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Abstract

Grammatical Framework (GF) is a well known theoretical framework and a ma-
ture programming language for the description of natural languages. The GF com-
munity is growing rapidly and the range of applications is expanding. Within the
framework, there are computational resources for 26 languages created from dif-
ferent people in different organizations. The coverage of the different resources
varies but there are complete morphologies and grammars for at least 20 lan-
guages. This advancement would not be possible without the continuous develop-
ment of the GF compiler and interpreter.

The demand for efficient and portable execution model for GF has led to major
changes in both the compiler and the interpreter. We developed a new low-level
representation called Portable Grammar Format (PGF) which is simple enough
for an efficient interpretation. Since it was already known that a major fragment
of GF is equivalent to Parallel Multiple Context-Free Grammar (PMCFG), we
designed PGF as an extension that adds to PMCFG distinctive features of GF
such as multilingualism, higher-order abstract syntax, dependent types, etc. In the
process we developed novel algorithms for parsing and linearization with PMCFG
and a framework for logical reasoning in first-order type theory where the proof
search can be constrained by the parse chart.

This monograph is the detailed description of the engine for efficient interpre-
tation of PGF and is intended as a reference for building alternative implementa-
tions and as a foundation for the future development of PGF.
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Preface

One of my very first programming exercises was a question answering system
based on a simple database of canned question-answer pairs. Every time when
the user asks a question the program looks up the answer in the database and
shows it to the user. Perhaps this is a good exercise for beginners but it is a
ridiculous approach to question answering. Still this naı̈ve system is an extreme
demonstration of the problems that modern natural language processing systems
have.

First of all it is very fragile. If the question is not asked in precisely the same
way as it is listed in the database, the system will not be able to produce any
answer. Any practical solution should allow variations in the syntax. Although
it is possible in principle to include many variations of the same question in the
database and in this way to relax the problem, the complete enumeration is usually
infinite. A more practical way to model large and even infinite sets of strings is
to use grammatical formalisms. In fact, our database is nothing else but a very
inefficient implementation of trie. Since the trie is a special kind of finite state
automaton, it is also an example of a regular grammar. All modern systems use
some kind of grammar in one way or another. By using more rigorous models,
it is possible to achieve better and better coverage of what the user understands
as a natural language question. Still every grammar is just a computer program
and what it can understand is hard coded by the programmer. In the end it will
suffer from exactly the same problem as our naı̈ve solution had. Just the degree
of illness is different.

The second problem is that our database encodes only very limited fixed knowl-
edge of the world. If something is not explicitly stated as a fact, it will not be
available as an answer. In other words, our computer program does not have any
reasoning capabilities. We can just as well substitute ‘reasoning’ with ‘comput-
ing’ but the former clearly indicates that there is some logic involved. The appli-
cation of mathematical logic in natural language processing has a long tradition.
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A lot of logical frameworks have been developed and applied in different context.
Still there is no single best choice for every application. The logical reasoning
can be implemented by using theorem provers, general purpose logical languages
like Prolog, database programming languages like SQL or even more traditional
languages like C or Java. In all cases, it serves one and the same purpose - to
generalize from a set of plain facts to a system which is able to make its own con-
clusions. Just like with the first problem, adding logical reasoning does not solve
the problem completely. The inference has to be explicitly encoded in the system
and a mere mortal can implement only a limited number of rules.

None of the existing natural language systems is even close to what an average
human is able to do. Most of the researchers in what used to be called Artificial
Intelligence, have given up the idea that they can replicate the brilliant creatures
of nature and have focused on the development of applications which are limited
but still useful.

This monograph is about the internal engine, the mechanics of one particular
system - Grammatical Framework (GF). As the name suggests this is not an end
user application but rather a framework which the developers can use to develop
applications involving grammars. What the name does not say is that the same
framework also has mechanisms for logical reasoning. It might look like the name
has failed to mention an important aspect of its nature, but actually it is simply an
indication that in GF everything is seen as a grammar or a language. This is
not so radical if we remember that the Turing machine is an universal computing
machine but at the same time it is a language processor.

GF has exactly the same limitations as any other approach to natural language
processing. The language coverage and the reasoning capabilities are limited to
what the grammarian has encoded in the grammar. What GF really offers is a
programming language specialized for grammar writing. Using the language,
the user can concentrate on a particular application while the framework offers
a range of processing algorithms for free. The grammar writing itself is also sim-
plified because it is possible to use a library of existing grammars, which frees
the user from low-level language features like word order, agreement, clitics and
others. These features taken together make it easier to develop grammars which
are flexible enough to be used in practical applications.

Here we focus on the internals of the framework. The programming language
of GF is intentionally not described except with brief examples whenever it is
necessary to make the content self contained. A complete reference and a user
guide to GF is available in Ranta [2011], and this is the recommended reference
for new GF users. The intended audience of this monograph are advanced users
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of GF or researchers in natural language processing who want to have more in-
depth knowledge of the framework. Since most of the ideas and the algorithms
presented here are general enough, they can be reused in other contexts. In fact,
it is completely reasonable to use our engine as a back-end for other frameworks.
This makes the volume interesting also for researchers who are developing other
systems, not necessary connected to GF.
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Chapter 1

Introduction

The ideas behind Grammatical Framework (GF) originated around year 1994 as a
grammatical notation [Ranta, 1994] which uses Martin-Löf’s type theory [Martin-
Löf, 1984] for the semantics of natural language. The idea was further developed
at Xerox Research Centre in Grenoble where about four years later the first GF
version was released.

Now the framework is more than fifteen years old and it has been successfully
used in a number of projects. The implementation itself went through several
iterations. The language got a module system [Ranta, 2007] which made it pos-
sible to reuse existing grammars as libraries instead of rewriting similar things
over and over again. Later this led to the development of the resource grammars
library [Ranta, 2009] which is perhaps one of the most distinguishing features of
GF from grammar engineering point of view.

In the beginning, the parsing was done by approximation with a context-free
grammar, followed by post-processing of the parse trees [Ranta, 2004b]. Later the
observation of Ljunglöf [2004] that the GF model is very similar to Parallel Multi-
ple Context-Free Grammar (PMCFG) made it possible to develop new parsing al-
gorithms [Ljunglöf, 2004][Burden and Ljunglöf, 2005] that are more efficient and
that need less post-processing since they operate on a representation that is seman-
tically closer to the original grammar. Still the algorithms did not operate directly
with PMCFG but with a weaker form known as Multiple Context-Free Grammar
(MCFG), where the gap between PMCFG and MCFG was filled in by using a
form of unification. The new algorithms soon superseded the original context-
free parser but still for large grammars and morphologically rich languages the
parser was a bottleneck. The current GF engine uses a new algorithm [Angelov,
2009] which is further optimized and for some languages it leads to a speed-up

1



2 CHAPTER 1. INTRODUCTION

of several orders of magnitude. For instance an experiment with the resource
grammars library shows that while for English the efficiency is nearly the same,
for German the difference is about 400 times. For other languages like Finnish
and all Romance languages the difference is not even measurable because the old
parser quickly exceeds the available memory. All this scalability issues, however,
are apparent only on the scale of the resource grammars while for small appli-
cation grammars they are insignificant. Since originally the resource grammars
were designed only as a tool for deriving application grammars and not as gram-
mars for parsing, this was never considered as an important performance issue.
For instance both the Finnish and the Romance resource grammars were success-
fully used as libraries in different applications. The main improvement is that now
these grammars can be used directly for parsing which permits the development
of applications with wider coverage.

The measurable speed-up is by wall-clock time but still the theoretical com-
plexity stays the same. In other words, the new algorithm is quicker in analysing
commonly occurring syntactic patterns, but in principle it is still with polynomial
complexity and in extreme cases the exponent can be very high. Fortunately, such
pathological cases does not occur in natural languages and our empirical studies
show that at least for the resource grammar library the complexity is linear.

The new algorithm has also other advantages. First of all, it naturally sup-
ports PMCFG rather than some weaker formalism like MCFG. When later the
PMCFG formalism was extended with literals and higher-order syntax this be-
came the first model which fully covers the semantics of GF without the need for
pre- or post-processing. Another advantage is that the parser is incremental. This
made it possible to develop specialized user interfaces which help the users in
writing grammatically correct content in a controlled language, i.e. in a subset of
some natural language [Bringert et al., 2009] [Angelov and Ranta, 2010]. In such
a scenario, the user has to be aware of the limitations of the grammar, and he is
helped by the interface which shows suggestions in the style of the T9 interface for
mobile phones. Since the suggestions are computed from the incremental parser
this ensures that the content is always in the scope of the grammar. While similar
interface can be build by using an incremental parser for context-free grammars
[Earley, 1970], it cannot achieve the same goal since it can work only with an ap-
proximation of the original grammar. All of the actively developed user interfaces
for GF are based on the new incremental parser but here my personal involve-
ment is more modest and a lot of work was also done by Björn Bringert, Moisés
Salvador Meza Moreno, Thomas Hallgren, Grégoire Détrez and Ramona Enache.

The parsing algorithm together with its further refinements is perhaps the most
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central contribution of this monograph but it is not the end, since we are aiming
at a platform that is easy to use in practical applications. The further develop-
ment of GF demanded better separation between compiler and interpreter and in
Angelov et al. [2008], we developed the first version of the Portable Grammar
Format (PGF) which is a representation that is simple enough for efficient inter-
pretation by a relatively small runtime engine. This joint work with Björn Bringert
and Aarne Ranta was the first solution that allowed the distribution of standalone
GF applications. Unfortunately, it had the disadvantage that there were two dif-
ferent grammar representations. The first is more compact but can be used only
for linearization, and the second is basically an extension of PMCFG that is used
only for parsing. Although later it became clear that linearization is also possible
with the second representation, at that time it was still necessary to have them
both since the PMCFG representation is usually big, so for applications that do
not use the parser we can generate only the first representation. Fortunately, the
difference was substantially reduced after the development of grammar optimiza-
tion techniques, so soon the first representation was completely dropped. The new
incarnation of PGF is much simpler and now a completely different linearization
algorithm is used, so the original design became obsolete and this monograph is
currently the only up-to-date reference.

In fact, the simplicity of the engine made it possible to reimplement it in
five different languages - Haskell, JavaScript, Java, C# and C. The implemen-
tation in Haskell is still the only one that is complete and this is solely my per-
sonal contribution. The other implementations are credited to Björn Bringert,
Moisés Salvador Meza Moreno and myself for JavaScript, Grégoire Détrez and
Ramona Enache for Java [Enache and Détrez, 2010], Christian Ståhlfors and Erik
Bergström for C# and Lauri Alanko for C.

The algorithms for parsing and linearization in the PGF engine are the main
topics of the second chapter of this monograph but this is only half of the way to
a complete GF implementation. The third chapter is a reference to the algorithms
for evaluation, unification, type checking, and proof search which taken together
realize the logical aspects of the language. Most of the algorithms in this last
chapter are not new but we felt that a reference to the PGF engine cannot be
complete without a detailed description of those, since otherwise the reader will
have to be redirected to a long list of other sources which furthermore describe
only small fragments, and still the composition of the whole puzzle may be quite
tricky. More concretely the design of the GF logic was influenced by the work
of Ulf Norrel on Agda [Norell, 2007] and the work of Xiaochu Qi on λProlog
[Qi, 2009]. Although GF has its logical framework right from the beginning, it
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was not actively developed, while there was already a lot of interesting research in
dependently typed functional languages (Agda) and logical languages (λProlog),
so when the PGF engine was designed, we decided to simply take the best that
suits our needs. The real contribution of this last chapter is at the end where we
show how the logical framework of GF is integrated with the parser and this let us
to impose complex semantic restrictions in the grammar.

The development of the PGF engine is an important milestone in the evolution
of the framework, and this monograph is a complete reference to all details of the
mechanics behind it. Our main focus is on the algorithms, but in Appendix A we
also include the exact description the portable grammar format as it is in GF 3.2.
What we do not describe, however, is the GF language itself, since this can be
found in many other sources. In particular, the reader is referred to Ranta [2011]
for complete reference. Still to make the monograph self-contained, in the next
section, we will introduce the framework by brief examples which illustrate the
main points.

There are exciting new developments that unfortunately we had to separate
from the main content because this is still the front line of the research around GF.
From one side, the advancement of the logical aspects in the framework makes
it possible to embed formal ontologies in the grammars. The best methodology
however is still far from clear. From another side, the improvement in the parsing
performance opens the way for bridging the gap between controlled languages
and open-domain text. Still preliminary study shows that the current English re-
source grammar combined with Oxford Advanced Learner’s Dictionary can cover
up to 91.75% of the syntactic constructions found in Penn Treebank [Marcus et al.,
1993]. Although this is a promising start there are still two problems to be solved.
First, the parser has to be more robust and it should not fail when it is faced
with some of the unknown constructions in the remaining 8.25%. Second, a sta-
tistical disambiguation model is needed since the resource grammars are highly
ambiguous. Although PGF includes a simple probabilistic model, it will have to
be extended in order to scale up to the complexity of Penn Treebank. This new
research goals are not fully accomplished yet, but we felt that it is still worth to
explore the frontiers, and we devoted the fourth chapter to the possible solutions
for this two problems.
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1.1 GF by Example
GF is a Logical Framework in the spirit of Harper et al. [1993] extended with a
framework for defining concrete syntax for the realization of the formal meanings
as natural language expressions. Every GF grammar has one abstract syntax de-
fined in the Logical Framework and one or more concrete syntaxes. The abstract
syntax is the abstract theory (the ontology) of the particular application domain
while the concrete syntax is language-dependent and reflects the syntax and the
pragmatics of some specific language. The definitions in the concrete syntax are
reversible which makes it possible to use the grammar for both parsing and lin-
earization (generation). Since it is allowed to have many concrete syntaxes at-
tached to the same abstract syntax, the abstract syntax can be used as a translation
interlingua between different languages.

The logical framework of the abstract syntax is Martin-Löf’s type theory. It
consists of a set of definitions for basic types and functions. For example, the
Foods grammar from the GF tutorial (Chapter 2 in Ranta [2011]) has the following
basic types:

cat Phrase; Item; Kind ; Quality;

In GF, the basic types play the role of abstract syntactic categories. Since we
have not introduced the concrete syntax yet, for now they are just names for us.
Because of the duality between basic types and abstract categories, often we will
use them as synonyms but when we want to emphasise the logical aspect of the
framework then we will say type and when we talk about the syntactic aspect we
will say category.

In our simple grammar, we can talk about only four kinds of food and they are
all defined as constants (functions without arguments) of type Kind :

fun Wine, Cheese, Fish , Pizza : Kind ;

Once we have the different kinds we need a way to point to this or that piece of
food. We define four more functions which act like determiners:

fun This,That ,These,Those : Kind → Item;

Note that all functions take as an argument some general kind and return one par-
ticular item of food of the same kind. Grammatically this and that are determiners
but from the logical point of view they are just functions.
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Similarly to the kinds we can also introduce different food qualities as con-
stants:

fun Fresh ,Warm,Delicious : Quality;

Note that in both cases these are just constants which grammatically will corre-
spond to single words. However logically they play very different roles, so to
distinguish we assign different types to them. The combination of kinds, deter-
miners and qualities let us to express opinions about a concrete item:

fun Is : Item → Quality → Phrase;

For instance, the opinion that “this pizza is delicious” can be encoded as the ab-
stract expression:

Is (This Pizza) Delicious

So far there was nothing surprising. We just defined some types and func-
tions and by applying these functions we constructed expressions which encoded
particular logical facts. Now we want to generate natural language and for this
we have to introduce the concrete syntax in GF. The concrete syntax is nothing
else but the implementation of the abstract types and functions in some natural
language.

We start with English because as usual the English implementation is the sim-
plest one. In the concrete syntax, every abstract category corresponds to some
implementation type. The implementation for Kind :

lincat Kind = {s : Number ⇒ Str};

is a record with one field ’s’ which is a table indexed by the parameter Number .
We need the table in order to handle the inflection in plural i.e. we can generate
either “this pizza” or “these pizzas”. An example implementation of Pizza is:

lin Pizza = {s = table {Sg ⇒ ”pizza”; Pl ⇒ ”pizzas”}};

Now by selecting from the table the element indexed by Sg we get the singular
form ”pizza” and by selecting Pl we get the plural ”pizzas”.

Before proceeding with the determiners we have to define the linearization
type of Item:

lincat Item = {s : Str;n : Number};
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Again we have a record with field s but this time we also have the second field n
which is the grammatical number of the item. This time the s field is not a table
because when we apply the determiner the number will be fixed, so we need only
one form. We added the second field because in the implementation of function Is
we will have to know whether the item is in singular or plural in order to choose the
right form of the copula i.e. “is” or “are”. The implementation of the determiner
This fixes the number to be singular while These chooses plural:

lin This k = {s = ”this” ++ k.s ! Sg;n = Sg};
These k = {s = ”these” ++ k.s ! Pl ;n = Pl};

For the qualities we do not need anything else except the corresponding En-
glish word. The definitions of the category and the functions are pretty trivial:

lincat Quality = {s : Str};
lin Fresh = {s = ”fresh”};

Warm = {s = ”warm”};
Delicious = {s = ”delicious”};

As we said before, for the linearization of the function Is we need to know
whether the item is in singular or in plural. The linearization type of Phrase and
the implementation of Is are defined as:

lincat Phrase = {s : Str};
lin Is i q = {s = i.s++ case i.n of {Sg ⇒ ”is”; Pl ⇒ ”are”}++ q.s};

Here we check the number by pattern matching on the value of i.n and this lets us
to select the right form of the copula.

An important feature in the GF grammar model is that all language dependent
constructions are encoded in the concrete syntax rather than in the abstract. This
allows the abstract syntax to be made purely semantic. For instance in the English
version of the Foods grammar the choice of the words, the inflection forms and the
number agreement are encoded in the concrete syntax. Exactly the same abstract
syntax can be reused for other natural languages. As an example, Figure 1.1
contains the concrete syntax for the same grammar in Bulgarian. Although this is
a sufficiently different language it still fits quite well in the same abstract syntax.
In Bulgarian, the words agree not only in number but also in gender when the noun
(the kind) is in singular. As you can see, now the implementation of the category
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param Gender = Masc | Fem | Neutr;

Number = Sg | Pl ;

Agr = ASg Gender | APl ;

lincat Phrase = {s : Str};
Quality = {s : Agr ⇒ Str};
Item = {s : Str; a : Agr};
Kind = {s : Number ⇒ Str; g : Gender};

lin Is i q = i.s++ case i.a of {ASg ⇒ ”e”;APl⇒ ”sa”}++ q.s ! i.a;

This k = {s = case k.g of {Masc ⇒ ”tozi”; Fem ⇒ ”tazi”; Neutr ⇒ ”tova”}++ k.s ! Sg; a = ASg k.g};
These k = {s = ”tezi” ++ k.s ! Pl ; a = APl};
Wine = {s = table {Sg ⇒ ”vino”;Pl⇒ ”vina”}; g = Neutr};
Cheese = {s = table {Sg ⇒ ”sirene”;Pl⇒ ”sirena”}; g = Neutr};
Fish = {s = table {Sg ⇒ ”riba”;Pl⇒ ”ribi”}; g = Fem};
Pizza = {s = table {Sg ⇒ ”pica”;Pl⇒ ”pici”}; g = Fem};
Fresh = {s = table {ASg Masc ⇒ ”svež”; ASg Fem ⇒ ”sveža”;

ASg Neutr ⇒ ”svežo”; APl ⇒ ”sveži”}};
Warm = {s = table {ASg Masc ⇒ ”gorešt”; ASg Fem ⇒ ”gorešta”;

ASg Neutr ⇒ ”gorešto”; APl ⇒ ”gorešti”}};
Delicious = {s = table {ASg Masc ⇒ ”prevǎzhoden”; Fem ⇒ ”prevǎzhodna”;

ASg Neutr ⇒ ”prevǎzhodno”; APl ⇒ ”prevǎzhodni”}};

Figure 1.1: The Foods grammar for Bulgarian

Kind has one more field in the record which contains the grammatical gender.
The category Item which in English had an extra field n for the number now has a
field a of type Agr which encodes both the number and the gender when the word
is in singular. The linearization of the quality should agree in number and gender
with the kind so in the new implementation of Quality the field s is now a table
indexed by Agr instead of a plain string.

It is an important observation that the concrete syntax is all about the manipu-
lation of tuples of strings i.e. tables and records. The tuples are a key feature in the
PMCFG formalism so it is not surprising that GF is reducible to PMCFG. Chapter
2 explains how PMCFG is used for parsing and natural language generation.

So far we have used only simple types in the abstract syntax. It is always a
good idea to keep the syntax as simple as possible but sometimes we want to put
even more semantics and then the simple types are not sufficient anymore. The
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abstract syntax is a complete logical framework and we can do arbitrary compu-
tations and logical inferences in it. As an illustrative example, we can extend the
foods grammar with measurement expressions. We want to say things like “two
bottles of wine” or “one litre of wine” but we do not want to allow “two pieces
of wine”. It should still be possible to ask for “two pieces of pizza”. The allowed
metrical units are dependent on the particular kind of food.

First we have to define a set of measurement units that we can use. We add a
category Unit and some constants in the grammar:

cat Unit ;
fun Bottle,Litre,Kilogram,Piece : Unit ;

The allowed combinations of Kind and Unit can be specifyed by having some
logical predicate which is true only for the valid combinations. In type theory,
the logical propositions are identified with the types, so our predicate is just yet
another category:

cat HasMeasure Kind Unit ;

The new thing is that now the category is not just a name but it also has two indices
- one of type Kind and one of type Unit . Every time when we use the category we
also have to give concrete values for the indices. For example, the way to specify
the allowed units for every kind is to add one constant of category HasMeasure
for every valid combination, where the category is indexed by the right values:

fun wine bottle : HasMeasure Wine Bottle;

cheese kilogram : HasMeasure Cheese Kilogram;

fish kilogram : HasMeasure Fish Kilogram;

pizza piece : HasMeasure Pizza Piece;

We can connect this new definitions with the other parts of the grammar by pro-
viding a function which constructs an item consisting of a certain number of units:

fun NumItem : Number → (u : Unit)→ (k : Kind)→ HasMeasure k u→ Item;

We ensured that only valid units are allowed by adding an extra argument of
category HasMeasure . The category is indexed by k and u, and the notations
(u : Unit) and (k : Kind) mean that these are exactly the values of the second and
the third arguments of function NumItem .
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For instance the phrase “two bottles of wine” is allowed and has the abstract
syntax1:

NumItem 2 Bottle Wine wine bottle

The phrase “two pieces of wine” is not allowed because there is no way to con-
struct an expression of type HasMeasure Wine Piece .

This extra argument is purely semantic and is not linearized in the concrete
syntax. The linearization of NumItem can be defined as:

lin NumItem n u k = {s = n.s++ u.s ! n.n++ ”of” ++ k.s ! Sg};

Here the last argument is not used at all in the linearization and we do not even
give a name for it. Instead we use the wildcard symbol ‘ ’. Still if we parse “two
bottles of wine”, the parser correctly fills in the argument with wine bottle .

The magic here is that the parser is integrated with a type checker and a theo-
rem prover. There are three steps in the parsing. The first step is purelly syntactic
and at this step the parser recovers as much details for the abstract syntax as pos-
sible based only on the input string. In the second step, the partial abstract syntax
tree is type checked to verify that there are no semantic violations. At this step,
the type checker is already able to fill in some holes based only on the type con-
straints. However, in our case this is not possible because the output after the
second step will be:

NumItem 2 Bottle Wine ?

where the question mark ? is a place holder for missing information. The type
checker cannot fill in the hole but at least it is able to determine that it should be
filled in with something of type HasMeasure Wine Bottle . This type is used as a
goal for the theorem prover. For all holes, left in the tree after the type checking,
the theorem prover tries to find a proof that there is an expression of this type. If
the search is successful, the hole is replaced with the found value.

The proof search can be arbitrarily complex because we can also add infer-
ence rules. An inference rule in GF is nothing else but yet another function. For
instance, if we want to say that everything that is measurable in bottles is also
measurable in litres we can add:

fun to Litre : (k : Kind)→ HasMeasure k Bottle → HasMeasure k Litre;

1Strictly speaking we need something more complex for the numeral “two”. The GF resource
library provides abstract syntax for numerals but here for simplicity we just write the number 2.
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Now the proof that wine is measurable in litres is the term:

〈to Litre Wine wine bottle : HasMeasure Wine Litre〉

The theorem prover is not an internal component of the parser. It can be invoked
directly by the user and in this way the GF grammar can be used as a static knowl-
edge base. For instance in the GF shell the user can issue the query “Is the wine
measurable in litres?” by using the exhaustive generation command (gt):

> gt -cat="HasMeasure Wine Litre"
to_Litre Wine wine_bottle

Since the proof in GF for any theorem is just an abstract syntax tree, we can
just as well linearize it. For example, if we want to see the above proof in natural
language, then we can add the linearization rules:

lincat HasMeasure = {s : Str};
lin wine bottle = {s = ”wine is measurable in bottles”};

to Litre k m = {s = ”wine is measurable in litres because” ++ m.s};

Now we can pipe the exhaustive generation command with the linearization com-
mand:

> gt -cat="HasMeasure Wine Litre" | l
wine is measurable in litres
because wine is measurable in bottles

and we will see the proof rendered in English.
Detailed explanations of the design of the type checker and the theorem prover

and the interaction between natural language and logic are included in Chapter 3.
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Chapter 2

Grammar

The language of the GF concrete syntax is elegant and user friendly but too com-
plex to be suitable for direct machine interpretation. Fortunately Ljunglöf [2004]
identified Parallel Multiple Context-Free Grammar (PMCFG) [Seki et al., 1991]
as a suitable low-level representation for the concrete syntax in GF.

PMCFG is one of the formalisms that have been proposed for the syntax of
natural languages. It is an extension of Context-Free Grammar (CFG) where
the right-hand side of the production rule is a tuple of strings instead of only
one string. The generative power and the parsing complexity of PMCFG and
the closely related MCFG formalism has been thoroughly studied in Seki et al.
[1991], Seki et al. [1993] and Seki and Kato [2008]. Using tuples the formalism
can model discontinuous constituents which makes it more powerful than CFG. Its
expressiveness also subsumes other well known formalisms like Tree Adjoining
Grammars [Joshi et al., 1975] and Head Grammars [Pollard, 1984]. The disconti-
nuity is also the key feature which makes it suitable as an assembly language for
GF. At the same time, PMCFG has the advantage to be parseable in polynomial
time which is computationally attractive. Different algorithms for parsing with
MCFG are presented in Nakanishi et al. [1997], Ljunglöf [2004] and Burden and
Ljunglöf [2005]. None of them, however, covers the full expressivity of PMCFG
so we developed our own algorithm [Angelov, 2009].

Here we do not want to repeat the details in Ljunglöf’s algorithm for compiling
the concrete syntax in GF to PMCFG. The algorithm is part of the GF compiler,
which is not our main topic. Still a basic intuition for the relation between GF
and PMCFG can help the reader to understand the mechanics of the GF engine.
Furthermore, we have to add a representation for the abstract syntax in order to
represent a complete GF grammar. The abstract syntax and PMCFG together are

13
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the main building blocks of the Portable Grammar Format (PGF) which is our
runtime grammar representation.

We will formally define the notion of PGF and PMCFG in Section 2.1 and
after that, in Section 2.2, we will give the basic idea of how the GF source code
is compiled to it. The remaining sections are the main content of this chapter
and there we present the rules for parsing and natural language generation with
PGF. We start with simplified rules which cover only grammars with context-free
abstract syntax but after that we generalize to literal categories and higher-order
abstract syntax. In the last section we also introduce some automatic and manual
techniques for grammar optimization.

2.1 PGF definition
This section is the formal definition of PGF. It is useful as a reference but it is not
necessary to remember all the details from the first reading. We advice the reader
to scan quickly through the content and come back to it later if some notation in
the next sections is not clear.

Definition 1 A grammar in Portable Grammar Format (PGF) is a pair of an
abstract syntax A and a finite set of concrete syntaxes C1, . . . , Cn:

G = < A, {C1, . . . , Cn} >

Definition 2 An abstract syntax is a triple of a set of abstract categories, a set of
abstract functions with their type signatures and a start category:

A = < NA, FA, S >

• NA is a finite set of abstract categories.

