architectural Aspects of Software Sharing and Standard-
ization: AUTOSAR for Automotive Domain,” in Proceedings of the
International Workshop on Software Engineering for Embedded Systems,
2012, pp. 9-15.

C. Wang, L. Ge, and T. Lee, “Automotive ECU Software Design Based
on AUTOSAR,” Journal of Applied Mechanics and Materials, vol. 577,
pp. 1034-1037, 2014.

D. Di Ruscio, L. Iovino, and A. Pierantonio, “Evolutionary Together-
ness: How to Manage Coupled Evolution in Metamodeling Ecosystems,”
in Proceedings of the 6th International Conference on Graph Transfor-
mations, 2012, pp. 20-37.

D. Mendez, A. Etien, A. Muller, and R. Casallas, “Towards Transfor-
mation Migration After Metamodel Evolution,” in Proceedings of the
Model and Evolution Workshop, 2010, pp. 20-37.

F. A. Fontana, M. Rolla, and M. Zanoni, “Capturing Software Evolution
and Change through Code Repository Smells,” Lecture Notes in Business
Information Processing, vol. 199, pp. 148-165, 2014.

L. Li, L. Zhang, and Z. Fan, “The Measurement and Analysis of
Software Change Based on Software Repository,” in Proceedings of the
International Conference on Software Engineering and Data Mining,
2010, pp. 289-294.

W. Poncin, A. Serebrenik, and M. V. D. Brand, “Process Mining
Software Repositories,” in Proceedings of the European Conference on
Software Maintenance and Reengineering, 2011, pp. 5-14.

OMG. MOF 2.0 Core Final Adopted Specification, Object Management
Group, www.omg.org, 2004.

L. Briand, S. Morasca, and V. Basili, “Property-based Software En-
gineering Measurement,” IEEE Transactions on Software Engineering,
vol. 22, no. 1, pp. 68-86, 1996.

K. Hyoseob and C. Boldyreff, “Developing Software Metrics Applicable
to UML Models,” in Proceedings of the Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, 2002.

J. Branke, K. Deb, K. Miettinen, and R. Slowinski, “Interactive and
Evolutionary Approaches,” in Multiobjective Optimization. — Springer
Berlin Heidelberg, 2008.