• FA is a finite set of abstract functions. Every element in the set is of the
form f : τ where f is a function symbol and τ is its type. The type is either
a category C ∈ NA or a function type τ1 → τ2 where τ1 and τ2 are also
types1. Overloading is not allowed, i.e. if f : τ1 ∈ FA and f : τ2 ∈ FA

then τ1 = τ2.

• S ∈ NA is the start category.

1In Section 3 we will extend the notion of types to dependent types
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Definition 3 A concrete syntax C is a Parallel Multiple Context-Free Grammar
complemented with a mapping from its categories and functions into the abstract
syntax:

C = < G,ψN , ψF , d >

• G is a Parallel Multiple Context-Free Grammar

• ψN is a mapping from the concrete categories in G to the set of abstract
categories NA.

• ψF is a mapping from the concrete functions in G to the set of abstract
functions FA.

• d assigns a positive integer d(A), called dimension, to every abstract cate-
gory A ∈ NA. One and the same category can have different dimensions in
the different concrete syntaxes.

PMCFG is a simple extension of CFG where every syntactic category is de-
fined not as a set of strings but as a set of tuples of strings. We get a tuple in one
category by applying a function over tuples from other categories.

For the definition of functions in PMCFG it is useful to introduce the notion
of arity. The arity of an abstract function fA is the number of arguments a(fA)
that it takes. The arity can be computed from the type of the function:

a(fA) = a(τ), if fA : τ ∈ FA

where the arity of the type a(τ) is computed by counting how deeply the function
type is nested to the right:

a(τ) =

{
0, τ ≡ C , where C ∈ NA,

1 + a(τ2), τ ≡ τ1 → τ2 , where τ1, τ2 are types

Since in the concrete syntax there is a mapping from every concrete function to
the corresponding abstract function we can also transfer the notion of arity to the
concrete syntax. The arity of a concrete function fC is:

a(fC) = a(ψF (fC)), if fC is a concrete function

For the definitions of concrete functions itself, we use a notation which is a
little bit unconventional but this will make it easier to write deduction rules later.
An example of a function is:

f := (〈1; 1〉b, 〈2; 1〉〈1; 2〉)
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Here f is the function name. It creates a tuple of two strings where the first
one 〈1; 1〉b is constructed by taking the first constituent of the first argument and
adding the terminal b at the end. The second one 〈2; 1〉〈1; 2〉 concatenates the first
constituent of the second argument with the second constituent of the first argu-
ment. In general, the notation 〈d; r〉 stands for argument number d and constituent
number r.

The grammar itself is a set of productions which define how to construct a
given category from a list of other categories by applying some function. An
example using function f is the production:

A→ f [B,C]

Now the following is the formal definition of a PMCFG:

Definition 4 A parallel multiple context-free grammar is a 5-tuple:

G = < NC, F C, T, P, L >

• NC is a finite set of concrete categories. The equation d(A) = d(ψN(A))
defines the dimension for every concrete category as equal to the dimension
in the current concrete syntax of the corresponding abstract category.

• F C is a finite set of concrete functions where the dimensions r(f) and di(f)
(1 ≤ i ≤ a(f)) are given for every f ∈ F C . For every positive integer d,
(T ∗)d denotes the set of all d-tuples of strings over T . Each function f ∈ F C
is a total mapping from (T ∗)d1(f)× (T ∗)d2(f)×· · ·× (T ∗)da(f)(f) to (T ∗)r(f),
and is defined as:

f := (α1, α2, . . . , αr(f))

Here αi is a sequence of terminals and 〈k; l〉 pairs, where 1 ≤ k ≤ a(f)
is called argument index and 1 ≤ l ≤ dk(f) is called constituent index.
Sometimes we will use the notation rhs(f, l) to refer to constituent αl of f .

• T is a finite set of terminal symbols.

• P is a finite set of productions of the form:

A→ f [A1, A2, . . . , Aa(f)]

where A ∈ NC is called result category, A1, A2, . . . , Aa(f) ∈ NC are called
argument categories and f ∈ F C is a function symbol. For the production
to be well formed the conditions di(f) = d(Ai) (1 ≤ i ≤ a(f)) and r(f) =
d(A) must hold.
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• L ⊂ NC × F C is a set which defines the default linearization functions for
those concrete categories that have default linearizations. If the pair (A, f)
is in L then f is a default linearization function for A. We will also use the
abbreviation:

lindef(A) = {f | (A, f) ∈ L}

to denote the set of all default linearization functions for A. For every f ∈
lindef(A) it must hold that r(f) = d(A), a(f) = 1 and d1(f) = 1.

We use similar definition of PMCFG as the one used by Seki and Kato [2008]
and Seki et al. [1993] except that they use variable names like xkl while we use
〈k; l〉 to refer to the function arguments. We also defined default linearization
functions which are used in the linearization of incomplete and higher-order ab-
stract syntax trees.

The abstract syntax of the grammar defines some function types which let us
construct typed lambda terms. Although this is not visible for the user of the PGF
format, the same is possible with the concrete syntax. We can combine functions
from the PMCFG grammar to build concrete syntax trees. The concrete trees are
formally defined as:

Definition 5 (f t1 . . . ta(f)) is a concrete tree of category A if ti is a concrete tree
of category Bi and there is a production:

A→ f [B1 . . . Ba(f)]

The abstract notation for “t is a tree of category A” is t : A. When a(f) = 0 then
the tree does not have children and the node is called a leaf.

Once we have a concrete syntax tree we can linearize it in a bottom-up fashion
to a string or a tuple of strings. The functions in the leaves of the tree do not have
arguments so the tuples in their definitions already contain constant strings. If the
function has arguments, then they have to be linearized and the results combined.
Formally this can be defined as a function L applied to the concrete tree:

L(f t1 t2 . . . ta(f)) = (x1, x2 . . . xr(f))

where xi = K(L(t1),L(t2) . . .L(ta(f))) αi

and f := (α1, α2 . . . αr(f)) ∈ F C
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The function uses a helper functionK which takes the vector of already linearized
arguments and a sequence αi of terminals and 〈k; l〉 pairs and returns a string.
The string is produced by substitution of each 〈k; l〉 with the string for constituent
l from argument k:

K ~σ (β1〈k1; l1〉β2〈k2; l2〉 . . . βn) = β1σk1l1β2σk2l2 . . . βn

where βi ∈ T ∗. The recursion in L terminates when a leaf is reached.

2.2 GF to PGF translation
In GF, we define abstract functions in the abstract syntax and corresponding lin-
earization rules in the concrete syntax. In PGF, the abstract functions are preserved
but the linearization rules are replaced with concrete functions. In general, there
is a many to one mapping between the concrete and the abstract functions, be-
cause the compilation of every linearization rule leads to the generation of one or
more concrete functions. In a similar way, the linearization types for the abstract
categories are represented as a set of concrete categories. The relation between
abstract and concrete syntax is preserved by the mappings ψN and ψF which map
concrete categories to abstract categories and concrete functions to abstract func-
tions.

The main differences between the Parallel Multiple Context-Free Grammar
in PGF and the concrete syntax of GF are that the former allows only flat tuples
instead of nested records and tables, and that PMCFG does not allow parame-
ters while GF does. The nested records and the tables are easy to implement in
PMCFG by flattening the nested structures. The parameters however are more
tricky and this is the main reason for the many to one relation between concrete
and abstract syntax. Instead of explicitly passing around parameters during the
execution, we instantiate all parameter variables with all possible values and from
the instantiations we generate multiple concrete functions and categories.

If we take as an example the linearization type for category Item (Chapter 1):

lincat Item = {s : Str;n : Number};
then in PMCFG, Item will be split into two categories - one for singular and one
for plural2:

ItemSg , ItemPl

2In the real compiled code, all concrete categories and functions are just integers but here we
give them mnemonic names to make the examples more readable.
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The functions are multiplied as well. For example we will generate two produc-
tions from function Is:

Phrase → IsSg [ItemSg ,Quality]

Phrase → IsPl [ItemPl ,Quality]

where every production uses a different concrete function:

IsSg := (〈1; 1〉 ”is” 〈2; 1〉)
IsPl := (〈1; 1〉 ”are” 〈2; 1〉)

We do not need parameters because the inflection is guided by the choice of
the function. If we use IsSg , we will get the word ”is” and if we use IsPl , then we
will get ”are”. The relation between abstract and concrete syntax is kept in the
mappings ψN and ψF which in our example are:

ψN(ItemSg) = Item ψF (IsSg) = Is
ψN(ItemPl ) = Item ψF (IsPl ) = Is

2.3 Parsing
The parser in the GF engine is described separately in Angelov [2009]. This sec-
tion is an extended version of the same paper and here we are more explicit about
how the parser fits in the engine. The algorithm has two advantages compared to
the algorithms [Ranta, 2004b][Ljunglöf, 2004][Burden and Ljunglöf, 2005] used
in GF before - it is more efficient and it is incremental.

The incrementality means that the algorithm reads the input one token at a
time and calculates all possible continuations, before the next token is read. There
is a substantial evidence showing that humans process language in an incremental
fashion which makes the incremental algorithms attractive from a cognitive point
of view.

Our algorithm is also top-down which makes it possible by using the grammar
to predict the next word from the sequence of preceding words. This is used for
example in text based dialog systems or authoring tools for controlled languages
[Angelov and Ranta, 2010] where the user might not be aware of the grammar
coverage. With the help of the parser, the authoring tool (Figure 2.1) suggests the
possible continuations and in this way the user is guided for how to stay within the
scope of the grammar. The tool also highlights the recognized phrases (“switch”
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Figure 2.1: An authoring tool guiding the user to stay within the scope of the
controlled language

on the figure) and this is possible even before the sentence is complete since the
parser is able to produce the parse tree incrementally.

In this section, in order to illustrate how the parsing works, we will use as a
motivating example the anbncn language which in PMCFG is defined as:

S → c[N ]

N → s[N ]

N → z[]

c := (〈1; 1〉 〈1; 2〉 〈1; 3〉)
s := (a 〈1; 1〉, b 〈1; 2〉, c 〈1; 3〉)
z := (ε, ε, ε)

Here the dimensions are d(S) = 1 and d(N) = 3 and the arities are a(c) = a(s) =
1 and a(z) = 0. ε is the empty string. This is a simple enough language but at the
same time it demonstrates all important aspects of PMCFG. It is also one of the
canonical examples of non context-free languages.

The concrete syntax tree for the string anbncn is c (s (s . . . (s z) . . .)) where s
is applied n times. The function z does not have arguments and it corresponds to
the base case when n = 0. Every application of s over another tree increases n by
one. For example the function z is linearized to a tuple with three empty strings
but when we apply s twice then we get (aa, bb, cc). Finally the application of c
combines all elements in the tuple in a single string i.e. c (s (s z)) will produce
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the string aabbcc.

2.3.1 The Idea

Although PMCFG is not context-free it can be approximated with an overgen-
erating context-free grammar. The problem with this approach is that the parser
produces many spurious parse trees that have to be filtered out. A direct parsing
algorithm for PMCFG should avoid this and a careful look at the difference be-
tween PMCFG and CFG gives an idea. The context-free approximation of anbncn

is the language a∗b∗c∗ with grammar:

S → ABC

A→ ε | aA
B → ε | bB
C → ε | cC

The string ”aabbcc” is in the language and it can be derived with the following
steps:

S

⇒ ABC

⇒ aABC

⇒ aaABC

⇒ aaBC

⇒ aabBC

⇒ aabbBC

⇒ aabbC

⇒ aabbcC

⇒ aabbccC

⇒ aabbcc

The grammar is only an approximation because there is no enforcement that we
will use only equal number of reductions for A, B and C. This can be guaranteed
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if we replace B and C with new categories B′ and C ′ after the derivation of A:

B′ → bB′′ C ′ → cC ′′

B′′ → bB′′′ C ′′ → cC ′′′

B′′′ → ε C ′′′ → ε

In this case the only possible derivation from aaB′C ′ is aabbcc.
The parser works like a context-free parser, except that during the parsing it

generates fresh categories and rules which are specializations of the originals. The
newly generated rules are always versions of already existing rules where some
category is replaced with a new more specialized category. The generation of
specialized categories prevents the parser from recognizing phrases that are not in
the scope of the grammar.

The algorithm is described as a deductive process in the style of Shieber et al.
[1995]. The process derives a set of items where each item is a statement about
the grammatical status of some substring in the input.

The inference rules are in natural deduction style:

X1 . . . Xn

Y
< side conditions on X1, . . . , Xn >

where the premises Xi are some items and Y is the derived item. We assume that
w1 . . . wn is the input string.

2.3.2 Deduction Rules
The deduction system deals with three types of items: active, passive and produc-
tion items.

Productions In Shieber’s deduction systems, the grammar is constant and the
existence of a given production is specified as a side condition. In our case the
grammar is incrementally extended at runtime, so the set of productions is a part
of the deduction set. The productions from the original grammar are axioms and
are included in the initial deduction set.

Active Items The active items represent the partial parsing result:

[kjA→ f [ ~B]; l : α • β], j ≤ k
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The interpretation is that there is a function f with a corresponding production:

A→ f [ ~B]

f := (γ1, . . . γl−1, αβ, . . . γr(f))

such that the tree (f t1 . . . ta(f)) will produce the substring wj+1 . . . wk as a prefix
in constituent l for any sequence of arguments ti : Bi. The sequence α is the part
that produced the substring:

K(L(t1),L(t2) . . .L(ta(f))) α = wj+1 . . . wk

and β is the part that is not processed yet.

Passive Items The passive items are of the form:
[kjA; l;N ] , j ≤ k

and state that there exists at least one production:

A→ f [ ~B]

f := (γ1, γ2, . . . γr(f))

and a tree (f t1 . . . ta(f)) : A such that the constituent with index l in the lineariza-
tion of the tree is equal to wj+1 . . . wk. Contrary to the active items in the passive
the whole constituent is matched:

K(L(t1),L(t2) . . .L(ta(f))) γl = wj+1 . . . wk

Each time when we complete an active item, a passive item is created and at the
same time we create a new category N which accumulates all productions for A
that produce the wj+1 . . . wk substring from constituent l. All trees of category N
must produce wj+1 . . . wk in the constituent l.

There are six inference rules (see Figure 2.2).
The INITIAL PREDICT rule derives one item spanning the 0− 0 range for each

production whose result category is mapped to the start category in the abstract
syntax.

In the PREDICT rule, for each active item with dot before a 〈d; r〉 pair and
for each production for Bd, a new active item is derived where the dot is in the
beginning of constituent r in g.

When the dot is before some terminal s and s is equal to the current terminal
wk then the SCAN rule derives a new item where the dot is moved to the next
position.
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INITIAL PREDICT

A→ f [ ~B]

[00A→ f [ ~B]; 1 : •α]
ψN(A) = S, S - the start category in A, α = rhs(f, 1)

PREDICT

Bd → g[~C] [kjA→ f [ ~B]; l : α • 〈d; r〉 β]

[kkBd → g[~C]; r : •γ]
γ = rhs(g, r)

SCAN

[kjA→ f [ ~B]; l : α • s β]

[k+1
j A→ f [ ~B]; l : α s • β]

s = wk+1

COMPLETE

[kjA→ f [ ~B]; l : α•]
N → f [ ~B] [kjA; l;N ]

N = (A, l, j, k)

COMBINE

[ujA→ f [ ~B]; l : α • 〈d; r〉 β] [kuBd; r;N ]

[kjA→ f [ ~B{d := N}]; l : α 〈d; r〉 • β]

Figure 2.2: Deduction Rules
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When the dot is at the end of an active item then it is converted to a passive
item in the COMPLETE rule. The category N in the passive item is a fresh category
created for each unique (A, l, j, k) quadruple. A new production is derived for N
which has the same function and arguments as in the active item.

The item in the premise of COMPLETE was at some point predicted in PREDICT

from some other item. The COMBINE rule will later replace the occurence A in the
original item (the premise of PREDICT) with the specialization N .

The COMBINE rule has two premises: one active item and one passive. The
passive item starts from position u and the only inference rule that can derive
items with different start positions is PREDICT. Also the passive item must have
been predicted from an active item where the dot is before 〈d; r〉, the category for
argument number d must have been Bd and the item ends at u. The active item in
the premise of COMBINE is such an item so it was one of the items used to predict
the passive one. This means that we can move the dot after 〈d; r〉 and the d-th
argument is replaced with its specialization N .

If the string β contains another reference to the d-th argument, then the next
time when it has to be predicted the rule PREDICT will generate active items,
only for those productions that were successfully used to parse the previous con-
stituents. If a context-free approximation was used, this would have been equiva-
lent to unification of the redundant subtrees. Instead this is done at runtime which
also reduces the search space.

The parsing is successful if we have derived the [n0A; 1;A′] item, where n is
the length of the text, ψN(A) is equal to the start category and A′ is the newly
created category.

The parser is incremental because all active items span up to position k and
the only way to move to the next position is the SCAN rule where a new symbol
from the input is consumed.

2.3.3 A Complete Example
An example sequence of derivation steps for the string abc is shown on Figure
2.3. In the first column we show the derived items and in the second the rule that
was applied. The rule name is followed by the line numbers of the items that are
premises for the rule.

The first three lines are just the productions from the original grammar. After
that we start the real parsing with the rule INITIAL PREDICT. From the item on
line 4 we can predict that either function s or z should be applied (lines 5 and
6). The sequence from line 7 to line 15 follows the hypothesis that function z is
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1 S → c[N ]
2 N → s[N ]
3 N → z[]
4 [00S → c[N ]; 1 : •〈1; 1〉〈1; 2〉〈1; 3〉] INITIAL PREDICT 1
5 [00N → s[N ]; 1 : •a〈1; 1〉] PREDICT 2 4
6 [00N → z[]; 1 : •] PREDICT 3 4
7 C1 → z[] [00N ; 1;C1] COMPLETE 6
8 [00S → c[C1]; 1 : 〈1; 1〉 • 〈1; 2〉〈1; 3〉] COMBINE 4 7
9 [00C1 → z[]; 2 : •] PREDICT 8

10 C2 → z[] [00C1; 2;C2] COMPLETE 9
11 [00S → c[C2]; 1 : 〈1; 1〉〈1; 2〉 • 〈1; 3〉] COMBINE 8 10
12 [00C2 → z[]; 3 : •] PREDICT 11
13 C3 → z[] [00C2; 3;C3] COMPLETE 12
14 [00S → c[C3]; 1 : 〈1; 1〉〈1; 2〉〈1; 3〉•] COMBINE 11 13
15 C4 → c[C3] [00S; 1;C4] COMPLETE 14
16 [10N → s[N ]; 1 : a • 〈1; 1〉] SCAN 5
17 [11N → s[N ]; 1 : •a〈1; 1〉] PREDICT 16
18 [11N → z[]; 1 : •] PREDICT 16
19 C5 → z[] [11N ; 1;C5] COMPLETE 18
20 [10N → s[C5]; 1 : a〈1; 1〉•] COMBINE 16 19
21 C6 → s[C5] [10N ; 1;C6] COMPLETE 20
22 [10S → c[C6]; 1 : 〈1; 1〉 • 〈1; 2〉〈1; 3〉] COMBINE 4 21
23 [11C6 → s[C5]; 2 : •b〈1; 2〉] PREDICT 22
24 [21C6 → s[C5]; 2 : b • 〈1; 2〉] SCAN 23
25 [22C5 → z[]; 2 : •] PREDICT 24
26 C7 → z[] [22C5; 2;C7] COMPLETE 25
27 [21C6 → s[C7]; 2 : b〈1; 2〉•] COMBINE 24 26
28 C8 → s[C7] [21C6; 2;C8] COMPLETE 27
29 [20S → c[C8]; 1 : 〈1; 1〉〈1; 2〉 • 〈1; 3〉] COMBINE 22 28
30 [22C8 → s[C7]; 3 : •c〈1; 3〉] PREDICT 29
31 [32C8 → s[C7]; 3 : c • 〈1; 3〉] SCAN 30
32 [33C7 → z[]; 3 : •] PREDICT 31
33 C9 → z[] [33C7; 3;C9] COMPLETE 32
34 [32C8 → s[C9]; 3 : c〈1; 3〉•] COMBINE 31 33
35 C10 → s[C9] [32C8; 3;C10] COMPLETE 34
36 [30S → c[C10]; 1 : 〈1; 1〉〈1; 2〉〈1; 3〉•] COMBINE 29 35
37 C11 → c[C10] [30S; 1;C11] COMPLETE 36

Figure 2.3: The deduction sequence for parsing the string abc



2.3. PARSING 27

applied. At the end we deduce the passive item [00S; 1;C4] which is for the start
category but does not span the whole sentence so we cannot use this item as a final
item. The deduction follows with lines 16-22 which rely on the hypothesis that the
tree should start with function s (this was predicted on line 5). In this derivation
fragment we have fully recognized the symbol a and the dot is again in front of the
argument 〈1; 1〉 (line 16). At this point we can again predict that the next function
is either z or s. However, if the next function was s, then the next symbol must
be a which is not the case so we cannot continue with this hypothesis (line 17).
If we continue with function z, then we can just complete with the empty string
and move the dot in item 16 after argument 〈1; 1〉 which completes this item as
well (lines 18-21). Having done this we can also move the dot on line 4 which
produces the item on line 22. Note that now the argument to function c is changed
from N to C6. We have done similar replacements all the way but this is the
first point where this really leads to some restrictions. We have created two new
productions:

C6 → s[C5]

C5 → z[]

which say that the only concrete syntax tree that we can construct for category C6

is s z. This encodes the fact that we have recognized only one token a. When we
continue with the recognition of the next token b then we will do prediction with
category C6 instead of the original N (lines 23-29). Since s z is the only allowed
expression exactly one b will be allowed. After its recognition a new category C8

will be created along with the productions:

C8 → s[C7]

C7 → z[]

This set of productions is the same as the one for categories C6 and C5 but this
time we encode the fact we have recognized both the tokens a and b. Since the
recognition of b does not place any further constraint on the possible analyses we
get isomorphic sets of productions. Finally we recognize the last token c by doing
predictions from category C8 (lines 30-36). The last item 37 just completes the
item on line 36. The result is a passive item for category S spanning over the
whole sentence so we have successfully recognized the input.

Note that up to the point where we have recognized the first part of the sentence
i.e. the token a we basically do context-free parsing with just a little bit of extra
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bookkeeping. After that point, however, we use the new more restricted categories
and at this point the parsing becomes deterministic. We do not search for a parse
tree anymore but just check that the rest of the sentence is consistent with what
we expect. This shows how the parsing with PMCFG can in some cases be more
efficient than parsing with approximating CFG followed by postprocessing.

2.3.4 Soundness

The parsing system is sound if every derivable item represents a valid grammatical
statement under the interpretation given to every type of item.

The derivation in INITIAL PREDICT and PREDICT is sound because the item is
derived from an existing production and the string before the dot is empty so:

K σ ε = ε

The rationale for SCAN is that if

K σ α = wj−1 . . . wk

and s = wk+1 then

K σ (α s) = wj−1 . . . wk+1

If the item in the premise is valid, then it is based on an existing production and
function and so will be the item in the consequent.

In the COMPLETE rule, the dot is at the end of the string. This means that
wj+1 . . . wk will be not just a prefix in constituent l of the linearization but the full
string. This is exactly what is required in the semantics of the passive item. The
passive item is derived from a valid active item so there is at least one produc-
tion for A. The category N is unique for each (A, l, j, k) quadruple so it uniquely
identifies the passive item in which it is placed. There might be many produc-
tions that can produce the passive item but all of them should be able to generate
wj+1 . . . wk and they are exactly the productions that are added to N . From all
these arguments it follows that COMPLETE is sound.

The COMBINE rule is sound because from the active item in the premise we
know that:

K σ α = wj+1 . . . wu
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for every context σ built from the trees:

t1 : B1; t2 : B2; . . . ta(f) : Ba(f)

From the passive item we know that every production forN produces thewu+1 . . . wk
in r. From that follows that

K σ′ (α〈d; r〉) = wj+1 . . . wk

where σ′ is the same as σ except that Bd is replaced with N . Note that the last
conclusion will not hold if we were using the original context because Bd is a
more general category and can contain productions that do not derive wu+1 . . . wk.

2.3.5 Completeness

The parsing system is complete if it derives an item for every valid grammatical
statement. In our case we have to prove that for every possible parse tree the
corresponding items will be derived.

The proof for completeness requires the following lemma:

Lemma 1 For every possible concrete syntax tree

(f t1 . . . ta(f)) : A

with linearization

L(f t1 . . . ta(f)) = (x1, x2 . . . xd(A))

where xl = wj+1 . . . wk, the system will derive an item [kjA; l;A′] if the item [jjA→
f [ ~B]; l : •αl] was predicted before that. We assume that the function definition is:

f := (α1, α2 . . . αr(f))

The proof is by induction on the depth of the tree. If the tree has only one level,
then the function f does not have arguments and from the linearization definition
and from the premise in the lemma it follows that αl = wj+1 . . . wk. From the
active item in the lemma by applying iteratively the SCAN rule and finally the
COMPLETE rule the system will derive the requested item.
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If the tree has subtrees, then we assume that the lemma is true for every subtree
and we prove it for the whole tree. We know that

K σ αl = wj+1 . . . wk

Since the function K does simple substitution it is possible for each 〈d; s〉 pair
in αl to find a new range in the input string j′ − k′ such that the lemma to be
applicable for the corresponding subtree td : Bd. The terminals in αl will be
processed by the SCAN rule. Rule PREDICT will generate the active items required
for the subtrees and the COMBINE rule will consume the produced passive items.
Finally the COMPLETE rule will derive the requested item for the whole tree.

From the lemma we can prove the completeness of the parsing system. For
every possible tree t : S such that L(t) = (w1 . . . wn) we have to prove that the
[n0S; 1;S ′] item will be derived. Since the top-level function of the tree must be
from production for S the INITIAL PREDICT rule will generate the active item in
the premise of the lemma. From this and from the assumptions for t, it follows
that the requested passive item will be derived.

2.3.6 Complexity
The algorithm is very similar to the Earley [1970] algorithm for context-free gram-
mars. The similarity is even more apparent when the inference rules in this section
are compared to the inference rules for the Earley algorithm presented in Shieber
et al. [1995] and Ljunglöf [2004]. This suggests that the space and time com-
plexity of the PMCFG parser should be similar to the complexity of the Earley
parser which is O(n2) for space and O(n3) for time. However we generate new
categories and productions at runtime and this has to be taken into account.

Let the P(j) function be the maximal number of productions generated from
the beginning up to the state where the parser has just consumed terminal number
j. P(j) is also the upper limit for the number of categories created because in the
worst case there will be only one production for each new category.

The active items have two variables that directly depend on the input size - the
start index j and the end index k. If an item starts at position j, then there are
(n − j + 1) possible values for k because j ≤ k ≤ n. The item also contains a
production and there are P(j) possible choices for it. In total there are:

n∑
j=0

(n− j + 1)P(j)
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possible choices for one active item. The possibilities for all other variables are
only a constant factor. TheP(j) function is monotonic because the algorithm only
adds new productions and never removes. From that follows the inequality:

n∑
j=0

(n− j + 1)P(j) ≤ P(n)
n∑
i=0

(n− j + 1)

which gives the approximation for the upper limit:

P(n)
n(n+ 1)

2

The same result applies to the passive items. The only difference is that the passive
items have only a category instead of a full production. However the upper limit
for the number of categories is the same. Finally the upper limit for the total
number of active, passive and production items is:

P(n)(n2 + n+ 1)

The expression for P(n) is grammar dependent but we can estimate that it is
polynomial because the set of productions corresponds to the compact represen-
tation of all parse trees in the context-free approximation of the grammar. The
exponent however is grammar dependent. From this we can expect that asymp-
totic space complexity will be O(ne) where e is some parameter for the grammar.
This is consistent with the results in Nakanishi et al. [1997] and Ljunglöf [2004]
where the exponent also depends on the grammar.

The time complexity is proportional to the number of items and the time
needed to derive one item. The time is dominated by the most complex rule
which in this algorithm is COMBINE. All variables that depend on the input size are
present both in the premises and in the consequent except u. There are n possible
values for u so the time complexity is O(ne+1).

2.3.7 Tree Extraction
If the parsing is successful, then we need a way to extract the syntax trees. Ev-
erything that we need is already in the set of newly generated productions. If the
start category is S, then we look up all passive items of the form [n0A; 0;A′] where
ψN(A) = S and A′ is a newly produced concrete category. Every tree t of cate-
gory A′ is a concrete syntax tree for the input sentence (see Definition 5, Section
2.1).
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In the example on Figure 2.3 the goal item is [30S; 1;C11] and if we follow the
newly generated category C11, then the set of all accessible productions is:

C11 → c[C10]

C10 → s[C9]

C9 → z[]

With this set, the only concrete syntax tree that can be constructed is c (s z) and
this is the only tree that can produce the string abc. From the concrete syntax tree
we can obtain the abstract syntax tree by mapping every function symbol to its
abstract counterpart. Formally we can define the mapping ψtr which turns every
concrete syntax tree into an abstract syntax tree:

ψtr(f t1 . . . ta(f)) = ψF (f) ψtr(t1) . . . ψtr(ta(f))

Since the mapping ψF (f) is a many to one relation the same applies to ψtr. This
has to be taken into account because the parser can find several concrete syntax
trees that are all mapped to the same abstract tree. The tree extraction procedure
should simply eliminate the duplicated trees.

Note that the grammar can be erasing; i.e., there might be functions which
ignore some of their arguments, for example:

S → f [B1, B2, B3]

f := (〈1; 1〉〈3; 1〉)

There are three arguments but only two of them are used. When a sentence is
parsed this will generate a new specialized production:

S ′ → f [B′1, B2, B
′
3]

Here S,B1 and B3 are specialized to S ′, B′1 and B′3 but the B2 category is still the
same. This is correct because any subtree for the second argument will produce
the same sentence. This is actually a very common situation when we have de-
pendent types in the abstract syntax, since often some of the dependencies are not
linearized in the concrete syntax. In this case, despite that for the parser any value
for the second argument is just as good, there is only one value which is consistent
with the semantic restrictions. When doing tree extraction, such erased arguments
are replaced with metavariables, i.e. we get:

f t1 ?0 t2
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where t1 and t2 are some subtrees and ?0 is the metavariable. The metavariables
might be later substituted by the type checker or might remain intact in which
case they are interpreted as placeholders which can hold any value. The tree ex-
tractor knows when to produce metavariables because the category for the unused
arguments is in the original set of categories NC in the grammar.

Just like with the context-free grammars the parsing algorithm is polynomial
but the chart can contain an exponential or even infinite number of trees. Despite
this the chart is a compact finite representation of the set of trees.

2.3.8 Implementation
Every implementation requires a careful design of the data structures. For efficient
access the set of items is split into four subsets: A, Sj , C and P. A is the agenda,
i.e. the set of active items that have to be analyzed. Sj contains items for which
the dot is before an argument reference and which span up to position j. For
fast lookup the set Sj is organized as a multimap where the key is a pair of a
concrete category A and a constituent index r and the value is an item such that
the argument reference points to constituent r of category A. C is the set of
possible continuations, i.e. a set of items for which the dot is just after a terminal.
Just like Sj , C is a map indexed by the value of the terminal. P is the set of
productions. In addition, the set F is used internally for the generation of fresh
categories. It is a map (j, A, r) 7→ N from the start position j, the concrete
category A and the constituent index r to the newly generated category N . Every
time when we have to generate a new category, we lookup in F and if there is
already a category created for the triple (j, A, r) then we reuse it. Otherwise we
create a new category.

The pseudocode of the implementation is given in Figure 2.4. There are two
procedures Init and Compute.

Init computes the initial values of S, P and A. The initial agenda A is the set
of all items that can be predicted from any concrete category SC which maps to
the abstract start category S (INITIAL PREDICT rule).

Compute consumes items from the current agenda and applies the SCAN,
PREDICT, COMBINE or COMPLETE rules. The case statement matches the current
item against the patterns of the rules and selects the proper rule. The PREDICT and
COMBINE rules have two premises so they are used in two places. In both cases
one of the premises is related to the current item and a loop is needed to find item
matching the other premis.

The passive items are not independent entities but are just the combination of
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procedure Init() {
k = 0
Si = ∅, for every i
P = the set of productions P in the grammar

A = ∅
forall SC → f [ ~B] ∈ P where ψN (SC) = S do // INITIAL PREDICT

A = A + [0;SC → f [ ~B]; 1; 0]

return (S,P,A)
}

procedure Compute(k, (S,P,A)) {
C = ∅
F = ∅
while A 6= ∅ do {

let x ∈ A, x ≡ [j;A→ f [ ~B]; l; p]
A = A− x
case the dot in x is {

before s ∈ T ⇒ C = C + (s 7→ [j;A→ f [ ~B]; l; p+ 1]) // SCAN

before 〈d; r〉 ⇒ if ((Bd, r) 7→ (x, d)) 6∈ Sk then {
Sk = Sk + ((Bd, r) 7→ (x, d))

forall Bd → g[ ~C] ∈ P do // PREDICT
A = A + [k;Bd → g[ ~C]; r; 0]

}
forall (k;Bd, r) 7→ N ∈ F do // COMBINE

A = A + [j;A→ f [ ~B{d := N}]; l; p+ 1]

at the end ⇒ if ∃N.((j, A, l) 7→ N ∈ F) then {
forall (N, r) 7→ (x′, d′) ∈ Sk do // PREDICT
A = A + [k;N → f [ ~B]; r; 0]

} else {
generate fresh N // COMPLETE
F = F + ((j, A, l) 7→ N)

forall (A, l) 7→ ([j′;A′ → f ′[ ~B′]; l′; p′], d) ∈ Sj do // COMBINE
A = A + [j′;A′ → f ′[ ~B′{d := N}]; l′; p′ + 1]

}
P = P + (N → f [ ~B])

}
}

return (S,P,C)
}

Figure 2.4: Pseudocode of the parser implementation
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key and value in the set F. Only the start position of every item is kept because
the end position for the interesting passive items is always the current position
and the active items are either in the agenda if they end at the current position
or they are in the Sj set if they end at position j. The active items also keep
only the dot position in the constituent because the constituent definition can be
retrieved from the grammar. For this reason the runtime representation of the
items is [j;A→ f [ ~B]; l; p] where j is the start position of the item and p is the dot
position inside the constituent.

The Compute function returns the updated S and P sets and the set of possible
continuations C. The set of continuations is a map indexed by a terminal and the
values are active items. The parser computes the set of continuations at each step
and if the current terminal is one of the keys the set of values for it is taken as an
agenda for the next step.

In the concrete Haskell implementation, the core parsing API consists of four
functions: initState , nextState , getCompletions and getParseOutput . The initState
function:

initState :: PGF → Language → Type → ParseState

corresponds to function Init in Figure 2.4. It takes a grammar in PGF format, a
Language and a start category, given more generally as a Type , and returns the
initial ParseState which is a Haskell structure encapsulating the sets S, P and A.

The input sentence is consumed by feeding the tokens one by one to function
nextState:

nextState :: ParseState → ParseInput → Either ErrorState ParseState

It takes as arguments the last parse state and a new token, encapsulated as a
ParseInput structure, and either returns a new parse state or an error state. If
an error state is returned then this indicates that the sentence is not in the cover-
age of the grammar. The information in the error state is used for different error
recovery strategies. The new parse state contains the updated S and P sets and a
new agenda A which is retrieved from the continuation C, computed by function
Compute.

When all tokens are consumed, the final result can be obtained by applying
the function getParseOutput to the final parse state:

getParseOutput :: ParseState → Type → Maybe Int
→ (ParseOutput ,BracketedString)
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The result is a pair of ParseOutput and BracketedString , where ParseOutput rep-
resents the list of abstract syntax trees or an error message if the parsing is not
successful, and BracketedString represents the parse tree for the sentence. The
function also takes as additional arguments the start category as a Type and an
eventual depth limitation if a proof search is necessary during the tree extraction
(this will be clarified in Section 3.5).

From every ParseState , it is also possible to compute the set of possible next
tokens. The function getCompletions:

getCompletions :: ParseState → String → Map Token ParseState

calls Compute and transforms the continuations set C into a map from token to
parse state. The extra string argument to the function is a filter which limits the
set of tokens to only those that start with the same prefix.

2.3.9 Evaluation
The algorithm was evaluated with all languages from the GF Resource Grammar
Library [Ranta, 2009]. Although these grammars are not designed for parsing they
are still a good parsing benchmark because these are the biggest GF grammars.
The sizes of the compiled grammars in terms of number of productions and num-
ber of unique discontinuous constituents can be seen on Table 2.1 in Section 2.8.1.
The number of constituents roughly corresponds to the number of productions in
the context-free approximation of the grammar.

In the evaluation 34272 sentences are parsed and the average time for process-
ing a given number of tokens is measured. Figure 2.5 shows the time in millisec-
onds needed to parse a sentence of a given length. As it can be seen, although the
theoretical complexity is polynomial, the real-time performance for practically in-
teresting grammars tends to be linear. The average time per token in milliseconds
is shown on Figure 2.6. The slowest grammar is for Finnish, after that are German
and Italian, followed by the Romance languages French, Spanish and Catalan plus
Bulgarian and Interlingua. The most efficient is the English grammar followed by
the Scandinavian languages Danish, Norwegian and Swedish.

2.4 Online Parsing
We pointed out that one of the distinguishing features of our parsing algorithm is
that it is incremental. The incrementality, however, is still hidden because despite
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Figure 2.5: Time in milliseconds to parse a sentence of given length

Figure 2.6: Parser performance in milliseconds per token
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that the chart contains only the trees that are consistent with the consumed input,
the parser does not immediately produce a syntactic analysis of the string. Often
the term online parser is used for a parser which is able to produce an analysis
before the complete input is consumed. Fortunately, with a modification of the tree
extraction procedure, our incremental parser can be turned into an online parser.
The analysis that we produce is the original input string where every completely
recognized phrase is annotated with its abstract category and its abstract syntax
tree. In the Haskell implementation this annotated string is represented with the
BracketedString structure that is returned from the getParseOutput function (see
Section 2.3.8 for the signature).

For instance, if we have the grammar:

fun barcelona : Location;

lin barcelona = {s = ”Barcelona”};

fun welcome : Location → Name → S ;

lin welcome l n = ”Welcome to” ++ l.s++ ”,” ++ n.s;

then the prefix ”Welcome to Barcelona ,” should be annotated as:

”Welcome” ”to” (Location:1:2 ”Barcelona”) ”,”

?2 = barcelona

Here ”Barcelona” is the only complete phrase so it is annotated with its category,
i.e. Location , and with the right constituent index. In this case, Location has only
one constituent so 1 corresponds to the field s in the grammar. In addition, every
phrase is marked with a metavariable which links the phrases with their abstract
syntax. In the example, we used the metavariable ?2 which is bound to the abstract
constant barcelona .

Since the concrete syntax trees in the parse chart are not directly related to
the input string, the way to compute the annotations is to linearize the trees back
to strings where during the linearization we put annotations in the right places.
The problem is that when we have incomplete sentence, then there is no single
tree whose linearization will generate the whole sequence of tokens. Instead the
incomplete sentence is a mix of fragments for which there are complete trees
and fragments which consist of still uninterpreted tokens. In the example, the
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fragments ”Welcome to” and ”,” are just tokens while ”Barcelona” should be an-
notated as a phrase of category Location .

The problem can be solved if we start the linearization not from a concrete
syntax tree but from a pair ( ~B, α) where ~B is a vector of concrete categories and
α is a sequence of tokens and 〈d; r〉 pairs referring to the components of ~B. In
this representation, the fragments for which there is a complete interpretation will
be represented with 〈d; r〉 where Bd will be the category of the tree in the parse
chart, and the uninterpreted tokens will be just kept as tokens.

In the computation of the representation ( ~B, α), we need a new kind of items
which are similar to the active items in the parsing algorithm but with some ir-
relevant parts stripped out. For every active item [kj ;A → f [ ~B]; l : α • β] where
k is the last position in the incomplete sentence and j is the start position of the
item, we define an interpretation item [j;A; ~B; l : α] which contains only the
parts that are relevant to the current input. For instance β is not included because
it is only something that we expect but have not seen yet. At the same time, the
erasure of the function symbol f lets us concatenate several active items into a
single interpretation item. For instance, if we have one active item for the range
i− j and another for j− k, then we can combine them into a single interpretation
item which spans from position i to the last position k. Since the different active
items can have different function symbols we just removed the function from the
interpretation item.

We start the computation with an initial set of interpretation items derived from
the last continuation set C (returned from the procedure Compute on Figure 2.4).
In this set, every item with a start position j represents a possible interpretation
of the range from position j to the end of the consumed input. Now the goal
is to extend the scope of every item until we reach the initial position 0 which
means that we have recovered the complete interpretations. Since every active
item, except the initial one, was predicted from some other item, we can extend
the interpretations by looking in the chart for matching active items. Formally this
is done by applying the rule:

[j;A; ~B; l : α]

[i;C; ~D ~B; r : γ(α ↑ a(h))]
(A, l) 7→ ([jiC → h[ ~D]; r : γ • δ], d) ∈ Sj, i < j

Here, if we have an interpretation item [j;A; ~B; l : α], then we look for an active
item that was suspended at position j and is expecting a phrase of category A for
a constituent with index l. This is precisely the set of active items that were the
premises of the PREDICT rule. The members of the set are easy to find by looking
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in the map Sj for items indexed by the key (A, l). For every retrieved active item,
we generate a new extended interpretation item by concatenating the sequences γ
and α and the vectors ~D and ~B. Furthermore, since the sequence α has references
to the vector ~B and we has appended the vector to the end of ~D, we have to update
the pairs 〈d; r〉 in α by incrementing the indices d with the size of ~D, i.e. with the
arity a(h). In the rule, α ↑ n denotes a sequences derived from α by increasing
the argument indices with n. Finally, we require that i < j which ensures that we
do not concatenate empty sequences and guarantees that the algorithm will not go
into an infinite loop. In the final set, we will have only items like [0;A; ~B; l : α]
which span over the whole input.

Once we have the set of final interpretation items, the pair ( ~B, α) from every
item corresponds to one possible analysis of the consumed input. The pairs are
linearized into annotated (bracketed) strings in the same way as we defined in
Section 2.1, except that when we have a pair 〈d; r〉, then we also put an annotation
for ψN(Bd) with constituent index r.

Note that since α is composed of already recognized sequences from consec-
utive active items, the linearization of every possible pair ( ~B, α) is exactly equal
to the consumed input and they only differ in the annotations. A typical case is
the PP-attachement problem. If we have the sentence ”Welcome to Barcelona in
the summer”, then it has two possible annotations:

(VP ”Welcome” ”to” (NP (NP ”Barcelona”) (PP ”in” ”the” ”summer”)))

(VP (VP ”Welcome” ”to” (NP ”Barcelona”)) (PP ”in” ”the” ”summer”))

This situation is in general unavoidable and here we have two choices. Either we
rank the set of analyses and pick the one with the highest rank or we compute
an analysis which is the intersection of all possible analyses. In the example, we
should keep only those annotations that exists in all possible analyses:

(VP ”Welcome” ”to” (NP ”Barcelona”) (PP ”in” ”the” ”summer”))

It is also possible to combine the two scenarios by computing the intersection of
the top N analyses with the highest rank. Here we will concentrate only on the
intersection since the ranking is at least in principle a trivial operation.

Since an annotation is put only when we linearize an argument reference 〈d; r〉
and since the corresponding category Bd corresponds to a node in the forest of
concrete syntax trees, the way to get the intersection is to add the restriction that
we put an annotation only if the node Bd is shared among all trees. More con-
cretely, a node labelled with the category A in the forest of concrete syntax trees
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is characterized by a set of productions:

A→ f1[ ~B1], A→ f2[ ~B2], . . . A→ fn[ ~Bn]

where every production has the same category on the left-hand side but different
functions and arguments. Since every argument denotes another node in the for-
est, then starting from any node, we can extract a list of trees by recursion over the
chain of productions. Typically the extracted trees will share many subtrees be-
cause they are built by going through common nodes in the forest. We can detect
the sharing by computing for every node A the set of nodes t(A) shared between
all trees rooted at A. The equation for t(A) is defined recursively:

t(A) = {A} ∪
n⋂
i=1

a(fi)⋃
j=1

t(Bij)

In the trivial case, when none of the productions for A has arguments, t(A) is a
singleton set containing just A. Obviously the node A is always shared between
all the trees. When the productions have arguments, then for every production
we compute the union of the sets t(Bij) where Bij is the j-th argument of the
i-th production. Finally we add the intersection of the unions to the singleton set
containing A.

The equation for t(A) is trivially computable, if the forest is acyclic. In the
presence of cycles, however, the value for t(A) will directly or indirectly depend
on itself, so in general the above is a fixed point equation which can be computed
by using the Knaster-Tarski theorem [Tarski, 1955]. More concretely, we are
interested in the greatest fixed point since we want to preserve as many annotations
as possible.

Taking into account the idempotence property of the union and the intersection
of sets any equation which relates t(A) to itself can be reduced to:

t(A) = (t(A) ∪ L) ∩M

where L and M are some sets of nodes. The Knaster-Tarski theorem tells us
that we can get the greatest fixed point by starting from the universal set and by
applying the equation iteratively. In our case, by substituting t(A) in the right-
hand side of the equation with the universal set, we get to the fixed point t(A) =
M immediately. In the implementation, we rely on the observation that a single
iteration is enough, and we compute t(A) as if the forest was acyclic. If we reach
a cycle, then it is resolved by substituting t(A) with the universal set.
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2.5 Linearization
The linearization of abstract syntax trees to natural language is a much easier
process than parsing. In Section 2.1 we already defined how a string or a tuple of
strings is derived from a concrete syntax tree. The concrete syntax tree, however,
is an internal concept in the framework so we want to have direct linearization
of the abstract trees. For this we must find all concrete trees that map to a given
abstract tree.

The search is more efficient if we decompose the set of productions P in the
concrete syntax into a family of non-intersecting subsets PfA, ~B ⊂ P where every
subset contains only productions whose arguments categories are ~B and whose
concrete functions map to the same abstract function fA:

PfA, ~B = {A→ fC[ ~B] | A→ fC[ ~B] ∈ P ; ψF (fC) = fA}

The decomposition is computable because the set P is finite so we simply group
the different productions into families with different functions and categories.

We are now ready to define the transformation tA ⇓ tC : B from an abstract
tree tA to a concrete tree tC of category B. Since the transformation is nondeter-
ministic it is best described as a deduction rule:

ABSTRACT TO CONCRETE
tA1 ⇓ tC1 : B1 . . . tAn ⇓ tCn : Bn

fA tA1 . . . t
A
n ⇓ fC tC1 . . . tCn : A

A→ fC[ ~B] ∈ PfA, ~B n = a(fA) = a(fC)

The rule is bottom-up3, i.e. if we have to transform a tree where some function is
applied to a list of arguments, then we first transform the arguments. The choice
of the concrete function in the final tree is nondeterministic because every produc-
tion in the set PfA, ~B is a possible candidate. Here we get the vector ~B from the
linearization of the arguments and fA is the abstract function in the input tree.

Once we have the concrete syntax tree we can linearize it in the way described
in Section 2.1. This gives us a two step process for linearizing abstract syntax
trees. First we transform tA into a concrete syntax tree tA ⇓ tC : B and after
that we compute the linearization L(tC). Fortunately the two steps can be done at
once. We define the direct linearization of the abstract tree tA to a tuple of strings
σ in concrete category B as the transformation tA ⇓ σ : B, where the dimension

3The linearization can be done in both bottom-up and top-down fashion. Many thanks to Lauri
Alanko who pointed out that the bottom-up approach is more efficient.
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of σ must be d(B). The deduction rule for direct linearization is:

LINEARIZE
tA1 ⇓ σ1 : B1 . . . tAn ⇓ σn : Bn

fA tA1 . . . t
A
n ⇓ (K ~σ α1, . . .K ~σ αd(A)) : A

A→ fC[ ~B] ∈ PfA, ~B, αi = rhs(fC, i)

The linearization rule is obtained from the previous rule by substituting in the
premises the concrete trees with their linearizations σi = L(tCi ) and by substituting
in the conclusion the final concrete tree with its linearization:

L(fC tC1 . . . t
C
n) = (K ~σ α1, . . .K ~σ αd(A))

The rule LINEARIZE covers the most common case but it cannot be applied,
if the abstract tree is not complete. In the discussion for the tree extraction, we
mentioned that when the grammar is erasing, the parser will produce incomplete
abstract syntax trees where the holes are filled in with metavariables. Linearization
of incomplete trees is also allowed which means that we need a linearization rule
for metavariables. GF provides a mechanism to define default linearizations for
every category. The judgement:

lindef C x = e

defines that the expression e is the default linearization for category C. Here x is
an argument of type Str which can be any string and is used in e for computing
the linearization. The linearization of a metavariable is just the application of the
default linearization over the name of the variable.

Just like with the ordinary linearization rules, the rules for default linearization
are compiled into one or more PMCFG functions. The difference, however, is that
for the default linearizations we do not produce PMCFG productions, instead we
just remember the set of available functions for every category. We denote the set
of default linearization functions for a given concrete category A as lindef(A).
Now the rule for linearization of metavariables is:

LINEARIZE META

〈?N : ψN(A)〉 ⇓ (K ?N α1, . . .K ?N αd(A)) : A
fC ∈ lindef(A), αi = rhs(fC, i)

Here we assume that we know the type of the metavariable ?N , from the type
checker, and that the type ψN(A) is mapped to the concrete category A. Once
we have the category A, the application of every possible default linearization
function in lindef(A) is a valid linearization.
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2.5.1 Soundness
The linearization is sound if for every transformation tA ⇓ tC : B we can prove
that the computed concrete tree is always mapped to the right abstract tree i.e.
ψtr(t

C) = tA and that tC : B.
In the ABSTRACT TO CONCRETE rule, the computed tree is fC tC1 . . . t

C
n. By the

definition of PfA, ~B, we know that ψF (fC) = fA. Also since the rule is recursive
we assume by induction that the recursive steps are sound, which give us ψtr(tCi ) =
ψtr(t

A
i ). From the last two we conclude that:

ψtr(f
C tC1 . . . t

C
n) = ψF (fC) ψtr(t

C
1) . . . ψtr(t

C
n)

= fA tA1 . . . t
A
n

which is a proof of the first part of the soundness condition.
The proof for the second condition is also trivial. The output tree in the rule

ABSTRACT TO CONCRETE is always of the right category A because the top-level
function fC is taken from a production which has A as a result category.

2.5.2 Completeness
The linearization rule is complete if it finds all concrete trees tC for a given abstract
tree tA such that ψtr(tC) = tA. The proof is by induction on the tree structure.
When the tree is a leaf, i.e. a function without arguments, then by the definition of
PfA, ~B, we see that we will get all concrete functions fC such that ψF (fC) = fA.
When the top-level function has arguments then we assume that we get all possible
concrete trees for the children which in turn give us all possible output trees. This
assumption is the induction step, since we get the children from the premisses of
the ABSTRACT TO CONCRETE rule.

2.5.3 Complexity
The transformation rule iterates recursively on the structure of the whole tree and
at every node there are possibly many choices. The number of choices multiply
when you traverse a path from the root of the tree to the leaves. This implies
that in the worst case the linearization process is exponential in the depth of the
tree. Despite this in practical applications the linearization behaves like a linear
process. The explanation for this is that first the depth of the tree is usually small
and second the multiple choices manifest only in very special cases.
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The only case when we can have nondeterminism is if there are many pro-
ductions with the same argument categories but a different concrete function or
a different result category. The only way to cause this is by using the variants
construction in the GF source language. For example we can construct a gram-
mar which for robustness ignores the gender of the nouns. Since it is a common
mistake for beginners in a new language to use a wrong gender, it might be a
good idea to write a grammar which is more forgiving and accepts both mascu-
line and feminine for some nouns. For instance in Bulgarian, we can define the
linearization of the constant apple as:

lin apple = {s = ”jabǎlka”; g = variants{Fem; Masc}};

In this case, the compiler will produce two productions:

Kind Masc → apple[]

Kind Fem → apple[]

At runtime, the linearizer will have to backtrack in order to generate one lineariza-
tion of the whole sentence – one for feminine and another for masculine.

The common practice is that grammars with a lot of variants are usually not
used for linearization but for parsing. In this case, the variants gives us robustness
but at the same time cause ambiguities during the linearization. Even when such
grammars are actually used for linearization then the default linearization of every
variant should be listed first. The interpreter is able to enumerate all possibilities
but the user is free to stop the enumeration after the retrieval of the first version
which always uses the default linearization4.

2.6 Literal Categories
GF is not a general purpose language but a language which is specialized for the
development of natural language grammars. This means that in some cases we
either do not want or we cannot implement all kinds of processing directly in GF.
In many cases, we can preprocess the input or postprocess the output from GF
to achieve the desired effect. In other cases, however, the additional processing

4In lazy languages like Haskell, we actually return the list of all linearizations but the lazy-
ness guarantees that they will not be computed until they are needed. Ideally implementations in
other languages should use iterator like interface which ensures that the computations are done on
demand.
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interplays with the grammatical context in a complex way. In such situations, it
is helpful if the parser in GF can cooperate with external components written in
general purpose programming languages.

A trivial example of such interplay is the way in which the literal categories
are supported in GF. So far we only talked about abstract categories whose values
are composed algebraically by combining a fixed number of functions. There are
three literal categories which are exceptions to the rule:

• String - a category whose values are arbitrary Unicode strings

• Int - a category for integers

• Float - a category for floating point numbers

The common in all cases is that the set of values for the literal categories is not
enumerated in the grammar but is hard-wired in the compiler and the interpreter.
The linearization rule is also predefined, for example, if we have the constant
3.14 in an abstract syntax tree, then it is automatically linearized as the record
{s = ”3.14”}. Similarly, if we have the string ”John Smith” then its linearization
is the wrapping of the string in a record, i.e. {s = ”John Smith”}.

Now we have a problem because the rules in Section 2.3 are not sufficient to
deal with literals. Furthermore, while usually the parser can use the grammar to
predict the scopes of the syntactic phrases, this is not possible for the literals since
we allow arbitrary unrestricted strings as values of category String . Let say, for
example, that we have a grammar which represents named entities as literals, then
we can represent the sentence:

John Smith is one of the main characters in Disney’s film Pocahontas.

as an abstract syntax tree of some sort, for instance:

MainCharacter ”John Smith” ”Disney” ”Pocahontas”

This works fine for linearization because we have already isolated the literals as
separated values. However, if we want to do parsing, then the parser will have
to consider all possible segmentations where three of the substrings in the input
string are considered literals. This means that the number of alternatives will grow
exponentially with the number of String literals. Such exponential behaviour is
better to be avoided, and in most cases, it is not really necessary.

Our solution is that by default every String literal is exactly one token, and the
Int and Float literals are recognized according to the syntactic conventions in GF.
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If this is not suitable, then the user can provide an application specific recognizer,
written in the host language i.e. Haskell, Java, C, etc. Our simplification also
implies that some abstract trees can be linearized but after that the output will not
be parseable, if there are string literals which are not exactly one token long.

The application specific recognizer has access to the input sentence, and if
there is a phrase at the current position which looks like a literal value, then it
returns the pair (~ω, t) to the parser. Here ~ω is a tuple of strings with the dimen-
sionality of the literal category and t is the abstract syntax tree that have to be
assigned as literal value. The parser handles the feedback from the recognizer by
using a new deduction rule:

LITERAL

[kjA→ f [ ~B]; l : α • {d; r} β]

N → g[] [
k+|ωr|
j A→ f [ ~B{d := N}]; l : α {d; r} • β]

g = (ω1, . . . , ωd( ~Bd)),

ψF (g) = t

The new rule is a combination of the existing PREDICT, COMPLETE and COMBINE

rules which are now merged because the recognition of the literal category is done
outside the parser. The active items in the premises of PREDICT and LITERAL (see
Figure 2.2 for reference) are very similar. The only difference is that in LITERAL

we have used the new notation {d; r} instead of 〈d; r〉. The compiler generates
this new kind of pair when the referenced category is a literal category, and the
parser uses this to decide when to call LITERAL and when to call PREDICT.

The difference with PREDICT is that LITERAL does not require the existence
of an appropriate production. Since the literal values are not enumerated in the
grammar we cannot expect that a production will ever be found. Instead we gen-
erate a fresh function symbol g and a fresh category N which together comprise
the productionN → g[], which when combined with the item in the premise gives
the item in the conclusion.

This is the only rule where we generate new function symbols on the fly. The
key for efficient parsing in Section 2.3 was that the parser is able to generate fresh
categories which are specializations of existing categories. This time we generate
fresh functions, and this lets us handle literals. The intuition for this is that the
literal values are not enumerated in the grammar but can be added on demand
once they are identified by the external recognizer. The LITERAL rule is fired only
the first time when some of the constituents have to be recognized, after that the
literal category Bd is replaced with the new category N and the application of the
usual PREDICT rule is enough. The rule is simple: if the next symbol after the dot
is 〈d; r〉 then always the PREDICT rule applies. If the next symbol is {d; r}, then
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parse :: PGF -> Language -> Type -> Maybe Int -> [Token] -> ParseOutput
parse pgf lang typ dp toks = loop (initState pgf lang typ) 0 toks
where

loop ps n [] = fst $ getParseOutput ps typ dp
loop ps n (t:ts) = case nextState ps (inputWithNames (t:ts)) of

Left es -> ParseFailed n
Right ps -> loop ps (n+1) ts

inputWithNames = mkParseInput pgf lang
tok
[(mkCId "String", name)]

where
tok (t:ts) = Map.lookup (map toLower t)
tok _ = const Nothing

name ts = let nts = takeWhile isNameTok ts
in if null nts

then Nothing
else Just (mkStr (unwords nts),nts)

isNameTok (c:cs) | isUpper c = True
isNameTok _ = False

Figure 2.7: An example for parser with a naı̈ve recognizer for named entities

if the target category is defined in the grammar then the LITERAL rule is applied,
and if the category is freshly generated then the PREDICT rule is used.

Figure 2.7 shows an example Haskell code which combines parsing with GF
grammar complemented with a simple named entities recognizer. The parser calls
initState in the beginning, and after that calls nextState in a loop for
each token. Finally getParseOutput is called to get the list of abstract syntax
trees. The input to nextState is not directly a token but a structure of type
ParseInput which contains the current recognizer. Whenever a String literal has to
be recognized, the recognizer checks whether there is a sequence of tokens starting
with a capital letter at the current position. If there is, then it is considered as a
potential named entity5. Independently from the feedback from the recognizer the
parser will also consider all alternative analyses based on rules in the grammar. If
some phrase is both acceptable as literal and as some other syntactic phrase, then
both alternatives are returned as possible. This happens for example if the first
word of a sentence can be seen as both name (it starts with capital letter) and a
normal token.

Finally we should emphasize that there is nothing specific in the rule LITERAL

for the categories String , Int and Float . In principle, the same rule can be fired

5any realistic named entities recognizer should use more sophisticated strategy
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for any category, and the parser chooses when to fire LITERAL and when PREDICT

based on the next symbol after the dot. The compiler will produce either {d; r}
or 〈d; r〉 based on command line settings which characterize a given category as a
literal or not. Just as well we can setup any category as a literal category.

Again this is best illustrated with an example, for instance, we may want to
distinguish between names of people and names of organizations. We can define
two categories Organization and Person and two functions:

fun mkOrganization : String → Organization;

mkPerson : String → Person;

which create the corresponding category from a string. This gives us a way to
distinguish between the two types of entities but somehow we should communi-
cate to the named entity recognizer what kind of entity is expected. Just attaching
a recognizer to the category String does not help. Fortunately, by using the op-
tion -literal, we can tell the GF compiler that we want to have custom literal
categories i.e.:

> gf -make -literal=Person,Organization MyGrammar.gf

After that the parser will treat Person and Organization as literal categories. The
implementation of the named entity recognizer should ensure that in the returned
abstract syntax tree the name is wrapped with either function mkOrganization or
function mkPerson .

2.7 Higher-Order Abstract Syntax
In the definition of an abstract syntax (Definition 2, Section 2.1), we defined the
allowed types as:

The type is either a category C ∈ NA or a function type τ1 → τ2

where τ1 and τ2 are also types.

This implies that if τ1, τ2 and τ3 are types, then we also permit (τ1 → τ2)→ τ3 as
a type. For instance we can define functions which act like logical quantifiers:

fun forall : (Id → Prop)→ Prop

This is a completely acceptable definition in GF but so far we simply ignored
that possibility. GF implements the notion of higher-order abstract syntax [Pfen-
ning and Elliot, 1988] which is a handy way to implement bound variables. For
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example, we can use the above function in the abstract syntax of sentences which
quantify over sets:

For every integer X, it is true that either X is odd or X is even.

the first appearance of X binds the variable to denote an arbitrary integer, and in
the second and the third appearance the variable is used to state some property
for it6. The same sentence can also be modelled by using the literal category
String but if it is modelled with literals, then the parser will not control whether
all variables are bound, i.e. it will also accept:

For every integer Y, it is true that either X is odd or X is even.

where X is not defined anymore. With the high-order function forall we can
assign the following abstract tree:

forall (\X → or (odd X) (even X))

and since both parsing and linearization accept only closed lambda terms, the tree
will be valid only if all variables are bound.

Before we proceed with the formal rules for parsing and linearization with
higher-order abstract syntax, we should clarify the meaning of the higher-order
arguments, i.e. arguments of type A → B, from grammatical point of view. For
instance, what does it mean to have such type as a start category (type) in a gram-
mar? In principle it is not very different from having B as a start category. Indeed
for every abstract syntax tree t of type B we can build an abstract syntax tree
\x → t of type A → B by just wrapping the original tree t with a lambda ab-
straction for some fresh variable x. The difference is that when we have function
types, then during the parsing of B we should also allow every phrase of category
A to be replaced with a variable name. In other words, every time when we have
to parse with A → B we actually parse with B but we also temporarily add new
productions for all concrete categories AC such that ψN(AC) = A:

AC → f [VarC], f ∈ lindef(AC)

Here VarC is an internal literal category whose values are all tokens conformant
with the lexical rules for an identifier in GF. In the previous section, we intro-
duced three built-in literal categories, and now we add another one – VarC . The

6Another application of higher-order abstract syntax is to model anaphoric expressions in nat-
ural language, see Ranta [2011], Section 6.10, pp. 141-143
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difference is that while both String , Int and Float are abstract categories with cor-
responding concrete categories, VarC is defined only in the concrete syntax, and it
does not have corresponding abstract counterpart. This makes VarC internal and
accessible only for the interpreter because the concrete categories are completely
hidden from the users. This also implies that ψN(VarC) is undefined and should
never be used.

Unfortunately just adding AC → f [VarC] is not enough to guarantee that all
variables are bound since once we have the production, it can be applied indef-
initely many times. It turns out that it is far too complicated for the parser to
maintain the correct scope in all cases. For this to work, for every item, we have
to keep the current scope, and the problem is that it has unlimited depth. For
instance when we have functions like forall , then we can nest the function and
introduce unlimited number of variables, i.e.:

forall (\X → forall (\Y → forall (\Z → . . .)))

For precise scope management, we need, for every active item, to keep track of
at least the number of variables per category. Since the number of variables is
unlimited this could lead to potentially infinite number of items.

A far simpler solution is to say that every time when the parser has to predict
new productions, it is also allowed to predict productions which introduce vari-
ables, and this is regardless of whether or not the current scope allows it at this
point. This means that the final parse chart can contain abstract trees which are not
closed, i.e. have unbound variables, but this is not necessarily a problem because
when the trees are extracted from the chart, they are typechecked, and the type
checker will reject any tree which has unbound variables. After all in the final
result only the well-formed trees will be kept.

The problem with this solution is that for every category we must allow one
extra production which furthermore is very permissive, i.e. almost every token
in the sentence can be interpreted as an instance of almost every category. This
immediately affects the parsing performance since at every step the parser has to
consider a lot more possibilities even if the grammar does not have any higher-
order functions. This is very unfortunate especially given the fact that in typical
GF grammars most of the categories are not used as higher-order arguments, so
the overhead will be unnecessary.

As a compromise, our solution is to have only partial control over when new
variables can be introduced. It can still happen that the parser will generate trees
with unbound variables but in a lot fewer cases. In return, the parsing is still
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efficient and guaranteed to terminate. The trick is that new productions should be
predicted only if they can be potentially used.

The key is a modest extension to the structure of PMCFG productions which
explicitly encodes the high-order types. For instance, if we have a function h with
a higher-order type:

h : (A→ B)→ C

then we introduce a new kind of production:

CC → hC[AC/VarC → BC]

where AC , BC , CC and hC are as usual the corresponding concrete counterparts,
but the new thing is the pairAC/VarC which encodes the fact that when we predict
with category BC , then in addition we have to add the production AC → f [VarC].
We do not need f in the production for hC because we can always look it up from
the grammar, e.g. any function in the set lindef(AC) is applied. At the same
time, we do need AC/VarC instead of just AC because in the parsing process, once
we know the name of the bound variable we can replace VarC with some fresh
category which fixes the name of the variable. More formally, our extension is
that the arguments to the productions are not simple categories anymore but rich
structures that we call concrete types:

Definition 6 A concrete type τC is either:

• a concrete category C, or

• a type C1/C2 → τ ′C where C1 and C2 are some concrete categories and τ ′C

is another concrete type.

The other extension is that we need to know the variable name in the lineariza-
tion of functions like forall . From user’s point of view, the linearization category
for arguments of function type, i.e. Id → Prop for instance, is a record which
has the same fields as the linearization of the target category, i.e. Prop , but is also
extended with the special fields $0, $1, . . . of type Str which store the names of
the bound variables. For example, the linearization for forall is:

lin forall p = ”for every integer” ++ p.$0 ++ ”it is true that” ++ p.s;

where p.$0 is the name of the bound variable and p.s is the linearization of the
argument itself, i.e. the proposition (or (odd X) (even X)) from the example.
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LITERAL VAR

[kjA→ f [ ~B]; l : α • 〈d; $r〉 β]

N → g[] [k+1
j A→ f [ ~B{d, r := N}]; l : α 〈d; $r〉 • β]

g = (ν), ψF (g) = ν

PREDICT VAR

Bd,r → g[~C] [kjA→ f [ ~B]; l : α • 〈d; $r〉 β]

[kkBd,r → g[~C]; 1 : •γ]
γ = rhs(g, 1)

COMBINE VAR

[ujA→ f [ ~B]; l : α • 〈d; $r〉 β] [kuBd,r; 1;N ]

[kjA→ f [ ~B{d, r := N}]; l : α 〈d; $r〉 • β]

Figure 2.8: Parsing Rules for Variables

In PGF the extra fields are accessed by using a new kind of argument refer-
ences, i.e. we use 〈d; $r〉 as a reference to the r-th bound variable in the argument
with index d. The normal constituents are still referenced with pairs like 〈d; r〉
while the new notation 〈d; $r〉 helps us to distinguish the variable references.

With this changes in the PMCFG representation, we are ready to start with the
parsing rules for higher-order syntax. The three rules LITERAL VAR, PREDICT VAR

and COMBINE VAR on Figure 2.8 implement all cases where the dot is in front of
some variable reference. The new notation there is that if ~B is some vector of
arguments then Bd,r is the literal category for the r-th bound variable in argument
with index d. Similarly ~B{d, r := N} means that we update the category for the
r-th variable in argument with index d.

The rule LITERAL VAR is similar to the rule LITERAL from Section 2.6 ex-
cept that now we update a category for variable instead of the usual argument
categories. Otherwise it functions in exactly the same way, we call the external
recognizer for literals and if a variable name is encountered, a new function g and
a new production N → g[] are generated which store the name. At the end the
variable category is updated with the new category N .

In the example with the forall function the rule LITERAL VAR will be activated
after the consumption of the prefix “For every integer”. At this point we have the
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item:

[30Prop → forall [Id/VarC → Prop]; 1 : . . . • 〈1; $1〉 . . .]

Since the next token is ”X”, and it conforms to the syntax for identifiers in GF, the
parser will accept it and will produce two new items:

N → g[] [40Prop → forall [Id/N → Prop]; 1 : . . . 〈1; $1〉 • . . .]

here the second item is derived from the premise by moving the dot to the next
position and by replacing the variable category with a new category N . The other
generated item is a production for N where the newly generated function g:

g := (”X”)

stores the name of the variable.
The other two rules PREDICT VAR and COMBINE VAR are similar variations of

PREDICT and COMBINE and they are applied when the variable category is not a
literal.

In addition to the three new rules, we also need to modify the existing PREDICT

rule which will add the new productions. In the new version of PREDICT we now
generate more than one item:

PREDICT

D → g[~C] [kjA→ h[ ~B]; l : α • 〈d; r〉 β]

L→ f [M ] [kkD → g[~C]; r : •γ]
γ = rhs(g, r)

here we assume that Bd = L/M → D and we predict not only a new active item
but also one production for every function f ∈ lindef(L). If Bd had more high-
order arguments, i.e. if it was L1/M1 → . . . Ln/Mn → D, then we must add one
production for every pair of categories Li and Mi.

In our particular example we will derive the item:

[90Prop → forall [Id/N → Prop]; 1 : . . . • 〈1; 1〉 . . .]

after we have accepted the prefix “For every integer X, it is true that”. At that
point, the dot is in front of 〈1; 1〉 and we have to apply the rule PREDICT. Since
we have a higher-order argument, in addition to the active item, we will derive the
production:

Id → f [N ]
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where f is the default linearization function for category Id .
Note that now we have the category N instead of VarC . This means that dur-

ing the parsing of the proposition “either X is odd or X is even”, the parser will
suggest only X and will not accept any other variable name. This ensures that
only variable names that are already in the scope will be accepted.

Unfortunately our trick works well only in one direction. If we instead had
another linearization for forall :

lin forall p = ”it is true that” ++ p.s++ ”for every integer” ++ p.$0;

then the parser will apply PREDICT before LITERAL VAR since p.s is used before
p.$0. In this case the temporary production will be:

Id → f [VarC]

and the parser will have to accept as valid any variable name. Furthermore when
the parser has to recognize the last appearance of the variable, i.e. the one cor-
responding to p.$0, it has no clue about what variable names were used in the
phrase for p.s so it must again accept any variable name. This still does not mean
that unbound variables are permitted because the next step after the pure parsing
is the type checking and the type checker will reject any abstract tree which has
unbound variables. The only visible effect from the difference is when the parser
is used in predictive mode, then in the first case the user will get the correct pre-
dictions for variable names while in the second the predictions are more liberal
but at the end if the tree is not well formed, the user will get an error message.

From linearization perspective, the linearization of tree of type A→ B is sim-
ilar to the linearization of tree of typeB, except that whenever we reach a variable,
we have to wrap it with some function f in the set of the default linearizations for
A.

The precise algorithm for the extraction of trees with higher-order abstract
syntax, we will defer until Section 3.5 where we will consider it together with the
treatment for dependent types.

2.8 Optimizations
We experiment with grammars which have hundreds of thousands of productions.
Although this does not necessary affect the parsing and the linearization efficiency,
without proper optimization of the grammar representation, the required memory
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will be so high that the usage of the grammar becomes impractical. Indeed, back
in year 2008, this was the case with most of the resource grammars. Only after a
number of automatic and manual optimization techniques were developed, the di-
rect usage of the grammars was made possible. Before that the resource grammars
were usable only as libraries for defining small application specific grammars.

The two main techniques for reducing the grammar size are Common Subex-
pressions Elimination (Section 2.8.1) and Dead Code Elimination (Section 2.8.2).
Both optimizations are implemented as part of the GF compiler but they also af-
fect the grammar representation in PGF, so they are also important for the general
understanding of the GF engine.

The optimization in Section 2.8.3 does not affect the representation of the
GF grammar but greatly improves the performance of the parser when working
with large coverage lexicons (∼ 40000 lemmas). Finally in Section 2.8.4 we will
describe some techniques for manual optimizations.

2.8.1 Common Subexpressions Elimination
The first important observation for every non-trivial grammar is that there are a lot
of repetitions in the definitions of the concrete functions. The concrete functions
are compiled from the linearization rules in the original grammar, where every
function corresponds to one particular instantiation of the parameters in the orig-
inal rule. The consequence is that there will be many functions which are almost
the same. If we take as an example the linearization:

lin f x y = {
s1 = case x.p of {True ⇒ x.s1; False ⇒ ”a”};
s2 = x.s2 ++ y.s;

}

then when it is compiled to PMCFG, we will get two different concrete functions:

f1 := (〈1; 1〉, 〈1; 2〉〈2; 1〉)
f2 := (”a”, 〈1; 2〉〈2; 1〉)

The functions are different but actually differ only in the first constituent because
the value of the parameter x.p does not affect the second constituent. This is a very
common situation, and for instance in the resource grammars there are functions
with hundreds of constituents where only few differ from function to function.
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In the other parts this chapter, we show the constituents as parts of the function
definition but in the actual PGF representation we have a separated table which
stores all unique constituents. The function definition itself has only pointers to
the table. Technically, the right representation for function f in PMCFG would
be:

f1 := (s1, s2)

f2 := (s3, s2)

s1 := 〈1; 1〉
s2 := 〈1; 2〉〈2; 1〉
s3 := ”a”

Here we have explicit names to the constituents (s1,s2 and s3) which let us to share
the sequence 〈1; 2〉〈2; 1〉 which would be otherwise duplicated in two places.

Furthermore, there are cases when a naı̈ve compiler would generate multi-
ple copies of exactly the same concrete function. This happens when different
instantiations of the parameters in the linearization rules produce the same lin-
earizations.

This can be illustrated with an abstract function with two arguments:

fun g : C → C → S

which has the linearization:

lincat S = {s : Str};
C = {s : Str; p : Bool};

lin g x y = {s = x.s++ y.s

++ case 〈x.p, y.p〉 of {
〈True,True〉 ⇒ ”eq”;

〈False,False〉 ⇒ ”eq”;

⇒ ”neq”;

}
};

It is obvious that whenever the parameters x.p and y.p are equal, the function will
be linearized in one way, i.e. with the word ”eq” after the linearizations of x.s
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and y.s, and in another way when the parameters are different. A naı̈ve compiler
would generate four concrete functions, i.e. one for every combination of param-
eter values. However the functions for cases 〈True,True〉 and 〈False,False〉 and
similarly 〈True,False〉 and 〈False,True〉 are exactly the same. Instead of four,
the real compiler will produce only two functions:

S → g1[C True ,C True ]

S → g1[C False ,C False ]

S → g2[C True ,C False ]

S → g2[C False ,C True ]

g1 := (s1)

g2 := (s2)

s1 := 〈1; 1〉 〈2; 1〉 ”eq”
s2 := 〈1; 1〉 〈2; 1〉 ”neq”

Note that now we have two productions that use one and the same function sym-
bol. This requires that every reasonable implementation of the engine should
permit the reuse of functions in multiple productions.

The last observation is that it is common to have groups of productions with
the same function symbol and result category but different arguments, for exam-
ple:

A→ f [B,C1, D1] A→ f [B,C2, D1] A→ f [B,C3, D1] A→ f [B,C4, D1]
A→ f [B,C1, D2] A→ f [B,C2, D2] A→ f [B,C3, D2] A→ f [B,C4, D2]

In this particular case the only difference between the productions is the choice of
categories Ci and Dj i.e. the different productions correspond to different choices
of indices i and j. One simple case when this happens is when some parameter
is not used at all in the linearization rule. This situation and the solution is al-
ready described in Ljunglöf [2004]. The list of productions are compressed by
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introducing special coercion productions:

A→ f [B,C,D]

C → [C1]

C → [C2]

C → [C3]

C → [C4]

D → [D1]

D → [D2]

Here the special wildcard function marks the coercions.
The optimization described in Ljunglöf [2004] does not capture all cases which

can be optimized. In his solution, the fact that some parameter is not used is de-
tected during the generation of the concrete function itself. Unfortunately this is
not always so simple. If we take this modified version of the linearization for
function g:

lin g x y = {s = x.s++ y.s

++ case 〈x.p, y.p〉 of {
〈True,True〉 ⇒ ”true”;

⇒ ”false”;

}
};

then both parameters x.p and y.p are still used but the value of y.p is irrelevant if
x.p = True and vice versa. This is not easy to detect during the compilation. We
still use Ljunglöf’s compilation schema including his optimization but after that,
if it is possible, we also merge some productions by using extra coercions.

The introduction of coercions does not change significantly the basic pars-
ing and linearization algorithms. The coercion functions can be seen as identity
functions which map one category into another. However, the parsing and the lin-
earization algorithms treat the coercions as special kinds of productions because
in this way we do not need extra functions in the concrete syntax of the grammar.

All subexpression elimination optimizations have been implemented and tried
with the resource grammar library [Ranta, 2009], which is the largest collection
of grammars written in GF. The produced grammar sizes are summarized in Table
2.1. The columns show the grammar size in the number of PMCFG productions,
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Language Productions Functions Constituents File Size (Kb)
Count Ratio Count Ratio Count Ratio Size Ratio

Bulgarian 3521 1.03 1308 2.59 76460 1.84 3119 1.91
Catalan 6047 1.23 1489 4.29 27218 3.82 1375 5.34
Danish 1603 1.05 932 1.51 8746 2.09 360 1.55
English 1131 1.03 811 1.34 8607 5.30 409 2.05
Finnish 135213 - 1812 - 42028 - 3117 103.53
French 11520 1.14 1896 6.05 40790 3.63 3719 4.37
German 8208 1.37 3737 2.81 21337 2.47 1546 2.76
Interlingua 2774 1.00 1896 1.29 3843 2.09 245 1.39
Italian 19770 1.17 2019 9.71 39915 3.86 2193 7.76
Norwegian 1670 1.05 968 1.51 8642 2.19 361 1.57
Romanian 75173 1.50 1853 39.19 24222 5.00 1699 21.09
Russian 6278 1.04 1016 4.10 19035 3.17 985 2.18
Spanish 6006 1.23 1448 4.38 27499 3.75 1369 5.36
Swedish 1492 1.03 907 1.44 8837 2.01 352 1.48

Table 2.1: Grammar sizes in number of productions, functions, constituents and
file size, for the GF Resource Grammar Library. The ratio is the coefficient by
which the corresponding value grows if the optimizations were not applied.

functions, constituents and in file size. Each column has two subcolumns. The
first subcolumn shows the count or the size in the optimized grammar and the
second subcolumn shows the ratio by which the grammar grows if the optimiza-
tions were not applied. As it shows the optimizations could reduce the file size up
to 103 times for Finnish. Without optimizations the compiled Finnish grammar
grows to 315 Mb and cannot even be loaded back in the interpreter on a computer
with 2Gb of memory.

2.8.2 Dead Code Elimination
Dead code elimination is in general an optimization that removes code that does
not affect the execution of the program. In the context of GF, by execution we
mean either parsing or linearization with the grammar.

There are well known optimizations for context-free grammars [Hopcroft and
Ullman, 1979] which remove useless or unreachable productions in a way pre-
serving the strong generative capacity of the grammar. The same algorithms can
be generalized to PMCFG and this is the basis of the dead code elimination opti-
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mization in the GF compiler.
It was first observed by Boullier [1998] that every simple Range Concatena-

tion Grammar (sRCG) can be optimized by removing “all its useless clauses by
a variant of the classical algorithm for CFGs”. Since sRCG is similar but weaker
than PMCFG formalism, it is not surprising that the algorithm for removal of
useless productions also generalizes to PMCFG. Unfortunately, Boullier did not
describe the algorithm itself, giving the impression that the generalization must
be trivial. The first sketch of the actual algorithm was published twelve years
later in Kallmeyer [2010]7 who also described the algorithm for the removal of
unreachable clauses in sRCG.

Here we describe algorithms for the removal of useless and unreachable pro-
ductions in PMCFG. The algorithm for removal of useless clauses is basically the
same as the one in Kallmeyer [2010] but the algorithm for detection of unreach-
able code is extended further and can also detect cases when only some of the
constituents of a category are unreachable. If the same algorithm is applied to
sRCG this will correspond to the removal of arguments for some predicates.

The optimizations were evaluated as part of the project described in Enache
and Détrez [2010] where a variant of the GF engine is used for running a touris-
tic phrasebook for fifteen languages on Android phones. Since in this case the
applications have to run on a platform with limited resources it is important to
make the grammars as small as possible. Thanks to the optimization the whole
grammar was reduced from 15Mb to just 0.5Mb. The main source of redundancy
was that while the resource library provides full inflection tables and all gram-
matical tenses, in the phrasebook grammar many morphological forms and most
of the tenses are not used. Again the optimizations are the most effective for
Finnish where they eliminated many word forms from the otherwise rich Finnish
morphology.

Useless Productions

A production is useless if it cannot be used for the derivation of any string in the
language. The simplest example is when we have a production whose argument
categories do not have productions, i.e. we have:

A→ f [B]

but we do not have any productions for B and we do not have higher-order pro-
ductions where B is a higher-order argument. In this case, the production can be

7About three months before this section was completed.
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safely discarded. Another example is a cyclic chain of productions where there is
no production that can be used to break the chain. For instance if we have:

A→ f [A]

and if this is the only production for A, then we cannot break the loop and the
derivation cannot yield a finite string.

The elimination algorithm iteratively computes sets of useful (alive) produc-
tions until a fixed point is reached. The initial set is empty:

L0 = ∅

We compute on each iteration an extension Li+1 of the set from the previous it-
eration Li which includes the new productions whose arguments already have
productions in Li, i.e.:

Li+1 = Li ∪ {A→ f [ ~B] | A→ f [ ~B] ∈ P ; B1, . . . , Ba(f) ∈ cat(Li)}

Here by cat(Li) we mean the set of categories which appear in Li either as the
result category for some production or if C1/C2 → C3 is a higher-order argu-
ment, then in the place of C1. We also add to the set all literal categories, i.e.
{String, Int ,Float ,Var}, since they are useful despite that we do not have pro-
ductions for them. The algorithm terminates when Li+1 = Li. Since the sequence
of sets L0, L1, . . . has an upper limit P and the sequence is monotonous, it is
always guaranteed to reach a fix point.

Unreachable Constituents and Productions

When we do parsing, we start from the productions for the start category, and we
recursively predict items for other categories. If in this way, there is no way to
predict an item for some category or constituent, then they are unreachable.

The reachability of a category is the criterion for discarding productions in
the algorithm in Kallmeyer [2010]. Our algorithm is more refined and relies on a
more precise criterion that takes into account the reachability of the constituents
since when the parser predicts new items, it does it on the basis of a pair of a
category and a constituent index.

If there is no way to produce an item for a given pair of a category and a
constituent index, then the pair is unreachable. Unfortunately, we cannot simply
discard all unreachable constituents of a given category because, according to the
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definition of PGF (Section 2.1), all concrete categories for the same abstract cate-
gory must have the same dimensions i.e. d(A) = d(ψN(A)). We can maintain this
invariant, if instead we compute the reachability for pairs of an abstract category
and a constituent index. This means that if we have two categories A1 and A2

such that ψN(A1) = ψN(A2) = A, then the reachable constituents for A will be
those who are reachable for at least A1 or A2.

Before computing the reachable pairs, we first compute the set of pairs that
are direct neighbours, i.e. there is some production which relates the categories
and the constituents:

Rel = {(ψN(A), l, ψN(Bd), r) | A→ f [ ~B] ∈ P, rhs(f, l) = α〈d; r〉β}

Note that to compute Rel we iterate over the productions in the concrete syntax
but in the output we map every concrete category to its abstract category. In this
way, we eliminate the difference between concrete categories related to the same
abstract category.

The reachability analysis is again an iterative process. We start with the initial
set which consists of only one pair with the start category S and the constituent 1:

R0 = {(S, 1)}

After that on every iteration we add those pairs that are direct neighbours of the
categories that are already in the reachability set.

Ri+1 = Ri ∪ {(B, r) | (A, l) ∈ Ri, (A, l, B, r) ∈ Rel}

The iterations stop when we reach a fixed point i.e. Ri+1 = Ri = R. Since the
set of categories and constituents is finite and the progression is monotonous, it is
guaranteed that a fixed point will be reached.

Once we have the reachability set R we can eliminate several things from
the grammar. First, we need to keep only those productions whose result cate-
gories map to abstract categories in the reachability set, and we can discard the
rest. Second, we process the productions which are not discarded, and we replace
in A → f [ ~B], the function f with a new function which contains only the con-
stituents that are reachable for A. Finally since we replaced all functions with
new ones, we have also discarded some constituents. As we mentioned in Section
2.8.1, the constituents itself are kept in a separated table which lets us imple-
ment common subexpression elimination. After the reachability analysis, we can
reduce the table by discarding the constituents that are not referenced anymore
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from any function. In the elimination process, we also update the constituents it-
self because whenever we have 〈d; r〉 in some constituent then we have to replace
r with r′ which is the new index of the same constituent in the optimized version
of the grammar.

Soundness

The soundness of the removal of useless productions depends on the interpretation
of metavariables in PGF. Let’s say that we have some useless function:

fun useless : A→ B;

lin useless x = ”useless”;

where we either do not have any productions for category A or every predic-
tion with A will always go back to prediction with B. If we use an unoptimized
grammar, then the parsing with category B will successfully recognize the string
”useless” and the parser will return the abstract tree:

useless ?0

Here we get the metavariable ?0 because the parser detects that the argument of
useless is never used and it does not try to substitute it with some value. In this
case, we get an abstract tree but it has a metavariable which cannot be refined in
any way. After the elimination of useless productions, the situation is different.
The function will be detected as useless and discarded8 which means that the
parser will fail.

Another situation where the optimized and the unoptimized grammars will
have different behaviours is when we use the parser in predictive mode, i.e. the
user writes some sentence and at each step the parser guides the user by predicting
the set of all possible words at the current position.

In some languages, the subject of a sentence can be in different grammatical
cases depending on the type of the verb in the sentence. This can be modelled
with a function like:

fun Pred : N → V → S;

lin Pred subj verb = {s = subj .s ! verb .c++ verb .s};

8the optimizer looks only at the categories and not in the function definitions
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Here the parameter c of the verb selects the right case for the subject. Now, if
we assume that the language has only nominative and accusative cases, then the
compiler will generate two productions:

S → Pred nom [N , Vnom ]

S → Pred acc [N , Vacc ]

where the concrete function Pred nom will attach a subject in nominative case to
a verb expecting nominative, and similarly Pred acc will attach a subject in ac-
cusative. With these two productions, the parser will predict that every sentence
starts with a noun in either nominative or accusative case. However, if it happens
that the lexicon does not include any verb expecting accusative, then when the
user selects a noun in accusative, on the next step the user will get an empty set of
predictions.

This is confusing because the expectation is that the predictions always lead
to a complete sentence. The situation is also rather common because the different
applications usually reuse syntactic rules from the GF resource library but supply
their own lexicon. Since the resource library has to be reusable, it implements
all grammatical cases even if some of them are not used in most applications.
Fortunately, the elimination of useless productions solves the problem since it
detects that the second production for Pred is useless if none of the verbs expects
an accusative subject. After the removal of the second production the parser will
correctly predict that a sentence can only start with a noun in nominative.

The final conclusion is that the optimized and the unoptimized grammars are
semantically different. Mostly because of the nicer behaviour of the parser for the
optimized grammars, we choose that this will be the default semantics of PGF.
A given sentence is considered as described by the grammar only if there is a
complete finite abstract syntax tree that can be linearized to the same string. The
correct behaviour is ensured by always removing the useless productions at the
end of the compilation.

The effect from the removal of unreachable productions and constituents is
that with the optimized grammar it is safe to linearize only abstract syntax trees
whose type is the same as the start category. For comparison, the GF shell lets
the user to linearize trees of any type. Still in many applications the restriction
is acceptable and the advantage of having smaller grammars is beneficial. In or-
der to satisfy the requirements of the different applications this optimization is
performed only when the grammar is compiled with the flag -optimize-pgf
i.e.:
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> gf -make -optimize-pgf MyGrammar.gf

2.8.3 Large Lexicons
The improvements in the parsing performance in GF opened the way for experi-
ments in open-domain parsing. While this is still an open problem (Section 4.1)
and an active research area, some optimizations were necessary to get started.

The resource grammars in GF are traditionally used as libraries for building
smaller application specific libraries, but just as well they can be used directly
for parsing and linearization. The problem is that for this to be interesting for
open-domain parsing, the grammar has to be complemented with a large enough
lexicon. The GF 3.2 distribution comes with large coverage lexicons (more than
40000 lemmas) for Bulgarian, English, Finnish, Swedish and Turkish. Combined
with the corresponding resource grammars these lexicons make it possible to anal-
yse almost free text.

The new challenge here is the gigantic gap between the usual sizes of the
application specific lexicons, i.e. few hundred lemmas, and the sizes of the open-
domain lexicons which have several thousand lemmas. The parser as it was de-
scribed in the previous sections would be very inefficient in this case because of
its top-down design. Starting from the start category, after few prediction steps,
the parser will reach to a point where it have to predict with some of the lexical
categories, i.e. noun, verb or adjective. Unfortunately, the prediction step is linear
in the number of productions per category which in this case means that the parser
will have to sequentially traverse 40000 productions for almost every word in the
sentence.

Ideally we should apply some bottom-up filtering in the top-down parser and
this would eliminate most of the redundant traversals. One complication to this is
that our grammar is dynamic, i.e. it is extended in the parsing process, and this
leads to the question of how to implement the filtering for the newly generated
categories. This is solvable in principle if we retain the relation between the fresh
categories and the original categories in the grammar. The filter for the original
category can also be used as a filter for its specialization.

Unfortunately in our experiments for bottom-up filtering we observed that this
requires building large tables and at the end is not very practical idea. Instead,
our lightweight solution is to have a mixed parsing strategy where the syntac-
tic rules are processed in top-down fashion and the lexical rules are processed
bottom-up. The strategy is similar to the approach in most state of the art sta-
tistical parsers where the parser builds only in the syntactic phrases, while the
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terminals are tagged in advanced with preterminals, i.e. part of speech tags.
The GF formalism does not have any intrinsic distinction between lexical and

syntactic rules. However, by convention, abstract functions without arguments
are seen as abstract words. They are special because the definitions of the cor-
responding concrete functions cannot have any variables, i.e. they are tuples of
plain strings. During the grammar loading, all such concrete functions are split
out of the main grammar and are reorganized into a nested map:

<NC,N> 7→ (T ∗ 7→ F C)

which represents the lexicon. Here every pair of a concrete category B ∈ NC

and a constituent index r ∈ N such that 0 < r ≤ d(B) is mapped into a trie
from a sequence of tokens (an element of T ∗) to a set of functions which have that
sequence in its r-th constituent and are also used in at least one production where
B is the result category.

Now when we have the active item:

[kjA→ f [ ~B]; l : α • 〈d; r〉 β]

then we first apply the usual PREDICT rule which traverses only the rules that are
not split out, i.e. only the syntactic rules. In addition, we also look up in the
lexicon the pair <Bd, r>, and we retrieve the trie. After that we match the current
input with the prefixes in the trie, and if there are any matches, the corresponding
items are predicted and added in the chart. This simple reorganization of the
grammar ensures that the parsing performance will degrade only logarithmically
instead of linearly with the size of the lexicon.

2.8.4 Hints for Efficient Grammars
Just like with any other programming language, the automatic optimizations in
the GF compiler are not always enough to achieve the best performance. They
can only do limited transformations which reduce the size of an already existing
grammar. The grammarian, on the other hand, can reorganize the grammar in a
much more creative way, and this can lead to improvements that go far beyond the
capabilities of the automatic optimizer.

Of course, for this to be fruitful, the grammarian must have some understand-
ing of which constructions are the bottleneck of the grammar. It is not possible
to give comprehensive guidelines for all situations, but still we can give some
hints for manual grammar optimization which are based on our experience and
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understanding of the internals of the compiler. The hints are mostly important
for the developers of the resource grammars library because when an application
grammar is build using the library, it very much benefits from the efficiency of the
underlying resource grammar.

The most performance critical operation in the GF interpreter is the parsing,
and although its theoretical complexity is always polynomial to the length of the
sentence, the exponent and the constant factor are function of the grammar, so a
careful optimization can do a lot. In other cases, the high exponential factor is
unavoidable and is caused by the nature of the grammar. Here we concentrate on
optimizations in the concrete syntax because the abstract syntax implements some
theory of the application domain and is therefore fixed. In most cases, a smaller
set of productions leads to better performance, and we can start with some hints
for reducing the number of productions.

Remember that the compiler generates one concrete category for every com-
bination of values for the inherent parameters in the linearization type for the
abstract category. This means that there is an easy way to predict the maximal
number of productions by just looking at the type signatures for the abstract func-
tions and at the linearization types for the abstract categories.

We start with an equation for computing the number of values for a parameter
type. If we have the definition of the parameter P :

param P = P 1 Q 11 Q 12 . . .Q 1m1

| P 2 Q 21 Q 22 . . .Q 2m2

. . .

| Pn Qn1 Qn2 . . .Qnmn

where P 1 . . . Pn are the parameter constructors and Q ij are other parameter types,
then we can count the number of values C(P) for P by computing the equation:

C(P) = C(Q 11) ∗ C(Q 12) . . .C(Q 1m1
)

+ C(Q 21) ∗ C(Q 22) . . .C(Q 2m2
)

. . .

+ C(Qn1) ∗ C(Qn2) . . .C(Qnmn
)

Since the parameters must not be recursive, i.e. P itself must not occur as a type
for the arguments of its constructors nor in the definitions of Q ij , the equation is
also non-recursive and therefore well-founded. A record type consisting of only
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parameter types is another parameter type. The number of values for the record is
computed by multiplying the number of values for the fields, i.e.:

C({q1 : Q 1; q2 : Q 2 . . . qn : Qn}) = C(Q 1) ∗ C(Q 2) . . .C(Qn)

Similarly, a table, whose values are parameters, can also be used as a parameter.
However, the number of values for the table type is exponential:

C(P ⇒ Q) = C(Q)C(P)

and it is better to avoid the usage of table types as parameters.
The number of concrete categories for a single abstract category is computed

by multiplying the number of values for all inherent parameters in its linearization
type. For instance if we have the parameter types Q 1,Q 2 . . .Qn in the lineariza-
tion type for abstract category A:

lincat A = {. . . ; q1 : Q 1; q2 : Q 2; . . . ; qn : Qn};

then the number of corresponding concrete categories for A will be:

C(A) = C(Q 1) ∗ C(Q 2) ∗ . . . ∗ C(Qn);

Note that in all equations we multiply more and more numbers which means
that the total counts grow exponentially. Fortunately neither the number of pa-
rameters nor the number of concrete categories directly affects the size or the
efficiency of the grammar. The set of parameter values, for instance, is not stored
anywhere in the compiled grammar and therefore this does not affect the size. The
set of concrete categories is stored but since all concrete categories, derived from
the same abstract category, are encoded as a consecutive integers, it is enough
to store the index of the first and the last category. In this way, the number of
concrete categories can grow quickly but the space allocated for their descriptions
(See object CncCat in Appendix A) is only proportional to the number of distinct
abstract categories which is a constant.

So far, all the computations were exact, i.e. if we have computed that there will
be a number C(A) of concrete categories derived from A, then this is the exact
number. In contrast, when we compute the number of productions, without doing
the actual compilation, then in the best case we can only hope to do pessimistic
estimation, i.e. we compute the maximal number which we get if the compiler is
not able to do any optimizations. This is still a useful hint because in some corner
cases the full compilation may become very slow or may even be impossible due
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to memory limitations. But the pessimistic estimation is very cheap and can be
done in advance. The estimation can be a hint for which linearization rules have
to be optimized first.

The way to estimate the number of productions generated for the abstract func-
tion f with signature:

fun f : A 1 → A 2 → . . .→ An → A ;

is by multiplying the number of concrete categories for every argument i.e.:

C(f) = C(A1) ∗ C(A2) ∗ . . . ∗ C(An)

The number of parameters in the target category A does not affect the number of
productions because the corresponding values are either fixed or they are com-
puted on the basis on the parameters in the arguments.

GF includes a profiler which automatically computes the estimations for all
categories and functions. If the grammar compilation is triggered with the com-
mand line option -prof:

> gf -make -prof MyGrammar.gf

then the compilation proceeds as usual but in addition the profiler will dump the
estimations to the standard output. Although these are only estimations and in
many cases the optimizer will be able to significantly reduce the number of pro-
ductions, looking at the estimations is useful in two ways – first reducing the
number of possibilities might help the compiler to find better optimization and
second this can improve the compilation time.

The general principle for manual optimization is to minimize the number of
parameter values. Let’s take for example, the case where the noun and the adjec-
tive in a noun phrase have to agree in number and gender. The most straightfor-
ward implementation is to introduce two new parameter types - one for number
and one for gender:

param Number = Sg | Pl ;
Gender = Masc | Fem | Neutr;

Although this is principally correct, it does not reflect the fact that in many lan-
guages the adjective has only one form for plural which is not dependent on the
gender. In such cases, more appropriate parameter type will be:

param NumGen = GSg Gender | GPl ;
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where the gender is available only for singular. If we count the number of param-
eter values, then we get six possible values for a pair of Number and Gender and
only four values for NumGen which is a good improvement.

Another less common feature that also affects the number of productions in
the grammar is the free variation. It is often the case that within a certain domain
there are several ways to express one and the same thing. In GF, this is modelled
by allowing free variations in the linearization rules. For example, if we have an
office assistant where the user can issue speech commands, then we might want
to have the abstract command start word :

lin start word =variants{”open”; ”start”}++

variants{”Word”; ”Microsoft Word”};

which will correspond to four different concrete phrases. Despite the differences,
in the given doman, we may not want to differentiate so we just define them as
variants. Now in the concrete syntax there will be four different functions which
are mapped to the same abstract function:

start word 1 := (”open Word”);

start word 2 := (”open Microsoft Word”);

start word 3 := (”start Word”);

start word 4 := (”start Microsoft Word”);

The free variation is a useful tool but it have to be used carefully. Note that when
the variants are concatenated, the number of possibilities multiply, so having too
many variations could lead to combinatorial explosion. It is even worse when the
explosion is not easy to find, for example the variants can be in operations which
are only later expanded in the linearization rules. At the same time, if we refactor
the abstract syntax and add explicit categories for operation, i.e. start/open, and
for product, i.e. Word/Microsoft Word, then we can eliminate the variations all
together which usually improves the parsing efficiency. This solution also scales
better if we want to add more products, i.e. Open Office. In this case Word is
no longer shorthand for Microsoft Word because it can also refer to the Word
processor in Open Office.

The variants also interact in an unexpected way with table abbreviations. Let’s
say that we want to add tenses to the office assistant grammar. The most straight-
forward solution is to define the linearization of an action like close word as a
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table indexed by the grammatical tense9:

lin close word = \\t⇒ close V ! t++ variants {”Word”; ”Microsoft Word”};
oper close V = table Tense [”close”; ”closed”; ”have closed”; . . .];

Unfortunately this is not what we want because the construction \\t ⇒ . . . is
just an abreaviation for a table where the values in the table are a function of the
parameter. This means that our definition will be expanded to:

lin close word = table Tense [

”close” ++ variants {”Word”; ”Microsoft Word”};
”closed” ++ variants {”Word”; ”Microsoft Word”};
”have closed” ++ variants {”Word”; ”Microsoft Word”}
. . .

];

Now it is obvious that actually we have three or more variants instead of only one.
Every variant has two possible values, which means that in total we will have 23

possible concrete functions for close word . This is not what we want because
in every sentence where close word appears, it will be used only once with one
particular tense, so it would be enough if we had only two versions of close word
where one and the same variant is used for all tenses. This can be achieved if we
restructure the definition of close word by moving the free variation out of the
table abbreviation, for instance:

lin close word = variants {closeIt ”Word”; closeIt ”Microsoft Word”};
oper closeIt obj = \\tense⇒ close V !tense++ obj;

Now the variants construction has wider scope and this will lead to the generation
of only two concrete functions.

Finally, as a final resort for tracking performance issues, it is always possible
to examine the productions in the compiled PGF. The compiler will dump the
portable grammar format in textual representation if it is asked to produce the
output in pgf_pretty format:

> gf -make -output-format=pgf_pretty MyGrammar.gf

Experimenting and looking at the output from the compiler is sometimes the best
way to fine tune the grammars.

9Here the notation table P [. . .] introduce a table indexed by the parameter type P . The values
in the table are listed in the order in which the corresponding parameter values are defined.



Chapter 3

Reasoning

Grammatical Framework is all about grammars and language but the essence of
most formal and natural languages is not only in their syntax but also in the se-
mantics. While in the previous chapter we were mostly concerned with the syntax,
here we will concentrate on the semantics.

The common methodology for writing application grammars is to start by de-
signing an abstract syntax which reflects the semantics of the domain and after
that to render the abstract structures into natural language by designing a con-
crete syntax. For most applications, the abstract syntax has only simple categories
and functions, and then we do not need anything more than what was already
discussed in the previous chapter. In other cases, however, we want to express
complex semantic restrictions, and then we have to resort to the full power of the
logical framework which is the foundation of the abstract syntax.

Note that even if we keep the abstract syntax simple, this does not mean that it
is less semantic. When we have categories like Kind and Quality, as in the Foods
grammar, then we have more precise categorization of the words in the language
than the merely syntactic categorization of nouns or adjectives. It is certainly
possible to go a long way by just making the categories more and more specific.

When this is not enough or if this would make the grammar too complicated,
then it is the right time to start using dependent types, i.e. context-dependent
categories where the context is encoded with some abstract syntax expressions.
The last sentence is a precaution because once the dependent types are introduced,
then it is no longer guaranteed that all operations with the grammar will terminate.
For instance, while the core parsing algorithm has polynomial complexity, after
the parsing, the abstract syntax trees have to be type checked which is undecidable
in the presence of dependent types and computable functions. Of course, this is

73
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not a reason not to use dependent types. After all the same applies to all general
purpose programming languages and they are still very useful. It only means that
the programmer should be careful to write programs that terminate.

The abstract syntax in GF is an implementation of Martin Löf’s type theory
where for type checking we use the same algorithm as the one applied in Agda
[Norell, 2007]. This by itself does not make GF an alternative to Agda since the
abstract syntax in GF has restrictions which makes it suitable as a grammar de-
scription language but at the same time limits its application as a general purpose
language. Before going into details, lets generalize our definition of types in the
abstract syntax in a way that permits dependent types:

Definition 7 A type is one of:

• A→ B is a nondependent function type where A and B are also types;

• (x : A) → B is a dependent function type where x is a variable of type A
which is free in the type B;

• ({x} : A)→ B is a function type with implicit argument where again x is a
variable and A and B are types;

• C e1 e2 . . . en is an atomic type where C is a category and e1, e2 . . . en are
expressions.

Here we still have the construction A→ B which corresponds to simple function
types but we also added the construction (x : A) → B which is a function where
the type of the result depends on the actual value of the argument1. The variable
x is bound to the value of the argument and is used in the type B. The other
generalization is that now the categories can be indexed with values of some type,
i.e. instead of having just the categoryC as an atomic type, we haveC e1 e2 . . . en
where e1, e2 . . . en is a possibly empty sequence of expressions which represents
the context. Variables like x, bound by the dependent function type, are used
exactly in these expressions and make the atomic types dependent on the values
of the arguments.

1In the source language of GF, A → B is a syntactic sugar for (x : A) → B when x does
not appear in B. This is a more traditional point of view but internally we chose to treat the two
notations as different because this will let us to express two optimizations. First if we know that
B is not dependent on the value of A, then we do not need to update the environment for B when
we compute types. Second the scheduling of the proof search is different for the different types.
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Finally, an orthogonal extension is that, like in Agda, we allow implicit argu-
ments, i.e. function arguments whose values can be inferred from the context, so
the user does not have to specify them explicitly. This is an important feature and
is supported in most dependently typed languages, since without it even programs
of small size become too verbose. If we take as an illustration for dependently
typed program the usual example of a vector with fixed length, then in GF it is:

cat Nat
Bool
Vec Nat

fun zero : Nat
succ : Nat → Nat
t , f : Bool
nil : Vec zero
cons : (s : Nat)→ Bool → Vec s→ Vec (succ s)

Here Nat is a category with two constructors zero and succ which encode natural
numbers in Peano representation. Vec is the category for a vector with fixed size
containing boolean values (the Bool category). The index of Vec is the length
of the vector represented as a natural number. The empty vector has length zero
but every time when the constructor cons is applied, the length is increased with
one. Now if we want to construct the vector 〈t , f , t〉 of length 3, then the abstract
syntax for it will be:

cons 2 t (cons 1 f (cons 0 t nil))

It is obvious that specifying the length for every application of cons is first tedious
and second unnecessary since the compiler can infer it. The way to avoid it is to
use implicit arguments, i.e. we use the type ({x} : A) → B instead of (x : A) →
B, and in this way we state that there is an argument of type A but its value is
omitted and should be automatically inferred2. If we change the signature of cons
to:

fun cons : ({s} : Nat)→ Bool → Vec s→ Vec (succ s)

2The equivalent syntax in Agda is {x : A} → B but we chose to use different syntax because
otherwise there will be a conflict with the syntax for records in GF. Other languages like LEGO,
Epigram, Twelf, Coq, etc. have similar notations for implicit arguments.
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then the abstract syntax expression for the vector is reduced to:

cons t (cons f (cons t nil))

Still if we want to explicitly give a value to an implicit argument then we can do it
by wrapping the argument in curly braces, i.e. cons {0} t nil is exactly the same as
cons t nil . The later also brings the issue that we must define an extended notion
of abstract syntax expressions:

Definition 8 An abstract syntax expression is one of:

• e1 e2 is a normal function application;

• e1 {e2} is an application where e1 is a function with an implicit argument,
and e2 is the explicit value of the argument;

• \x→ e is a lambda abstraction;

• \{x}→ e is a lambda abstraction which introduces function with an implicit
argument;

• c, is a function call where c is the function name;

• #i, is a local variable where i is a natural number representing its de Bruijn
index. The local variables are introduced either in a lambda abstraction or
in a dependent function type.

• ?i is a metavariable with index i

Here we explicitly introduce de Bruijn indices [Bruijn, 1972] because this is what
we will use in the computation rules. In the GF language, however, the variables
are referenced by name, and this is what we will continue to use in the examples,
unless if there is a reason to emphasize on the indices. Note that the variable
names are still preserved in the binding sites, i.e. in the function types and the
lambda abstractions. This makes it easier to print the abstract syntax expressions
in a user friendly style and is also the only way to get the variable names when we
linearize higher-order abstract syntax trees to natural language.

With these definitions at hand, we are ready to start the discussion for the log-
ical aspects of the framework. Perhaps the most severe restriction of the abstract
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syntax is that all types must be monomorphic. For instance, it is not possible to
define the signature of the identity function3:

fun id : (A : Type)→ A → A

because this would require parametrization over the type of the domain and the
range of the function. This restriction is necessary because otherwise it would
not be possible to determine the linearization categories for the polymorphic ar-
guments. In other words, if we wish to give linearization for function id , then we
need to know the abstract category of every argument in order to find the appropri-
ate linearization category. In the polymorphic case, we do not know it because we
have type variables. The restriction is reflected in our definitions where we did not
include the possibility that the type can be a variable but we let the variables in the
expressions to be bound by either a lambda abstraction or a dependent function
type.

In principle, we can avoid the restriction by saying that the linearization cat-
egory for arguments of variable type is some opaque type and the only thing that
we can do is to pass around values of this type. This would let us to write a valid
linearization rule for id :

lin id x = x

but this is the only possible rule since we cannot do anything interesting with x.
The other reason not to have polymorphic types is that the categories guide the

parser when and whether a certain rule is applicable. When we have polymorphic
types, then functions like id can be applied in absolutely every context without
restriction. This would significantly increase the parsing complexity.

The monomorphism is the most permissive restriction which ensures that the
category of every argument is statically known. Unfortunately, this is not the
restriction that is currently applied in GF, instead it is forbidden at all to use the
type Type in the abstract signatures. This means, for instance, that the definition:

fun showType : Type → S

will be rejected despite that it is monomorphic. Technically, this kind of functions
should not be rejected, if it was allowed to define a linearization category for Type

3Here Type is the category (the type) of all types except Type itself. In other frameworks, and
in Agda in particular, the same type is called Set .
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and linearization rules for the categories. In this way we could have for example:

lincat Type = Str
lin S = ”S”

and it would not be a problem to have a linearization rule for showType . This is
possible in principle but is not supported so we leave it as a potential extension of
the language in the future.

When the type signatures are seen as logical formulas, then following the
Curry-Howard correspondence, the monomorphism restriction corresponds to the
restriction that only first-order formulas are allowed in our logic. Since the cat-
egories correspond to logical predicates, the restriction that we cannot have type
variables is equivalent to saying that we cannot have variables which range over
the set of predicates. The impact of this observation is that the automatic reasoning
in GF is a lot easier than in a language like Agda which is based on a higher-order
logic. In fact the reasoning in GF is reduced to running a Prolog program.

Furthermore, since type theory is an intuitionistic logic, we can classify the
logical fragment of GF as a first-order intuitionistic logic. Generally speaking the
intuitionistic logic constrains the choice of proof search procedures because there
is no intuitionistically equivalent conjunctive normal form for an arbitrary logical
formula. Fortunately, in our case, the only logical connective that we allow is
implication and in the common case the higher-order syntax is rarely used, so we
have mostly simple types like:

A1 → A2 → . . . An → A

which logically correspond to Horn clauses written in implicational style. The
proof search procedure for logic with only Horn clauses is well understood and
widely used in many Prolog like logic programming languages. The higher-order
types escape from the Horn clause fragment but they fit as a special case of first-
order hereditary Harrop formulas.

The language of hereditary Harrop formulas is defined by a set of formulas G,
whose validity can be automatically verified, and a set of formulas D which can
be stated as axioms. The syntax for both is defined with two mutually dependent
rules:

G ::= A | G ∧G | G ∨G | ∃x.G | ∀x.G | D → G

D ::= A | D ∧D | ∀x.D | G→ A
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where A stands for an atomic formula. The advantage of the family of hereditary
Harrop formulas is that it is a non-trivial generalization of Horn clauses which
permits a lot richer logical language but still allows efficient proof search. If we
take the intersection of G and D, then we get the set F of all formulas that can be
used both as goals and as axioms:

F ::= A | F ∧ F | ∀x.F | F → A

Its implicational fragment:

F ::= A | ∀x.F | F → F

is derived by eliminating the case for conjunction and also taking into account the
currying transformation:

F1 ∧ F2 → F3 ≡ F1 → F2 → F3

This fragment is exactly the set of GF types written in a style that is more tradi-
tional for classical logic. Namely we used the universal quantifier ∀x instead of
the dependent function type (x : A)→ B.

At least one Prolog variation - λProlog [Nadathur and Miller, 1988], supports
the full language of hereditary Harrop formulas, and this is our source of inspira-
tion for the proof search in GF. The theory and the implementation behind λProlog
has been developed for more than twenty years and its most mature implementa-
tion Teyjus version 2 [Qi, 2009] provides a compiler and an interpreter which are
efficient enough for doing non-trivial computations. Another dependently typed
language with proof search inspired by λProlog is the language Twelf [Pfenning
and Schürmann, 1999].

Besides the implementation of hereditary Harrop formulas, the other distin-
guishing feature of λProlog is that, unlike Prolog which supports only simple tree
like data terms, λProlog permits arbitrary lambda terms. Since the abstract syntax
trees are also arbitrary lambda terms, this is yet another reason to take it as a model
for reasoning in GF. The cost of this generalization is that the simple first-order
unification is no longer sufficient. Fortunately, the lesson from Miller [1991] tells
us that for most practical applications full higher-order unification [Huet, 1975]
is not needed and the weaker higher-order pattern unification is an efficient and
still very useful alternative. The higher-order pattern unification is also used in
Norell’s type checker so it fits very well in a combination with the proof search.

In addition to the remarkable similarities between GF and λProlog, there are
also some differences. First of all in GF we are not only interested in whether
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a certain logical statement is true but we also want to have the exact proof term.
In the context of λProlog, this would be overkill since the generation of proofs
is equivalent to tracing the execution of the whole program which is far too ex-
pensive for a general purpose programming language. In GF, the typical abstract
syntax trees rarely exceed the depth of 20-30 levels, and if we see the trees as
proof terms, then they would correspond to rather small programs. In such cases,
the overhead for constructing the proof term is acceptable and usually most of the
time for search is spent on trying different alternatives.

Although both λProlog and GF operate with lambda terms they are not op-
erationally identical. In GF, we permit definitional equalities for functions while
in λProlog all functions symbols are just syntactic atoms and as such they act as
data constructors from the type theoretic point of view. For instance in GF, we can
define the addition of two Peano numbers as a function:

fun plus : Nat → Nat → Nat
def plus zero y = y

plus (succ x) y = succ (plus x y)

while in λProlog it has to be implemented as a predicate with three arguments
where the third argument represents the sum of the first two. The addition of
function definitions changes the principal completeness of the high-order unifica-
tion. For instance, if we have the unification problem:

?1 (succ zero) (succ (succ zero)) ' succ (succ (succ zero))

where ?1 is a metavariable, then in the absence of function definitions it has only
the following three solutions:

?1 = \x, y → succ (succ (succ zero))

?1 = \x, y → succ (succ x)

?1 = \x, y → succ y

However, when we take into account the function plus , then we get one more
principal solution:

?1 = \x, y → plus x y

Unfortunately, finding the last solution is undecidable so instead we choose to
leave the unification incomplete, i.e. we do not even try to find the last solution.
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Actually, even the first two solutions can be computed only by using full higher-
order unification which is far beyond the weaker higher-order pattern unification
that we use. In that sense, adding function definitions does not make the pattern
unification more incomplete than it is.

One advantage of the function definitions is that during the proof search the
functional computations do not leave proof objects as foot prints and this makes
them more efficient. As a general rule, it is a good practice to implement the
deterministic computations as functions and the nondeterministic as logical rules.

Another difference is that while the λProlog programs are allowed to go into
infinitely deep recursion, in GF the depth of the proof term is limited, i.e. we
have a configuration option which constrains the upper limit of the number of
recursive nestings. The rationale for this is that when the depth is limited, then the
collection of generated trees is more representative. If we take as an example the
Peano numbers and the function plus , then an exhaustive generation without depth
limitation will start generating larger and larger numbers and will never backtrack
and attempt to use the signature for plus . On the contrary, if we have an upper
limit of three then the search will first generate the numbers from 0 to 2, and after
that it will continue with terms like plus 0 0, plus 0 1, plus 0 2, plus 1 0, etc.

The depth limitation has also a positive effect on the search termination. Since
there is only a finite number of terms with a given maximal depth, the search will
always finish although it can take a long time. The termination guarantee, how-
ever, does not apply, if the search involves the computation of a function which
does not terminate. The current GF compiler does not do any termination check-
ing for functional definitions, and this is a major limitation which characterizes GF
more as a dependently typed programming language and not as a sound theorem
prover. In other words, for every theorem A we can define the function:

fun proof : A
def proof = proof

which is a fake proof for it. The termination checking can be added as a fea-
ture in the future versions of the compiler but even without it, GF is useful as a
programming language.

Yet another extension to the search strategy is that while in λProlog the clauses
for one and the same predicate are tried deterministically in a source code order,
in GF we also support an alternative scheduling where the clauses are picked in a
random order. More concretely, every abstract syntax function has a probability
and every time when we have to refine an incomplete proof we take into account
the specified probability distribution and we choose a function at random.
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From the outline of the similarities and the differences between GF and the
other systems, it is clear that many of the details in the implementation of our
logical framework are not new. The difficulty, however, is that the relevant in-
formation is spread among many other sources and there is no single coherent
reference. Moreover, even if we give a list of references, this is not enough since
none of them is explicit in how the pieces fit together. In an attempt to overcome
this shortcoming, and to make it easier for new developers and researchers, we
decided that it will be beneficial to compile everything in a single detailed expo-
sition. In the next few sections, we present the rules for computation, unification,
type checking and proof search in the framework. The last section is devoted to
the interaction between parsing, type checking and proof search which is the most
GF specific part of this chapter.

3.1 Computation

The computation in the abstract syntax of GF is a simple generalization of the
standard eval/apply strategy in lambda calculus. The two things that we have
to add are metavariables and function definitions. Since we do the computation
lazily, we need a representation for values, i.e. expressions reduced to head normal
form:

Definition 9 An abstract value is one of the following:

• (f as) is an application where as is a list of argument values and f is either
a data constructor or a function which requires more arguments than there
are in as;

• (f as) is an application of an abstract function f which cannot be reduced
further due to insufficient information;

• [[σ, e]] is a closure which closes the open expression e with the environment
σ that gives values for the free variables in e. Here σ is a list of values
where the i-th element in the list is the value for de Bruijn index i.

• (?i σ as) is an application of the metavariable ?i where as is the list of
arguments and σ is the environment that was in use when this value was
computed;
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• (!i σ as c) represents a computation that is suspended until the metavariable
?i is substituted. The computation is resumed with the continuation c, i.e.
with a function in the metalanguage that has to be executed;

• (@i as) represents the application of a variable with de Bruijn level i to a
list of arguments as;

Here we should note that both in the expressions and in the values we have a rep-
resentation for variables. The representation in the values is used when during the
unification of two lambda terms, we have to do computation under lambda abstrac-
tion. In this case, we have unbound variables which in the value are represented
with the notation @i. The difference, however, is that while in the expressions we
use de Bruijn indices, i.e. #i points to the i-th binding counting from the vari-
able reference to the left, in the values we have de Bruijn levels, i.e. @i points to
the i-th binding counting from the beginning of the expression to the right. The
separation between expressions and values and the different representations for
variables lets us do lazy substitution like in the suspension calculus [Nadathur and
Wilson, 1994], without the need to renumber the Bruijn indices when the substi-
tution is pushed under abstraction.

Another thing to point out is the representation of metavariables. While in
Norell’s treatment the metavariables can only be substituted with closed lambda
terms, in our type checker we allow substitution with open terms. The difference
is noticeable even with simple examples. If we have the expression:

\x→ ?1

then we allow a substitution where ?1 is directly instantiated with x which gives
us the identity function:

\x→ x

In Norell’s typechecker this is not permitted since x is not a closed term. Instead
the refinement proceeds in two steps. First the expression is rewritten to:

\x→ ?1 x

i.e. the metavariable is applied to all variables that are in the scope, and after that
it is instantiated with a closed term which after β reduction will lead to the same
result, i.e. we get from the type checker the term:

\x→ (\y → y) x
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which needs further simplifications. We avoid the generation of this more compli-
cated expressions by representing the metavariables with values like ?i σ aswhere
σ is an environment which closes the potential free variables in the substitution
for ?i. The environment basically represents the variables in the current scope so
we get an equivalent result but we avoid the creation of redundant abstractions.

Another complication of the metavariables is that sometimes we have to sus-
pend the computation until some metavariable is instantiated. For instance, if we
have the expression:

plus ?1 (succ zero)

then we cannot compute it since we need to pattern match on the value of ?1.
Instead, we represent the computation with the suspension !i σ as c which is
resumed only when the metavariable ?i is instantiated. A suspended functional
computation could on the other hand cause a suspension in the type checker and
in the proof search. A suspended type checking problem is represented with a
“guarded constant” in Norell’s type checker while in the proof search algorithm
this is a special case of dynamic rescheduling which Xiaochu Qi apply for hard
unification problems.

Regarding the treatment of metavariables in the context of functional compu-
tations, there are two well know strategies in functional-logic languages [Hanus,
2006] – residuation and narrowing. In the residuation strategy, the computation
is suspended until the variable is instantiated, while in the narrowing strategy, the
variable is nondeterministically substituted with the possible values and the com-
putation proceeds as normal. In Curry, the programmer can select the preferred
strategy for every function while in GF we choose not to make the language more
complicated and we fixed the strategy to residuation. The narrowing strategy can
be emulated by using logical predicates instead of functions so this is not a major
restriction.

In the definitions above and later, we use lists of values for which we introduce
the following notations:

• nil is an empty list;

• v :: a is a list with head the value v and tail a;

• a[i] is the i-th element of the list.

• a++ b is the concatenation of the lists a and b
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Having set the background details, we can now define the computational rules
with Haskell like pseudocode. The main part of the computation is done in the
functions eval and apply. The reduction of an expression to a value is done in the
function eval:

eval σ (#i) = σ[i]
eval σ (f) = match f eqs nil , if f is a function defined with eqs
eval σ (e1 e2) = apply σ e1 ((eval σ e2) :: nil)
eval σ (e1 {e2}) = apply σ e1 ((eval σ e2) :: nil)
eval σ (\x→ e) = [[σ, \x→ e]]
eval σ (\{x} → e) = [[σ, \{x} → e]]
eval σ (?i) = ?i σ nil

When eval has to evaluate an application, then it calls apply, which on the other
hand calls back to eval for the evaluation of the function arguments:

apply σ e nil = eval σ e
apply σ (#i) as = apply’ σ[i] as
apply σ (f) as = match f as , if f is a function defined with eqs
apply σ (e1 e2) as = apply σ e1 (eval σ e2 :: as)
apply σ (e1 {e2}) as = apply σ e1 (eval σ e2 :: as)
apply σ (\x→ e) (v :: as) = apply (v :: σ) e as
apply σ (\{x} → e) (v :: as) = apply (v :: σ) e as
apply σ (?i) as = ?i σ as

Note that the pseudocode is written in such a way that the evaluation strat-
egy, i.e. strict vs lazy evaluation, depends on the evaluation strategy of the host
language. Whenever there is an application, i.e. an expression like (e1 e2), then
the value of e2 is pushed into the stack of arguments by the code eval σ e2 :: as.
Since in the current implementation the host language is Haskell, eval σ e2 will
not be evaluated until needed, and this is enough to realize lazy evaluation. In
strict languages like ML, the implementation will need some extra bookkeeping
in order to ensure lazy evaluation.

When either eval or apply needs to evaluate some abstract function f , then the
list of definitional equations eqs is retrieved and the matching is done in the helper
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function match:

match f nil as0 = f as0

match f ((ps, e) :: eqs) as0 = tryMatches ps as0 e nil

where
tryMatches nil as e σ = apply σ e as
tryMatches (p :: ps) (a :: as) e σ = tryMatch p a σ

where
tryMatch x a σ = tryMatches ps as e (a :: σ) , if x is a variable
tryMatch p (?i σi as

′) σ = !i σi as
′ (\v → tryMatch p v σ)

tryMatch p (!i σi as
′ c) σ = !i σi as

′ (\v → tryMatch p (c v) σ)
tryMatch p (@i as′) σ = f as0

tryMatch p (g as′) σ = f as0

tryMatch (g ps′) (g as′) σ = tryMatches (ps′ ++ ps) (as′ ++ as) e σ
tryMatch σ = match f eqs as0

The function iterates over the list of equations and tries sequentially the patterns
until a match is found. Every equation is represented as a pair (ps, e) of a list of
patterns ps and an expression e. The pattern is either a variable which binds to the
value of the argument or a constructor pattern like f ps where f is the constructor
and ps is a list of new patterns. The expression in the equation may contain free
variables which are bound by the variable patterns in ps.

The pattern matching is quite straightforward and there are only two things
that are worth emphasizing. First of all this is the place where we have to imple-
ment the residuation strategy. If the current pattern is a variable, then any kind of
argument value is acceptable, and we can continue with the matching of the rest
of the patterns. If the pattern is not a variable then the only other choice is to have
a constructor pattern, but before we do the matching we have to be sure that the
value is not a metavariable. For this reason the second line for tryMatch check
for a metavariable, and if it is, then the computation is immediately suspended by
returning a suspension value. Similarly, if we pattern match on an already cre-
ated suspension then we create another suspension whose continuation calls the
continuation from the original suspension.

The other interesting case is when the value of the argument is a variable, i.e.
a value of the kind @i. We cannot pattern match on variables, and furthermore,
it does not make sense to create suspensions in this case because contrary to the
metavariables the usual variables are bound by a lambda abstraction or a depen-
dent type, so they will not get definite values in any situation. From the logical
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point of view the variables are universally quantified while the metavariables are
existentially quantified. When the application of a function f depends on the value
of a universally quantified variable, then we have no other choice, except to keep
the whole expression in a partially evaluated form. For this reason in tryMatch we
return the value f as0 which is just the original function f applied to the already
evaluated arguments. However we use f as0 instead of f as0 because the former
tells us that no further reduction is possible, so we can avoid unnecessary com-
putations. The fifth line in tryMatch is exactly this, it checks whether the value
of the argument is a partially evaluated expression and if it is, it returns another
partial value.

The value f as0 is returned also in the case when the patterns in the definition
of f are incomplete and we encounter a case which is not covered by any of the
equations. This situation is handled by the first line in the definition of match
and the resultant behaviour is rather different from the traditional functional lan-
guages like Haskell and ML, where an incomplete pattern matching leads to a
runtime error. The reason is that while in the functional languages there is no
computational use for partially defined function, in GF such functions can still be
linearized and thus can be useful in natural language generation tasks where the
function definitions are used as a way to generate paraphrases.

If the value of the argument is neither of the discussed kinds then it is safe to
compare the constructors in the constructor pattern and in the value. If there is a
match, the new patterns are added to the existing ones and the matching continues.
If the matching fails, then we restart the matching with the next equation in the
definition of f .

Finally we must add one more helper function apply’ which is called by apply
when the expression is a variable #i. This happens when we have variables of a
function type and in this case we have to apply already computed value to more
arguments. The definition of apply’ simply adds more arguments:

apply’ v nil = v
apply’ (f vs0) vs = apply nil f (vs0 ++ vs)
apply’ (?i σ vs0) vs = ?i σ (vs0 ++ vs)
apply’ (@i vs0) vs = @i (vs0 ++ vs)
apply’ (!iσ vs0 k) vs = !i σ vs0 (\v → apply’ (k v) vs)
apply’ (f vs0) vs = f (vs0 ++ vs)
apply’ [[σ, \x→ e]] (v :: vs) = apply (v :: σ) e vs
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3.2 Higher-order Pattern Unification

The aim of the unification algorithm is to compare two values, and if it is possible,
to produce a substitution for the metavariables that equalizes the two values. The
complication is that it is completely legal to use metavariables as functions. For
instance consider again the unification problem:

?1 (succ zero) (succ (succ zero)) ' succ (succ (succ zero))

i.e. we want to unify the value (?1 (succ zero) (succ (succ zero))) with the value
(succ (succ (succ zero))). This is undecidable since every function which maps
the arguments (succ zero) and (succ (succ zero)) into (succ (succ (succ zero)))
is a valid solution. The problem is avoided by restricting the unification from gen-
eral higher-order unification to the limited higher-order pattern unification. The
later has the advantage that it is decidable and efficient, and furthermore it is guar-
anteed that there is always at most one most general substitution. The disadvan-
tage of the higher-order pattern unification is that it cannot solve all unification
problems. For instance the problem above is not solvable because the possible
substitution for ?1 is not uniquely determined. We call such problems – hard
unification problems, and instead of trying to solve them directly, we postpone
the resolution until there is some more information which simplifies the problem,
i.e. until the problematic metavariable is substituted in some other branch of the
overall processing.

In order to explain better the idea behind higher-order pattern unification, we
must introduce the notion of a scope for a metavariable. The general definition
of scope is the list of typed variables that are available at a given spot of an ex-
pression, i.e. a list of x : [[σ,A]] where x is a variable name and [[σ,A]] is its
type represented as a closure of the actual type A with the environment σ which
assigns values to the free variables in A. Here the variable that is bound by the in-
nermost lambda abstraction is the first in the list. Since in the original expression,
every metavariable appears only once, it naturally gets associated with the scope
that is active at the spot where the metavariable appeared. When an expression
is computed or typechecked it can happen that some of its metavariables can get
multiplied but still in this case we can assign to such metavariable the part of the
scope that is available in all appearances of the metavariable.

Now the limitation of the higher-order pattern unification is that it can handle
only problems where if an unbound metavariable is used as a function, then it
can only be applied to a distinct list of variables that are not in the scope of the
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metavariable. For instance, we can solve the unification problem:

?1 x ' e

where e is some expression and x is a variable that is not in the scope of ?1. The
only solution in this case is to substitute \x → e for ?1. Any other solution for
instance \y → x is invalid since this will let the variable x to escape from its
scope. In order to guarantee the validity of the substitution we must also perform
occurs check which guarantees that all variables in e are either in the scope of ?1
or are given as arguments in the application of ?1. Since we also require that the
arguments are distinct variables, this guarantees that there is a unique solution for
the substitution. Furthermore, if the expression e contains other metavariables,
then the occurs check must ensure that they have scope that is more shallow than
the scope of ?1. This guarantees that further substitutions will not let some vari-
ables to escape out of their scope. Note that this also prevents the construction of
infinite terms since ?1 is not allowed to appear in e.

Formally, the algorithm for unification of two values v1 and v2 is represented
as a set of deduction rules for the unifiability statement:

k, j ` v1 ' v2

Here the parameter k in the statement is used for determining the de Bruijn levels
for the variables when we compute under lambda, and the parameter j is the index
of the guarded constant which will be used if we are faced with hard unification
problems. For instance, the type checker might determine that it is not possible
to certify whether some expression e is type correct until some metavariable ?i is
instantiated. The solution for this is that the type checker creates another metavari-
able (guarded constant) ?j which will represent e in the further computations. The
name of the guarded constant is passed to the unification algorithm, and if it is not
able to solve the current problem, then it locks the binding ?j = e until it is pos-
sible to resume the unification, i.e. until ?i is instantiated. Similar situation arises
in the proof search where it might not be possible to determine whether certain
refinement preserves the correctness of the partial proof.

In the unifiability statement, we left the generated substitution implicit since
otherwise the deduction rules will become too verbose. Alternatively, we could
have used statement like:

θ1; k, j ` v1 ' v2 ; θ2
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where θ1 and θ2 are the substitutions before and after the unification, but then
the explicit passing of the updated substitution will make the deduction rules too
heavy. We choose to make the flow implicit by assuming that the substitution
is always passed from left to right and from top to down. The state of every
metavariable in the substitution can be one of:

• unbound - a metavariable that still has not been assigned. This state is char-
acterized with the triple (Γ, [[σ,A]], cs) where Γ is the scope of the metavari-
able, [[σ,A]] is its type and cs is a list of constraints, i.e. delayed unification
problems, that have to be evaluated after the variable is substituted;

• bound - the variable has been substituted with some expression e. This state
is characterized with the pair (Γ, e) where e is a potentially open expression
whose free variables are defined in the scope Γ;

• guarded - this state corresponds to the concept of guarded constants. The
state is characterized by the triple (e, cs, n) where again e is an expression,
cs a list of constraints, and n is a lock counter, i.e. a natural number indi-
cating the number of metavariables that have to be substituted in order to
unlock the currently guarded metavariable.

The only way to change the state of some metavariable is by calling one of
these primitive operations:

• i ← newMeta Γ [[σ,A]] - introduces a new metavariable whose index is i
and remembers the current scope Γ and its type [[σ,A]]. The new variable
has an empty list of constraints.

• j ← newGuard e - introduces a new guarded constant with index j which
guards the expression e. The lock counter is zero and the list of constraints
is empty.

• addConstraint j i c - locks the guarded constant j and attaches the constraint
c to the metavariable i. When ?i is substituted then this will unlock j, i.e. it
will decrease the lock counter for j.

• setMeta i e - binds the metavariable i with the expression e if the expression
satisfies the occurs check condition, and fails otherwise.

Furthermore, when it is necessary, the unification algorithm calls the algorithms
eval and apply for abstract computation. Since now the metavariables can be
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substituted, the substitution has to be made transparent during the computation.
In other words, when the computation algorithm encounters a metavariable, then
it first checks whether the metavariable is already substituted, and if it is, then the
computation proceeds with the substituted value. If it is not substituted, then the
rules for computation with metavariables are used. In the previous chapter, we left
out the details for handling the substitution since this would make the pseudocode
less readable.

The the unification rules are listed on Figure 3.1. The first two rules corre-
spond to the case when one of the unified values represents a computation that
is suspended due to some unbound variable ?i. In this case, the unification pro-
cess is also suspended by calling addConstraint and asserting the constraint that
if we resume the evaluation with the substitution for ?i, then we must get a value
unifiable with the other given value.

The next three rules handle the unification of values that are headed by a
metavariable. In the first case, the metavariable is unified with itself, which is
allowed only if the two values carry the same environments and the same list of
arguments, i.e. we have to unify the lists (σ1 ++ as1) and (σ2 ++ as2). If a
metavariable is unified with another value, then it must be bound with the given
value. The binding itself is handled with the predicate bind:

bind k j i σ as v =

if (σ ++ as) are distinct variables and not in the scope of ?i

then setMeta i (\x1, . . . x|as| → v)

else addConstraint j i (\e→ k, j ` apply σ e as ' v)

It checks the condition that the arguments and the environment of the metavariable
are constituted of only distinct variables. This is the precondition that has to be
satisfied for the pattern matching unification to be successful. If this condition
is not satisfied, then we have encountered a hard unification problem that cannot
be resolved. This is the other case when the whole unification process must be
suspended until the metavariable is substituted by resolving some other goals in
the type checker or in the proof search. The constraint that is attached to the
metavariable will resume the current unification after the metavariable is bound.

Three more rules handle the cases when the values are either function appli-
cations (f as), irreducible applications (f as), or variables (@i as). In this cases
the unification is reduced to the unification of the corresponding arguments as.

Finally, we must handle the unification of lambda abstractions. If both values
are lambda abstractions, then we evaluate the expressions under the lambdas with
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addConstraint j i (\e→ k, j ` c (apply σ1 e as1) ' v2)

k, j ` !i σ1 as1 c ' v2

addConstraint j i (\e→ k, j ` c (apply σ1 e as1) ' v2)

k, j ` v1 ' !i σ2 as2 c

∀l. k, j ` (σ1 ++ as1)[l] ' (σ2 ++ as2)[l]

k, j ` (?i σ1 as1) ' (?i σ2 as2)

bind k j i σ1 as1 v2

k, j ` (?i σ1 as1) ' v2

bind k j i σ2 as2 v1

k, j ` v1 ' (?i σ2 as2)

∀l. k, j ` as1[l] ' as2[l]

k, j ` f as1 ' f as2

∀l. k, j ` as1[l] ' as2[l]

k, j ` f as1 ' f as2

∀l. k, j ` as1[l] ' as2[l]

k, j ` @i as1 ' @i as2

(k + 1), j ` eval (@k nil :: σ1) e1 ' eval (@k nil :: σ2) e2

k, j ` [[σ1, \x1 → e1]] ' [[σ2, \x2 → e2]]

(k + 1), j ` eval (@k nil :: σ1) e1 ' apply’ v2 (@k nil)
k, j ` [[σ1, \x1 → e1]] ' v2

(k + 1), j ` apply’ v1 (@k nil) ' eval (@k nil :: σ2) e2

k, j ` v1 ' [[σ2, \x2 → e2]]

Figure 3.1: Unification of Values
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k, j ` [[σ1, A1]] ' [[σ2, A2]] (k + 1), j ` [[@k nil :: σ1, B1]] ' [[@k nil :: σ2, B2]]

k, j ` [[σ1, (x1 : A1)→ B1]] ' [[σ2, (x2 : A2)→ B2]]

k, j ` [[σ1, A1]] ' [[σ2, A2]] (k + 1), j ` [[@k nil :: σ1, B1]] ' [[@k nil :: σ2, B2]]

k, j ` [[σ1, ({x1} : A1)→ B1]] ' [[σ2, ({x2} : A2)→ B2]]

k, j ` [[σ1, A1]] ' [[σ2, A2]] k, j ` [[σ1, B1]] ' [[σ2, B2]]

k, j ` [[σ1, A1 → B1]] ' [[σ2, A2 → B2]]

∀i. k, j ` eval σ1 e1i ' eval σ2 e2i

k, j ` [[σ1, C e11 . . . e1n]] ' [[σ2, C e21 . . . e2n]]

Figure 3.2: Unification of Types

an environment that is extended with the value @k nil. After that we unify the
computed values. Basically this performs partial evaluation since the value @k
indicates that we are dealing with something that is not known at this time, i.e.
it represents the variable bound by the abstraction. Despite that both values must
have the same type, i.e. they are both functions, it is not necessary that they both
are lambda abstractions. For example, one of the values can be produced by partial
application while the other is a full lambda abstraction. In this case we perform
on-the-fly raising, i.e. we directly apply the partial application to the value @k.
This raises the partial application to full lambda abstraction.

In addition to the unification of values, in the type checker, we will also need
to unify types. In the type unification we basically check that the two types have
the same shape and that the values of all possible dependencies are also unifiable.
The rules for type unification are in Figure 3.2. The first three rules implement
structural induction over the structure of the types where we must remember to
extend the environment of each type, if it is a dependent function type. The last
rule handles the basic case where we have the application of some categoryC over
a list of expressions. In this case we evaluate the expressions in the environments
of the types and unify the computed values.
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3.3 Type Checking
In its simplest form, type checking is a process which starts from some abstract
expression and a given type, and it verifies whether the expression has the same
type. In the presence of dependent types, metavariables and implicit arguments,
however, the process is more complicated. It might be the case that the given ex-
pression has the same type only under the assumption that certain metavariables
are instantiated with the right values. In this case, the type checker should also
compute the substitution. Furthermore, if the expression has hidden implicit argu-
ments, then they must be made explicit. Since the discovery of implicit arguments
is directed by the types of the subexpressions, this must be done simultaneously
with the type checking. The consequence is that the type checker not only verifies
the type but it also returns a new refined expression where some metavariables
might be instantiated and all implicit arguments are made explicit. Finally, we
said that we use de Bruijn representation for variables but actually it is not pos-
sible to assign the indices in advance, since the type checker might have to intro-
duce implicit lambda abstractions which will require complex renumbering of the
de Bruijn indices. For instance, if we naively assign the indices in the expression:

(\x→ x) : (x, {y} : A)→ B

in advance, then we should assign #0 for x. The type of the expression, however,
suggests that it must be expanded to:

(\x, {y}→ x) : (x, {y} : A)→ B

where x now has index #1. Instead of recomputing the indices in the type checker,
we assume that the variables and the function names in the source expression are
indistinguishable and are both represented as names. The type checker maintains
the list of all variable names in the current scope, and thus it is able to decide
which names refer to local variables and which to global constants defined in the
grammar. In the refined expression, the type checker generates de Bruijn index, if
the current name is a variable and retains the name, if it refers to a global constant.
However, the unification and the evaluation algorithms will never see plain vari-
able names since they are already replaced in all expressions that the type checker
needs to compute or unify.

For most of the expressions, it is possible to directly match the form of the
expression with its type. In other cases, it is easier to infer the type from the ex-
pression, and after that the inferred typed is unified with the type given to the type
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checker. For this reason there are two main procedures - type checking and type
inference. In addition, there is a third procedure which inserts implicit arguments
when it is necessary. We define all of them as deduction rules for three different
statements:

1. type checking - Γ ` e ↑ [[σ,B]] ; e′

2. type inference - Γ ` e ↓ [[σ,B]] ; e′

3. implicit arguments - Γ ` e : [[σ,B]] ; e′ : [[σ′, B′]]

Here Γ is the current scope, e is the source expression and e′ is the refined expres-
sion that we compute as result. The difference between the first two statements is
that while in the type checking we know the type [[σ,B]], in the type inference we
must infer it. The rules for type checking, type inference and arguments insertion
are given on Figures 3.3, 3.4 and 3.5.

The first and the third rule in the type checker are for checking lambda ab-
stractions with dependent function types. The only difference is that in the first
case the abstraction is with an implicit argument while in the second case it is
explicit. In both cases, we add the variable x with type [[σ,A]] to the scope Γ, and
we type check the body of the abstraction against the type B. Since B is under
binding, we must add a variable in the environment for B to account for the free
occurrence of y inB. The de Bruijn level is equal to the size of the scope |Γ| since
the value for y must correspond to the value for x and x has just been added to the
scope.

The second rule accounts for the case when an expression which is not an
implicit lambda abstraction is checked against an implicit function type. The rule
is exactly the same as the first one except that we must generate a fresh variable
x, and in the output expression, we must insert the implicit abstraction that was
omitted in the source expression.

The fourth rule is for type checking with simple function types. The process-
ing is the same except that we do not have to extend the environment for B.

The metavariables in the source expression do not have explicit indices, and
instead, the indices are assigned by the type checker. The type checking of the
metavariables is implemented with the next rule. Here we just create a new
metavariable and remember the current scope and type. In the output expression,
we put the newly generated index.

The last rule is the most complicated and it covers the cases in which the
type cannot be checked directly. In this case, the type checking procedure calls
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(x : [[σ,A]]) :: Γ ` e ↑ [[(@|Γ| nil) :: σ,B]] ; e′

Γ ` (\{x}→ e) ↑ [[σ, ({y} : A)→ B]] ; (\{x}→ e′)

(x : [[σ,A]]) :: Γ ` e ↑ [[(@|Γ| nil) :: σ,B]] ; e′

Γ ` e ↑ [[σ, ({y} : A)→ B]] ; (\{x}→ e′)
e 6= (\{x}→ e′′)

(x : [[σ,A]]) :: Γ ` e ↑ [[(@|Γ| nil) :: σ,B]] ; e′

Γ ` \x→ e ↑ [[σ, (y : A)→ B]] ; (\x→ e′)

(x : [[σ,A]]) :: Γ ` e ↑ [[σ,B]] ; e′

Γ ` \x→ e ↑ [[σ,A→ B]] ; (\x→ e′)

i← newMeta Γ [[σ,A]]

Γ ` ? ↑ [[σ,A]] ; ?i

Γ ` e ↓ [[σ′′, A′′]] ; e′′ Γ ` e′′ : [[σ′′, A′′]] ; e′ : [[σ′, A′]]
i← newGuard e′ |Γ|, i ` [[σ,A]] ' [[σ′, A′]]

Γ ` e ↑ [[σ,A]] ; ?i

Figure 3.3: Type Checking Rules
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Γ ` e1 ↓ [[σ′′, C]] ; e′′1 Γ ` e′′1 : [[σ′′, C]] ; e′1 : [[σ, (y : A)→ B]] Γ ` e2 ↑ [[σ,A]] ; e′2
Γ ` e1 e2 ↓ [[eval σΓ e′2 :: σ,B]] ; e′1 e

′
2

Γ ` e1 ↓ [[σ′′, C]] ; e′′1 Γ ` e′′1 : [[σ′′, C]] ; e′1 : [[σ,A→ B]] Γ ` e2 ↑ [[σ,A]] ; e′2
Γ ` e1 e2 ↓ [[σ,B]] ; e′1 e

′
2

Γ ` e1 ↓ [[σ, ({y} : A)→ B]] ; e′1 Γ ` e2 ↓ [[σ,A]] ; e′2
Γ ` e1 {e2} ↓ [[eval σΓ e′2 :: σ,B]] ; e′1 {e

′
2}

Γ ` x ↓ [[σ,A]] ; #i
Γ[i] ≡ (x : [[σ,A]])

Γ ` c ↓ [[nil, A]] ; c
c : A is defined in the grammar

Figure 3.4: Type Inference Rules

the type inference which infers the type [[σ′′, A′′]] and the refined expression e′′.
Since A′′ might be an implicit function type, i.e. ({x} : B) → C, we must
call the procedure for insertion of implicit arguments which from [[σ′′, A′′]] and e′′

derives a new expression e′, where all potential implicit arguments are inserted,
and its type is [[σ′, A′]]. Finally, [[σ′, A′]] is unified with the type [[σ,A]] against
which we need to check. Since the unification might not be solvable, we also
create a metavariable i which guards the already refined expression e′. The index
i is passed to the unification procedure which will lock the metavariable, if the
problem is not solvable.

The first and the third inference rules are for inference from implicit and ex-
plicit applications (Figure 3.4). If the application is explicit, we first infer the
type of e1 and we get its type [[σ′′, C]] and the refined expression e′′1. Now since
some implicit arguments might be omitted in the source expression, we again run
the procedure for insertion of arguments. It produces some new expression e′1
where the arguments are inserted and its type which now must have the shape
[[σ, (y : A) → B]] for the type checking to be successful. If this is the case, then
we simply typecheck the argument e2 against the type [[σ,A]]. If the application is
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i← newMeta Γ [[σ,A]] Γ ` e {?i} : [[?i σ nil :: σ,B]] ; e′ : [[σ′, C]]

Γ ` e : [[σ, ({x} : A)→ B]] ; e′ : [[σ′, C]]

Γ ` e : [[σ,C]] ; e : [[σ,C]]
C 6= ({x} : A)→ B

Figure 3.5: Rules for Insertion of Implicit Arguments

implicit, then the processing is similar except that we do not do argument inser-
tion and the inferred type for e1 must be [[σ, ({y} : A) → B]]. Note that in both
cases the inferred type for the whole expression is equal to B but in an environ-
ment that is extended with the value of argument e′2. Here e′2 is computed in the
environment σΓ which is obtained from the scope Γ by replacing each variable in
the scope with the value (@i nil) where i is the de Bruijn level of the variable in
the scope.

The second rule is a variation of the first rule where the type of e′1 happens to
be a non dependent function. Otherwise, the only difference with the first one is
that we do not extend the environment for B.

The last two inference rules are very similar, and they cover the case where
the source expression is either a local variable or a global function defined in the
grammar. As we said, they are both represented by name in the source expression,
but the type checker separates the two cases by looking up the name in the current
scope. If the name is for local variable, then it is rewritten as a de Bruijn index,
equal to the position at which the variable was found in the scope. Otherwise the
type is inferred from the definition of the global function in the grammar.

Finally the insertion of implicit arguments is guided by two rules shown on
Figure 3.5. The basic idea is that if the type of the expression e is an implicit
function ({x} : A) → B, then we apply the expression to an implicit argument
which is just a metavariable, i.e. we get e {?i}. After that we repeat the procedure
with the new expression until its type is no longer an implicit function.
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3.4 Proof Search
The proof search starts either from the type of a target expression or from an in-
complete expression where the incomplete parts are filled in with metavariables.
In the second case, the expression is first passed to the type checker which ex-
plicitly stores the type of every metavariable. After that each metavariable and its
type are seen as a new goal which has to be satisfied.

The actual search procedure is an implementation of connection tableaux (An-
drews [1981], Bibel [1982]) with two simple extensions. The first is that the terms
in the language are arbitrary lambda expressions, and the second is that we permit
goals of function type which involves hypothetical reasoning. We get for free the
handling for lambda expressions, since we already have an algorithm for high-
order pattern unification in the type checker. When we have, as a goal, a function
type like A→ B, then a pure first-order reasoner would convert it to a classically
equivalent clause, i.e. ¬A∨B. This equivalence, however, does not hold in the in-
tuitionistic logic, and we should treat the implications directly. If we have to prove
that A → B is true, then we temporarily assume the hypothesis A and we try to
prove B in the new context. If the proof search is successful, then we have the
proof e : B, from which we can construct the final result \x→ e : A→ B. This is
exactly the strategy that is adopted in λProlog too. During the proof search, the in-
terpreter keeps track of the currently active hypotheses, and every time when some
goal has to be resolved, both the globally defined clauses and the local hypotheses
are considered. From the type theoretic point of view, the list of hypotheses is
nothing else but just a scope with local variables.

During the search we need a representation for partial proofs, and the metavari-
ables that we introduced in the previous sections are a convenient tool for both a
representation of partial proofs and as a guidance for the search direction. At
every step we maintain a storage which contains the state of every metavariable,
either bound or not. If the search is initiated by the target type alone, then the
initial storage contains a single unbound variable with the designated type. When
the search starts from some incomplete term, then the storage contains the vari-
ables that were found by the type checker. The search proceeds from the initial
storage by continuously taking the unbound metavariable with the highest index
from the current storage and trying to refine it by using an oracle. The oracle
takes as input the name of an abstract category, and it produces an expression of
an atomic type that uses the same category. If the category has indices, then they
are instantiated appropriately. The search procedure binds the target metavariable
with the produced expression, but the expression itself can contain new metavari-
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(x : [[σ,A]]) :: Γ ` [[(@|Γ| nil) :: σ,B]] ; e

Γ ` [[σ, (x : A)→ B]] ; \x→ e

(x : [[σ,A]]) :: Γ ` [[(@|Γ| nil) :: σ,B]] ; e

Γ ` [[σ, ({x} : A)→ B]] ; \{x}→ e

(x : [[σ,A]]) :: Γ ` [[σ,B]] ; e

Γ ` [[σ,A→ B]] ; \x→ e

Γ ` C � e : [[σ′, C e′1 . . . e
′
n]] i← newGuard e ∀j. |Γ|, i ` eval σ ej ' eval σ′ e′j

Γ ` [[σ,C e1 . . . en]] ;?i

Figure 3.6: Proof Search Rules

ables for subgoals which are instantiated later by the procedure. The oracle can
also influence the order in which the different goals are attacked by creating the
metavariables in different order. We denote the action of the oracle with the state-
ment:

Γ ` C � e : [[σ,C e1 . . . en]]

where Γ is the current scope and C is the target category. The output from the
oracle is the expression e with its type [[σ,C e1 . . . en]]. The oracle is of course
nondeterministic, since for every type there are potentially infinitely many expres-
sions, so the actual implementation uses backtracking as a way to enumerate all
possibilities. Usually, we just enumerate in specific order all functions that have
C as a category in the return type, and every function is applied to a sufficient
number of metavariables in order to get an expression of an atomic type, i.e. a
category. Later we will look closer into the definition of two oracles which imple-
ment exhaustive and random search. The oracle also gets as argument the current
scope Γ, and it can choose to use a local variable instead of a global function. In
this way, we also take into account the local hypotheses.

The proof search procedure itself is denoted with the statement:

Γ ` [[σ,A]] ; e

and its definition consists of the four rules shown on Figure 3.6. The first two rules
handle the case when the target type is a dependent function with an explicit or
implicit argument. The only difference between the two rules is that in the second
case we have to produce an implicit lambda abstraction while in the first case it is
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explicit. In both cases, we simply extend the scope Γ with the local variable x and
its type [[σ,A]], and after that in the new context we search for proof of B. Since
x appears free in B we must also extend the environment σ with @|Γ| nil. The
nondependent function types are covered with the third rule, and it is almost the
same as the first two rules. The only difference is that the environment for B does
not have to be extended.

Finally, in the third rule we have an atomic type, so we can resolve it by calling
the oracle. Since the oracle is guided only by the target category and not by the
values of the indices e1 . . . en of the type, it can actually suggest refinements which
would not lead to a type correct proof. For that reason, in the rule, we evaluate
and unify the corresponding indices ej and e′j . On the other hand, the unification
problem might be too hard, so we wrap the expression e with the guarded con-
stant i which will be locked, if some unification has to be suspended. When this
happens, then the proof search will continue with the next goal, i.e. metavari-
able, in the queue. The resolution of the other goals might eventually substitute
the metavariable that blocked the unification, and in this case the setMeta predi-
cate will resume the blocked computations. In this way, we implement dynamic
rescheduling like in λProlog.

The last bit to be mentioned is the limit of the search depth. This is achieved
by attaching a limit to every metavariable, where for the metavariable of the initial
goal the limit is N , and it is decreased by one for every new level of subgoals. If
the limit for some metavariable is zero, then the search procedure fails to refine it
further and it will backtrack to find alternatives in the upper levels of the proof.

3.4.1 Random and Exhaustive Generation
The standard GF distribution provides two search strategies (oracles) – random
and exhaustive generation. In principle, the user can define his/her own tailored
strategies by using the low-level programming interfaces of the interpreter but
since this is still experimental we will only elaborate on the predefined strategies.

The first thing that the oracle does is to select which function should be used in
the refinement. In the Portable Grammar Format, for every category we maintain
a list of functions which generate the same category. When we use exhaustive
generation, then the oracle will suggest each function in the order in which it is
listed. Since the tradition in Prolog is that the interpreter should try the clauses
in the order in which they are written in the source code, we choose to adopt the
same strategy, i.e. the GF compiler builds the list in source code order. Note
that since the clauses in Prolog can call predicates which cause side effects (e.g.
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printing or writing to the file system), the execution order is actually important for
the semantics of the program. Even if the program is free from side effects, the
incorrect ordering can still cause infinite loops. Fortunately none of this problems
is an issue in GF, because there is no way to produce side effects in the grammar,
and the infinite loops are avoided by restricting the maximal search depth. Still by
controlling the order in which the functions are selected, the GF programmer can
influence the overall efficiency of the proof search.

The random generation selects a function from the same list but this time the
selection is randomized. Each function in the abstract syntax has some probability
attached, and the randomized oracle selects the function with respect to the associ-
ated probability distribution. Unfortunately, this is still not enough to get random
samples of the abstract trees if more than one sample is needed. The problem is
that in the exhaustive generation if we want more than one sample, then we can
simply continue the backtracking until we find a sufficient number of samples.
If we do this in the random generation, then the subsequent sample will not be
different enough. For instance, let say that we want to generate natural numbers
in Peano representation. Suppose that the first choice of the oracle was to use the
function succ , then we will get the partial expression:

succ ?1

Now we must choose some random refinement for ?1. Maybe this time the first
choice will be zero and we will get the result (succ zero) as the first output from
the proof search. If now we do backtracking, then as a second result we will get
(succ (succ ?2)), but this is not different enough from the first result because they
both start with succ . The remedy for this effect is to restart the search after every
successfully found expression.

The second step in the oracle is to create metavariables for the arguments of
the function, i.e. for the subgoals. Again we follow the tradition in Prolog that the
subgoals should be executed in left-to-right order, but this time it must be modified
in order to reflect the fact that we operate in type theory rather than in predicate
calculus. If we have a function with a simple nondependent type, i.e.:

f : A1 → A2 → . . . An → B

then both the random and the exhaustive oracle will produce an expression like:

f ?(i+ n) ?(i+ n− 1) . . . ?i
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i.e. here the metavariables are created in right-to-left order. Now since the proof
search will continue with the unbound metavariable with the greatest index, the
first subgoal to be resolved will be the first on the left.

Now suppose that f has a type with dependencies, for instance:

f : (x : A)→ B x→ Cx→ D

where A,B,C, and D are some categories. Now it would be rather inefficient to
do the proof search in the same way as for the nondependent types, since this will
imply that the first subgoal to be resolved would be A. If we look at the analogous
Prolog program4:

D :−B(x), C(x).

then it will be clear that the Prolog interpreter would start the search from the goal
B x. In a sense, (x : A) just defines the type of a local variable which in standard
Prolog is omitted because the language is dynamically typed, and in λProlog it
is unnecessary because its type system permits full type inference. Starting the
search from the goal A is equivalent to the generation of all possible values for x
followed by checking whether B x is satisfied for the current value. Usually this
is less efficient because the space for x is much wider than the space of values
which satisfy the predicate B.

The strategy that we adopt is that the list of arguments for f is traversed twice,
once from left to right and once from right to left. In the left-to-right direction we
create the metavariables for the arguments which are bound on the type level (like
x in our example) and on the way back, i.e. right-to-left, we create metavariables
for the rest of the arguments. In this way we get the expression:

f ?i ?(i+ 2) ?(i+ 1)

Now it is clear that the first goal to be solved will be B, followed by C and
finally A. Usually the solution for B or C will resolve x, so the goal A will
be automatically solved. There are two exceptions when this does not happen.
The first one is when there is a function which returns B but it is polymorphic in
respect to the parameter, i.e. let say that we have the function:

g : (x : A)→ B x

4here we use a notation that is the opposite of the standard notation in Prolog, i.e. identifiers
starting with capital letters denote predicates, while the one with small letters denote free variables.
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In this case, the proof search will simply find that (g ?i) is a suitable solution
for the goal B x, i.e. we just put as argument the same metavariable that is used
for the subgoal A. This does not cause any problem, and the search will simply
continue with the goal C x. If this does not lead to substitution for x either, then
the next goal to be solved is the metavariable ?i itself, so we will finally substitute
x with its possible values.

The second exception is when the solution for the subsequent goals cannot
be found due to some hard unification problem. In this case, the proof search
will soon fall back to solving directly the metavariable ?i followed by resumption
of the suspended unification problems. This is equivalent to running the Prolog
program:

D :− isA(x), B(x), C(x).

where the special predicate isA will generate all possible values for x which after
that will be checked for B and C. This trick is actually not uncommon in Prolog
where this is used for brute force search when the target predicate does not work
properly when it is applied to unbound variables. The advantage of our search
strategy is that it will automatically select the best way without the need for help
from the programmer.

3.5 Parsing and Dependent Types
The parser as it is described in Chapter 2 does not respect the dependent types
in the abstract syntax, so it may return abstract trees which are not type correct.
There are two possible solutions, either we integrate some form of type checking
directly in the parser, or we type check the output from the parser, and we filter
out the trees which are not type correct.

The first option is clearly more interesting, especially if it can be integrated
with the incremental parser, since this can filter out some misleading predictions,
when the parser is used in an authoring system for controlled languages. Unfortu-
nately this direction hides many problems. First of all the algorithm for PMCFG
parsing and the type checking algorithm are quite complex by themself, and if we
combine them, the combination will be even more complex. Second the combina-
tion will suffer from serious efficiency issues, since in the intermediate stages we
will have to type check parts of the chart that may be discarded later as incompat-
ible with the rest of the sentence. Finally, it is not immediately obvious but if we
want incremental type checking, then the incremental parser will be reduced to
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a sophisticated version of Definite Clause Grammar (DCG) [Pereira and Warren,
1986]. This is easy to demonstrate with an example. Suppose that we have the
function f :

fun f : (x : A)→ B x→ C

lin f x y = x++ y

and that the parsing with category A is ambiguous. Now in the intermediate state
when the phrase for A is already consumed, we will have two or more possible
values for x which we need to propagate to the type level as an argument for B.
Since the type checker works with single values and not with sets, at this point we
have to split the parse item for f into many items where every item will correspond
to a different value for x. This is esentially equivalent to backtracking as it is used
in DCG, and it brings all the problems that made DCG unattractive. Mainly, the
parsing complexity becomes exponential or even infinite, when the grammar has
left-recursion. Although both problems can be resolved by using tabling [Swift,
1999], this only leads to extra complications in the algorithm. Finally, even if
we solve all the problems that we mentioned, the parser will still fail to filter out
misleading suggestions, if this involves solving hard unification problems.

Despite the difficulties that we envisioned, it might be still possible to build
useful parsing algorithm with integrated type checking, but we decided that the
effort in doing this is not worth the outcome. We followed the simpler path where
the parser ignores the dependent types, but the algorithm for tree extraction filters
out the incorrect trees. Still as a compensation, if the user has entered a sentence
which is grammatical but not type correct, then we are able to generate an appro-
priate error message, and we can show the error location. Similar pattern can be
seen in most programming languages, i.e. the compiler parses the program in the
first phase, and all other semantic analyses are done later. In contrast, if the type
checker was integrated in the parser, then in the same situation the user will only
get a message saying that the parsing had failed at a given location.

The rules for tree extraction (Figures 3.7 and 3.8) are very similar to the type
checking rules, but this time we have to take into account that the input is not an
abstract expression but a parse chart produced from the parser. At the same time
the tree extraction is nondeterministic and in this it is more like a proof search
where the search is constrained by the availability of items in the parse chart. The
rules are transformations which simultaneously extract the trees from the chart
and at the same time check their validity with respect to the constraints in the
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C → f [τC1 . . . τ
C
n ]

Γ, τC1 ` ψF (f) : [[nil, τA]] ; e1 : [[σ1, τ
A
1 ]]

...
Γ, τCn ` en−1 : [[σn−1, τ

A
n−1]] ; en : [[σn, ψN(C) u1 . . . um]]

j ← newGuard en ∀i. |Γ|, j ` eval σn ui ' eval σ′ u′i
Γ, C, [[σ′, ψN(C) u′1 . . . u

′
m]] ` ?j

i← newMeta Γ [[σ, ψN(C) u1 . . . um]]

Γ, C, [[σ, ψN(C) u1 . . . um]] ` ?i
C ∈ NC

(y : [[σ, ψN(C1) u1 . . . um]]) :: Γ, τC, [[(@|Γ| nil) :: σ, τA]] ` e

Γ, C1/C2 → τC, [[σ, (x : ψN(C1) u1 . . . um)→ τA]] ` (\y → e)
y = var(C2)

(y : [[σ, ψN(C1) u1 . . . um]]) :: Γ, τC, [[(@|Γ| nil) :: σ, τA]] ` e

Γ, C1/C2 → τC, [[σ, ({x} : ψN(C1) u1 . . . um)→ τA]] ` (\{y}→ e)
y = var(C2)

(y : [[σ, ψN(C1) u1 . . . um]]) :: Γ, τC, [[σ, τA]] ` e

Γ, C1/C2 → τC, [[σ, ψN(C1) u1 . . . um → τA]] ` (\y → e)
y = var(C2)

Figure 3.7: Extraction and Type Checking of Abstract Trees
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types. We use the statement:

C → f [τC1 . . . τ
C
n ]

as a preconditition in the premises of the rules which ensures that the cited pro-
duction exists in the chart. Here C is some concrete category, f is a concrete
function, and τC1 . . . τ

C
n are some concrete types as defined in Section 2.7. We also

keep the notation from Chapter 2 which denotes the relation between concrete and
abstract syntax with the mappings ψF and ψN . Like in the type checker, we use
statements for term unification and for creation of metavariables, but we also need
to introduce two new kinds of statements. The main statement:

Γ, τC, [[σ, τA]] ` e

declares that the expression e was extracted from the chart by starting from the
concrete type τC . The abstract type of the expression is [[σ, τA]], and it is defined
in the scope Γ. For example, in order to extract all the trees for the start category
S, we must look up all passive items of the form [n0A; 0;A′] where ψN(A) = S
and then derive the statement:

nil, A′, S ` e

If this is successful, then e is an abstract syntax tree for the parsed sentence.
Furthermore, the rules that define the extraction rely on the additional state-

ment:

Γ, τC ` e1 : [[σ1, τ
A
1 ]] ; e2 : [[σ2, τ

A
2 ]]

which takes the expression e1 with its type [[σ1, τ
A
1 ]] and produces another expres-

sion e2 of type [[σ2, τ
A
2 ]], where e1 is applied to the result of the tree extraction

from the concrete type τC . When e2 is being constructed, the rules for the helper
statement take care for the update of the environment, i.e. the construction of σ2,
and they also use implicit or explicit application as needed in e2.

The extraction rules are listed on Figure 3.7. The first rule is the most complex
and the most central one, since it describes the conversion of a whole production to
an abstract expression. The first precondition in the rule states that the chart must
contain the production C → f [τC1 . . . τ

C
n ]. If this is the case, then we transform

the concrete function f into the abstract function ψN(f), whose type τA we can
retrieve from the grammar. After that we apply ψN(f) to the necessary number of
arguments until we get a fully saturated function application. We use the helper
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statement to express the application, i.e. we start from ψF (f) : [[nil, τA]] and
after n applications we get en : [[σn, ψN(C) u1 . . . um]]. Since the GF compiler
ensures that the result categoryC in the production is mapped to the result abstract
category in the type signature for f , we can be sure that the category for en will
be exactly ψN(C). However, the compiler ignores the indices of the category, so
now we must use unification in order to ensure the agreement, i.e. we must unify
ui with u′i for every i. Again since the unification might be too hard, we guard the
expression en with the metavariable ?j, and we return ?j as a final result instead
of en.

The first rule is applied only if C is a newly generated category. If it is not, i.e.
if C ∈ NC , then we have an erasing rule, i.e. the linearization of some argument
of some function is suppressed. As we said in Section 2.3.7, in this case we must
stop the extraction and simply generate fresh metavariable. This is implemented
by the second rule on Figure 3.7.

The last three rules on the figure deal with the higher-order syntax. The only
difference between the rules is the choice of dependent vs nondependent type
and implicit vs explicit function. In all cases, we extend the scope Γ with a new
variable and we proceed with the extraction, but also we wrap the final expression
with implicit or explicit lambda abstraction. The variable for the abstraction is
taken from the category C2, i.e. there must be a production:

C2 → h[N ], h ∈ lindef(C2)

where N is a category produced by the LITERAL rule in the parser, which en-
codes the variable name. When the type of the function is dependent, then in the
recursive step we also extend the environment σ.

Finally, the helper statement in the definition of the first extraction rule is
defined with three simple rules on Figure 3.8. Basically, the rules take the partial
expression e1 and retrieve the type of the next argument from the type of e1. Based
on the new type, we extract the argument itself, i.e. e2, and we apply e1 to e2 with
either implicit or explicit application.

At this point it might be still unclear how it is possible to detect the location
of a type error in the source text. The key is that the only case when a type error
might occur is in the first rule on Figure 3.7 which fails if the unification of the
indices ui and u′i is not possible. In this case we find the source location from the
category C. Remember from Section 2.4 that each phrase in the parsed sentence
is uniquely identified by its concrete category. We use this to report the error
location if the sentence is parseable but the semantic restrictions are not satisfied.
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Γ, τC, [[σ, τA1 ]] ` e2

Γ, τC ` e1 : [[σ, (x : τA1 )→ τA2 ]] ; e1 e2 : [[eval σΓ e2 :: σ, τA2 ]]

Γ, τC, [[σ, τA1 ]] ` e2

Γ, τC ` e1 : [[σ, ({x} : τA1 )→ τA2 ]] ; e1 {e2} : [[eval σΓ e2 :: σ, τA2 ]]

Γ, τC, [[σ, τA1 ]] ` e2

Γ, τC ` e1 : [[σ, τA1 → τA2 ]] ; e1 e2 : [[σ, τA2 ]]

Figure 3.8: Helper for Extraction of Abstract Trees
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Chapter 4

Frontiers

In this chapter, we discuss ideas that are still on the research frontline and as
such they are still unfinished. In some cases, we even speculate a bit and propose
solutions that are still not experimentally proven, but at least we justify our opinion
with experimental results reported by other researchers for similar problems. Our
main goal is not to establish firm procedures but only to show two interesting
research directions which we see as an important continuation of the work that we
reported in the previous chapters.

The first and perhaps the most important direction is to scale up from a frame-
work for controlled languages to a more general framework that is equally well
suited for applications that require robust processing of unrestricted text. The ad-
vantage of the controlled languages is that their syntax and semantics are very well
defined, which makes it possible to do reliable processing. The price, however,
is that the language is restricted which makes it hard to process already exist-
ing content, unless if it is already tailored for the particular application. On the
other hand by using statistical methods, it is possible to build robust applications
that can process unrestricted text. Unfortunately this is reasonable only under the
assumption that certain percentage of errors is permitted.

The standard workflow in GF is to define application specific grammars which
capture the precise semantics of the different domains. Furthermore, since the de-
velopment of new grammars from scratch is a costly process, the GF community
has developed a library of resource grammars [Ranta, 2009] that can be reused in
the application grammars by automatic specialization. In other words, the applica-
tion grammar specifies the semantics and the pragmatics of the domain while the
resource grammar provides reusable syntax which matches the syntax of the host
natural language. This standard workflow guarantees results with high quality and
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low development cost but it is viable only for narrow domains.
An alternative workflow is to start directly from the resource grammar and

to add on top of it some statistical model which can be used for disambigution
in the otherwise highly ambiguous grammar. Since the resource grammars have
wide coverage, this will give us robust processing but at the cost that the statistical
model might fail to select the right interpretation. This new direction was opened
only recently, thanks to the development of the optimization techniques and the
new parsing algorithms that are the subject of this monograph.

In Section 4.1, we will present our preliminary work on parsing the Penn Tree-
bank [Marcus et al., 1993] with the English resource grammar, and we will suggest
how this can lead to the development of wide coverage robust parsers.

The second interesting research direction is how to better utilize the reasoning
capabilities of the framework. Most GF applications use only simply typed ab-
stract syntax, and if more complicated pre- or postprocessing is needed then it is
done outside of the grammar. In Section 4.2, we take advantage of the improved
support for dependent types, and we show how it is possible to perform two direc-
tional semantic processing, i.e. we can either do semantic analysis of an already
parsed sentence, or we can do natural language generation from a given semantic
representation. The processing is two dimensional in the sense that the user speci-
fies the relation between syntax and semantics only once, and the analysis and the
generation are given for free by using different services in the interpreter.

Although semantic processing on a large scale is in principle possible [Bos
et al., 2004], we consider this as a low-priority task since the wide coverage parser
have to be finished first. Still the semantic capabilities can already be utilized in
non-trivial application grammars.

4.1 Statistical Parsing
The resource grammars library is a collection of grammars whose initial design
purpose was to serve as basis for building application grammars rather than to
be used for direct parsing. Despite this we showed in Section 2.3.9 that they are
not only usable but actually the parser performs quite well even on this scale. A
natural question is how much we can achieve by using the resource grammars for
parsing free text. So far we can only give a partial answer by evaluating the En-
glish Resource Grammar in combination with a lexicon of about 40 000 lemmas
derived from the Oxford Advanced Learners Dictionary. The goal of the evalua-
tion is twofold. From one side we measure the coverage of the grammar, and from



4.1. STATISTICAL PARSING 113

another we prepare the training data that will be used for building a statistical dis-
ambiguation model compatible with the resource grammar. Similar experiments
were successful for other formalisms, i.e. Riezler et al. [2002] for LFG, Miyao
and Tsujii [2005] for HPSG, Clark and Curran [2007] for CCG, so we can expect
that this would work well for GF too.

The final parser will produce partial results in a way similar to Riezler et al.
[2002] for sentences that are not completely covered by the grammar. At this
point we do not consider extensions to the resource grammar that would cover the
missing constructions from the Penn Treebank because this would still not guar-
antee that the grammar will work on unseen text. Instead we expect the necessary
robustness to come from the parsing algorithm and we will give some hints about
how this could be done. Possible extensions of the grammar can always be added
later in a separate project. The fully automatic extraction of GF grammar from
a treebank is also not an option because we want to preserve the abstract syntax
of the resource grammar. This essentially rules out the route taken by Miyao and
Tsujii [2005] and Clark and Curran [2007].

The evaluation is done by converting all sentences from sections 2–21 in the
Penn Treebank [Marcus et al., 1993] to partial abstract syntax trees. The trees are
partial in the sense that whenever we encounter a construction in the treebank that
is compatible with the grammar, we generate the corresponding snippet of abstract
tree, and if this is not possible, then we generate a metavariable which replaces the
construction. In this setting, we measure the coverage as the percentage of nodes
in the abstract trees that are filled in with function names instead of metavariables.

The first problem in the conversion is that the central concept in GF is the ab-
stract syntax tree instead of the parse tree. There is some discrepancy between the
two concepts and the conversion is possible only if the parse tree follows the same
linguistic theory as the one used in the grammar. Unfortunately, this is not the
case for the English resource grammar and the Penn Treebank. For instance the
resource grammar has more fine grained part of speech tags and deeper syntac-
tic analyses. Ideally we would recover the missing information by parsing every
sentence in the treebank and then comparing the alternative analyses with the an-
notations. In practice, however, this is not feasible because there are far too many
alternatives, and most of the sentences cannot be fully parsed with the grammar.

Our solution is to parse not the plain sentence but the different syntactic levels
of the already annotated sentence. If we take as an example the sentence on Figure
4.1, then the structure at the top level is:

(S (NP ...) (VP ...))
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(S
(NP-SBJ (NNP BELL) (NNP INDUSTRIES) (NNP Inc.) )
(VP (VBD increased)

(NP (PRPS its) (NN quarterly) )
(PP-DIR (TO to)

(NP (CD 10) (NNS cents) ))
(PP-DIR (IN from)

(NP
(NP (CD seven) (NNS cents) )
(NP-ADV (DT a) (NN share) )))))

Figure 4.1: An annotated sentence from Penn Treebank

which we can immediately map into the abstract syntax tree:

UseCl ?1 ?2 (PredVP ?3 ?4)

Here the metavariables ?3 and ?4 must be bound with the output from the con-
version of the NP and VP phrases, which is done on the next level. Similarly, the
metavariables ?1 and ?2 correspond to the abstract representation of the tense and
the polarity of the sentence and are also extracted from the VP phrase. Since the
conversion is guided by the annotations and not by the plain text, we completely
avoid the generation of irrelevant analyses.

The example also demonstrates the robustness of the conversion. If we are
not able to find a matching abstract syntax tree for some level, then we simply
convert all children and combine the outputs with a metavariable. For instance
the grammar does not have a rule for combining two NP phrases into another NP
phrase but still the conversion is able to produce:

(?34 (DetCN (DetQuant IndefArt (NumCard . . . )) (UseN cent N))

(DetCN (DetQuant IndefArt NumSg) (UseN share N)))

for the phrase “seven cents a share”, i.e. it converts each of the embedded phrases
and combines them into one phrase by applying a metavariable. The new phrase
is further on embedded in the abstract syntax for the prepositional phrase “from
seven cents a share”. The full abstract syntax tree for the example sentence is
shown in Figure 4.2.

The exact transformation rules are implemented in Haskell and encoded by
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Figure 4.2: The abstract syntax tree for the example on Figure 4.1



116 CHAPTER 4. FRONTIERS

using parser combinators [Hutton, 1992]1. The only complication is that while
the traditional parser combinators are used for parsing sequences of tokens, in
our case we have tree structures. Still in most cases we are only interested in
the children of one particular node and since they are ordered we can continue to
use traditional parsing techniques. For instance the transformation for a sentence
composed of one NP and one VP phrase can be encoded as the following Haskell
code:

"S" :-> do np <- cat "NP"
vp <- cat "VP"
return (PredVP np vp)

Here the operator :-> assigns some rule to the category S and every time when
we see the same category in the treebank, we will fire the rule associated with
it. The rule processes the children of the node and combines the results by us-
ing the return combinator. In this case, the processing consists of calling the
combinator cat twice, once for "NP" and once for "VP". Each time, the cat
combinator checks that the current child has the corresponding category and ap-
plies recursively the transformation rule for its own children. If the application of
the rule is successful, then cat returns the output from the rule. If it is not, then
the result is a metavariable applied to the transformation of the grandchildren.

This first example is oversimplified and it does not work even in this simple
case because it does not let us to extract the tense and the polarity of the sentence.
The solution is to refactor the rule into:

"S" :-> do np <- cat "NP"
(t,p,vp) <- inside "VP" pVP
return (UseCl t p (PredVP np vp))

Now we have a new combinator called insidewhich also checks that the current
child is "VP" but instead of calling the generic rule for transformation of verb
phrases, it calls the custom rule pVP which returns both the transformed phrase
and its tense and polarity. While if we were using only cat, our transformation
rules will be equivalent to context-free grammar, with the introduction of inside
we get both some context-sensitivity and the ability to go deeper in the nested
levels of the parse tree.

1In functional programming, the parser combinators play the same role as the use of DCG in
Prolog.
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So far we have used inside as a way to get more information for the phrase,
but we can also use it when the annotation structure of the treebank is incompat-
ible with the abstract syntax of the resource grammar. For instance the grammar
does not have SBAR category like in the treebank, and we must do the modelling
differently. For example the verb said takes as object another sentence but in the
treebank the object is annotated as a sentence wrapped in an SBAR phrase:

(S (CC But)
(NP-SBJ (NNP Mr.) (NNP Lane) )
(VP (VBD said)
(SBAR (IN that)
(S

.....
))))

Still we can do the transformation by using rule like:

"VP" :-> do v <- pV "VS"
s <- inside "SBAR"

(do inside "IN" (word "that")
cat "S")

return (ComplVS v s)

where we go inside the SBAR annotation and look for an S annotation which after
that is processed by using cat. The rule also shows the usage of the combinator
word, which is used when we want to check for the presence of specific words.

Here we called the custom rule pV instead of calling the generic rule for verbs,
because we need to select the verb with the right valency which is controlled by
the argument VS. Currently the transformation rules recognize the following verb
types:

V intransitive verb
V2 transitive verb
VV verb with verb phrase as object
VA verb with adjectival phrase as object
VS verb with sentence as object
V2V verb with one noun phrase and one verb phrase as object

and the only way to distinguish the different types is to look in the context. If
for instance the object is a sentence, then in the abstract syntax we should use the
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lexical constant:

fun say VS : VS ;

instead of say V2 or some other valency type. Note that currently we do not
recognize verb complements that are prepositional phrases. Instead we always
attach the prepositional phrases as modifiers.

The selection of the lexical constants itself is done by using the combinator
lemma which takes as argument the name of the abstract category, i.e. VS in our
case and the name of a field in the linearization type of the category, and tries to
find a lexical entry in the grammar which contains the current word in the parse
tree. For instance the word said is processed by the call:

lemma ”VS” ”s VPast”

This will search all constants of type VS and will find that say VS has the given
word in the right place in its linearization table, i.e. its table is:

s VInf : say
s VPres : says
s VPPart : said
s VPresPart : saying
s VPast : said

This demonstrates yet another difference between the annotations in the tree-
bank and the abstract syntax trees from the grammar. The lexical entries in the
grammar are tuples which contain all inflection forms of the word, while in the
treebank we have the particular word form and its part of speech tag. In fact, the
part of speech tag in Penn Treebank corresponds to the pair of abstract category
and field name. For instance, we have the relation:

VBD ↔ (VS , ”s VPast”)

Similar relations are the basis for the generic transformation rules for most of the
lexical units in the treebank. For instance the generic rules for the adjectives are:

"JJ" :-> do a <- lemma "A" "s (AAdj Posit Nom)"
return a

"JJR" :-> do a <- lemma "A" "s (AAdj Compar Nom)"
return a

"JJS" :-> do a <- lemma "A" "s (AAdj Superl Nom)"
return (OrdSuperl a)
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In addition, there are few more combinators which allow more flexible control
on the transformation. For instance, the combination r1 ‘mplus‘ r2 allows
us to try the rule r1 first, and if it fails to continue with r2. The combinations
many r and many1 r act similarly to the Kleene star and plus operators, i.e.
they repeat the application of rule r, and they return as result a list with the outputs
produced from r.

With the help of the combinators we encoded the full transformation from
the Penn Treebank to the English resource grammar in only 800 lines of code.
Since the transformation is robust we managed to transform all sentences but of
course for some of them the output tree is only partial. We counted that in average
91.75% of the nodes in the trees are filled in with functions from the grammar,
and the remaining 8.25% are metavariables. As a whole there are 39832 trees
of which 1633 trees were fully converted, 4668 contained only one metavariable,
4803 had two metavariables and the rest had more than two. In average there are
4.91 metavariables per tree.

We looked at some of the incomplete trees, and we identified three main rea-
sons for incomplete matching. In many cases, simply the grammar did not have
the corresponding syntactic rule. In other cases, there were inconsistencies in the
treebank, and although the conversion would be possible in principle, our auto-
matic translation simply failed. We fixed some of the inconsistencies by adding
extra rules in the transformation, but this is not always possible. One trivial exam-
ple is the word many which is sometimes annotated as adjective JJ, sometimes
as adverb RB, and only occasionally as a determiner DT. In the resource grammar,
it is always considered to be determiner, and we fixed this case by adding spe-
cial rules for many. We also noticed other cases of inconsistencies but since they
are more rare and less regular we did not try to fix all of them. Finally, we are
aware that we might have missed some transformation patterns just because they
are rare and we have not noticed them. It is not possible to evaluate the impact
of the different factors because then we would have to check all trees manually
which would take too long time.

Since we already have transformation rules from the Penn Treebank format to
abstract syntax trees, in fact, we do not need anything else in order to do robust
parsing with wide coverage. We can use any existing statistical parser like the
Stanford parser or the Collins parser, and then we can convert the output to an
abstract syntax tree. This is not completely satisfactory, however, since in this
way we bypass the grammar completely, and we cannot take advantage of it.

The first missing piece for making a standalone wide coverage GF parser is
the disambiguation model. The grammar does not fully cover the treebank but still
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it is pretty close, and we have collected enough material for training the model.
The framework already has a simple statistical model where each function in the
abstract syntax has a fixed probability. Essentially this is equivalent to the model
of probabilistic context-free grammar except that the grammar itself is context
sensitive. Although the limitations of the model for statistical parsing are well
known, we have not tried to replace it yet because we inherited it from earlier
versions of GF, and, as we will show, it might work well if some other theoretical
issues are solved first.

We computed the probabilities of the functions from the treebank, and we did
evaluation on the longest sentence with a fully reconstructed abstract syntax tree:

In last month’s survey a number of currency analysts predicted that
the dollar would be pressured by a narrowing of interest rate differen-
tials between the U.S. and West Germany.

Although the sentence is in principle fully parsable, the tree extraction failed with
out of memory error, since in the default setting the parser is trying to extract all
abstract syntax trees. If instead we extract only the most probable one, then we
get it immediately. Still the tree that we got is not the same as the one in the
treebank, but at least it has the right part of speech tags. For comparison, we
looked at the first 50 000 trees that were produced by the parser without ranking,
and we found that none of them had even the right part of speech tags. This is
not a big surprise since all state of the art parsers are using dependency based
disambiguation models. Our context-free model seems to be too simplified.

For example, Collins [2003] recommends in his Model 1, that the context-free
rules from the treebank need to be first binarized and after that the probability of
every binary rule must be conditionalized on the head of the phrase. The bina-
rization is not necessary in our case since most abstract functions in the resource
grammar are already at most binary. In fact, our main concern with Penn Treebank
was that the trees are too shallow, so we had to convert them to deeper structures
by parsing. The binarization procedure in Model 1 serves similar purpose. The
only missing piece is the head conditional probability.

Contrary to some other formalisms GF does not have built in concept of head,
but this can be easily reintroduced. What we need is an additional configuration
which specifies the roles of the different arguments of a given function. For in-
stance, we could have:

PredVP subj head
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which specifies that the second argument of PredVP is the head of the clause, and
the first one is the subject. In fact, the GF engine has a service which from an
abstract syntax tree generates dependency tree in the format of the MALT parser
[Nivre, 2006], and this service requires configuration which is exactly the same as
the one above.

The configuration can be used from the disambiguation model too. The head
of a phrase can be retrieved by following all arguments marked with the label head
until we reach a leaf. The probability of the subtree for the non-head arguments
should be conditionalized, then, on the head of the phrase.

We have not implemented this dependency based model yet because first of all
the project is still in progress, and second it is not clear whether we need to intro-
duce a new mechanism at all. It might be possible to represent the dependencies
in Model 1 by just using the dependent types that we already have. For instance
we could have another signature for PredVP :

fun PredVP : (v : V)→ NP v → VP v → S

where now the noun phrase is clearly dependent on some verb, and we can ensure
that the verb is the head of the verb phrase by changing the definition of UseV :

fun UseV : (v : V)→ VP v

In this way we can enforce a dependency relation between the head of the noun
phrase and the head of the verb phrase.

Whether or not we want to express these dependencies in the abstract syntax,
it is not clear yet. From one side this makes the abstract syntax more complicated,
from another there are still unsolved theoretical issues about how the statistical
model should interact with the dependent types. Currently the probability of a
tree is computed as the product of the probabilities of all functions in the tree, but
this ignores the fact that the dependencies might enforce a that certain function
must or cannot be used in certain place. A more accurate probability estimation
must take into account the types of the functions. An external modelling of the
conditional probabilities is clearly simpler, but in fact the conditional probabilities
reflect some implicit semantics which, as we will see in the next section, is best
expressed with dependent types.

Apart from the disambiguation model, the only other missing piece is to make
the parser more robust when it encounters unknown syntactic constructions. This
can be done either by changing the grammar to allow fragmentary parsing like in
Riezler et al. [2002] or by letting the parser to “invent” such rules on the fly when
the parsing cannot continue in the normal way.
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4.2 Montague Semantics
Most GF applications use simply typed abstract syntax, which is enough to de-
fine the syntax of the language but from semantic point of view is very shallow.
It is true that even with the simple types, the application grammar can encode
some semantic differences, i.e. it can have categories like Food and Drink instead
of the purely syntactic category NP , but beyond that it is difficult to do deeper
analyses without dependent types. A notable example for the application of the
Montague [1973] semantics is the grammar in Ranta [2004a] which implements a
small fraction of English syntax together with its semantics.

Basically, there are two ways in GF to link the syntax with the semantics of a
sentence. Either we define an interpretation function:

fun iS : S → Prop

which maps every tree of type S into some logical formula, i.e. an object (a tree)
of type Prop , or we make the sentence category S dependent on the semantic
representation of the syntax tree:

cat S Prop

Ranta [2004a] in particular used a mixed representation where some of the
syntactic categories depend on semantic expressions which can contribute to the
syntactic disambiguation. The rest of the semantics is computed by using inter-
pretation functions similar to iS .

The advantage of the first alternative is that the semantics is separated from the
syntax, and in principle it is possible to attach different semantics to one and the
same abstract syntax. Furthermore, it is possible to parse even sentences which
are semantically meaningless, since the semantic processing is optional, i.e. it is
performed only if we compute the application of iS .

In the second alternative, the semantic representation is computed automati-
cally by type checking the trees during the tree extraction. For example, if the
PredVP function is redefined as2:

fun PredVP : ({np} : (Ind → Prop)→ Prop)→
({vp} : Ind → Prop)→
NP np → VP vp → Cl (np vp);

2The full source code for a fragment of the English resource grammar complemented
with Montague semantics is available in the folder ”examples/nlg” in the GF distribution
(http://www.grammaticalframework.org/examples/nlg/).
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then the type checker will compute the interpretations np and vp for the noun
phrase and the verb phrase, and will combine them to compose the interpretation
of the whole clause. This approach is similar to HPSG [Pollard and Sag, 1994]
where the semantic processing is an integral part of the whole analysis. For in-
stance, if we parse the sentence “somebody loves everybody” with the semantic
grammar, then we get an abstract syntax tree which is almost the same as the
abstract syntax tree in the resource grammar but now we also get the semantic
representation as an additional argument to UseCl 3:

> p "somebody loves everybody"
UttS (exists (\v0 -> forall (\v1 -> love v0 v1)))

(UseCl PPos (PredVP somebody_NP
(ComplSlash (SlashV2a love_V2)

everybody_NP)))
UttS (forall (\v0 -> exists (\v1 -> love v0 v1)))

(UseCl PPos (ComplClSlash (SlashVP somebody_NP
(SlashV2a love_V2))

everybody_NP))

Note that the similarity is only on the surface. In reality, the abstract syntax in the
semantic grammar is much more complex, but its complexity is hidden through
the usage of implicit arguments. For instance, the np and vp arguments of PredVP
are made implicit which hides the semantics of the embedded phrases. Without the
usage of implicit arguments the abstract syntax trees quickly become too verbose
and hard to use in practice. The shortcomings of the earlier GF versions are also
exemplified in Ranta [2004a] where the full abstract tree for the donkey sentence:

if a man owns a donkey he beats it

is written in seven lines, while his shortened version is only two lines long. The
short version is also what we would get if implicit arguments were used.

Since the semantic processing is now integrated, semantically meaningless
sentences are rejected which is both advantage and disadvantage depending on the
application. The main advantage of our representation, however, is that now it is
possible to use proof search to find all sentences with fixed semantics. For instance

3Here we get two abstract syntax trees, since we handle the quantifier scope ambiguity by
making the grammar ambiguous. This is the same approach as in Ranta [2004a], which is inspired
by Steedman’s combinatory categorial grammar [Steedman, 1988]. An alternative solution would
be to keep the grammar unambiguous and to replace the fully instantiated logical formula with
some underspecified representation.
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in the GF shell, we can use the gt command to generate all abstract trees with the
same semantics, for example (and (smart john) (smart mary)), and
after that we can linearize each tree with the command l:

> gt -cat="S (and (smart john) (smart mary))" -depth=8 | l
John is smart and Mary is smart
John and Mary are smart

The search correctly identifies that there are two ways to express the same meaning. Either
we use sentence level conjunction, or we can use the shorter noun phrase conjunction since
the verb phrase is the same.

In general, the generation from arbitrary logical formula to the abstract syntax of the
resource grammar is an expensive operation, but it can be rather cheap in more restricted
domains. For instance, Dannélls [2010] defines a grammar for description of museum
objects where the final goal is to generate the descriptions from OWL [W3C, 2004] data
set. Although Dannélls defined the transformation from OWL to the abstract syntax of
the grammar as an external process, we found that the transformation is trivial to define in
GF, if the grammar uses the OWL description as the semantic representation of the natural
language.

The interaction between GF grammars and OWL ontologies will be studied further in
the ongoing project MOLTO (www.molto-project.eu), but we already see the dependent
types as a general and powerful tool which was not well exploited yet due to limitations
in the implementation. We believe that the improvements in the type checking algorithm
and the introduction of implicit arguments make the dependent types easier to use. Fur-
ther improvements, however, might be needed when we gain more experience in different
applications. In particular, more experiments in natural language generation and devel-
opment of controlled languages with embedded semantics will give useful feedback for
the further development of the framework. Last but not least the development of wide
coverage GF parsers could at the end allow large scale semantic processing in GF if we
complete the semantics for the whole resource grammar [Bringert, 2008].
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Conclusion

This final chapter is a summary of the contributions of this monograph in the context of
GF and Natural Language Processing in general.

First of all the GF framework always worked well on small scale but going out of the
small scale was tremendously difficult due to the high computational demands that large
scale grammars put on. The development of low-level grammar representation that can be
efficiently executed is a major step towards scaling the framework to open-domain text.
In our experience, for many applications, the execution is orders of magnitude faster than
what it was before. This level of improvement did not happen evolutionary, in fact the
whole runtime engine was replaced with a new one that is fine tuned and tested with large
grammars.

Furthermore, the runtime engine is now clearly separated from the compiler which
simplifies the development of standalone applications. The grammars are represented in a
compact and portable format which makes it possible to reuse the grammars on different
platforms and from different programming languages.

The improvements in the engine and the accumulated development in the resource
grammars library led GF to a turning point where it is feasible to analyse almost unre-
stricted text. Still the liberation of GF from constrained language will require more work
on robustness and disambiguation. The engine already has a simple probabilistic model,
and developers can achieve some robustness by tweaking the grammar and by playing
with the parsing API but still there is a lot to be done. In this context, the present work is
more like an important milestone rather than a complete solution.

The improvement of the efficiency was always our primary motivation but as it hap-
pened another side effect of the new algorithms was much better utilized for the time
being. While working with controlled languages it is always an issue for the user how to
structure the input in a way understandable to the computer. The incremental nature of the
new GF parser allowed the development of new user interfaces [Bringert et al., 2009][An-
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gelov and Ranta, 2010] where the system helps the user to author grammatically correct
content by showing suggestions. The new interfaces are usually more intuitive than the
old syntax editors [Khegai and Ranta, 2003], where the content is created hierarchically
phrase by phrase, but in some cases it is an advantage to see both perspectives. It is
possible to have both but this requires some more engineering on the user side.

The automatic reasoning in GF is not really a new concept since the type system had
dependent types from the very beginning. Unfortunately the full power of the dependent
types has never been exploited to the limit. The reason for this was partly because of the
poor performance of the proof search and partly because without the support for implicit
arguments the development of any non-trivial logic in the abstract syntax becomes too
cumbersome. In the development of the GF engine we started from scratch and we took
advantage of the experience from the development of Agda. The efficiency of the proof
search was a secondary goal in this case but still we followed the design of λProlog which
is well developed and gives good performance. Unfortunately our implementation still
lags far behind, mostly because we use direct interpretation while the λProlog programs
are first compiled to low-level byte code which is after that executed by a well optimized
interpreter in C. An integration of GF with λProlog will make the dependent types first
class citizens in the framework.

In the wider context of natural language processing, this monograph contributes with
a number of new algorithms and ideas that can be reused in other frameworks. The appli-
cation of models that go beyond context-free grammars is popular in both statistical and
rule based engines. In that sense, the monograph is interesting as a non-trivial application
of Parallel Multiple Context-Free Grammars.



Appendix A

Portable Grammar Format

So far, we talked about the Portable Grammar Format (PGF) as an abstract concept, but
in the actual implementation, we store the compiled grammars in a concrete file format.
This appendix is the reference for the exact format, and it includes details which were
intentionally skipped in the previous chapters because they were irrelevant to the main
algorithms.

The format described here is a version 1.0 and is produced by GF 3.2. In case, if the
format have to be changed in the future, the implementations should maintain backward
compatibility.

The GF compiler will dump any PGF file into textual representation with a syntax
close to what we used in the different chapters, if it is requested to produce the format
pgf_pretty:

> gf -make -output-format=pgf_pretty MyGrammar.pgf

Basic Types
The Portable Grammar Format is a binary format where the structures of the grammar are
serialized as a sequence of bytes. Every structure is a list of sequentially serialized fields,
where every field is either another structure or has a basic type. The allowed basic types
are:

• Int8 - 8 bits integer, with sign, represented as a single byte.

• Int16 - 16 bits integer, with sign, represented as a sequence of two bytes where the
most significant byte is stored first.

• Int - a 32 bits integer with sign encoded as a sequence of bytes with variable length.
The last bit of every byte is an indication for whether there are more bytes left. If
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the bit is 1, then there is at least one more byte to be read, otherwise this is the last
byte in the sequence. The other 7 bits are parts of the stored integer. We store the
bits from the least significant to the most significant.

• String - a string in UTF-8 encoding. We first store as Int (a variable length integer)
the length of the string in number of Unicode characters and after that we add the
UTF-8 encoding of the string itself.

• Float - A double precision floating point number serialized in a big-endian format
following the IEEE754 standard.

• List - Many of the object fields are lists of other objects. We say that the field is
of type [Object ] if it contains a list of objects of type Object . The list is serialized
as a variable length integer indicating the length of the list in number of objects,
followed by the serialization of the elements of the list.

PGF
The whole PGF file contains only one structure which corresponds to the abstract structure
G from Definition 1 in Section 2.1. The structure has the following fields:

type description
Int16 major PGF version, should be 1.
Int16 minor PGF version, should be 0.
[Flag] global flags
Abstract abstract syntax
[Concrete] list of concrete syntaxes

If PGF is changed in the future, the version in the first two fields should be updated.
The implementations can use the version number to maintain backward compatibility.

Flag
The flags are pairs of a name and a literal and store different configuration parameters.
They are generated by the compiler and are accessible only internally from the interpreter.
By using flags we can add new settings without changing the format.

type description
String flag name
Literal flag value
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Abstract
This is the object that represents the abstract syntax A (Definition 2, Section 2.1) of a
grammar. The name of the abstract syntax is the name of the top-level abstract module in
the grammar. The start category is specified with the flag startcat .

type description
String the name of the abstract syntax
[Flag] a list of flags
[AbsFun] a list of abstract functions
[AbsCat] a list of abstract categories

Note: all lists are sorted by name which makes it easy to do binary search.

AbsFun
Every abstract function is represented with one AbsFun object.

type description
String the name of the function
Type function’s type signature
Int function’s arity
Int8 a constructor tag: 0 - constructor; 1 - function
[Equation] definitional equations for this function if it is not a constructor
Float the probability of the function

The constructor tag distinguishes between constructors and computable functions, i.e.
we can distinguish between this two judgements:

• constructor: data f : T

• function: fun f : T

If this is a function, then we also include a list of definitional equations. The list can be
empty which means that the function is an axiom. In the cases, when we have at least one
equation then the arity is the number of arguments that have to be known in order to do
pattern matching. For constructors or axioms the arity is zero.

AbsCat
Every abstract category is represented with one AbsCat object. The object includes the
name and the type information for the category plus a list of all functions whose return
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type is this category. The functions are listed in the order in which they appear in the
source code.

type description
String the name of the category
[Hypo] a list of hypotheses
[CatFun] a list of functions in source-code order

CatFun
This object is used internally to keep a list of abstract functions with their probabilities.

type description
String the name of the function
Float the probability of the function

Type
This is the description of an abstract syntax type. Since the types are monomorphic and
in normal form, they have the general form:

(x1 : T1)→ (x2 : T2)→ . . .→ (xn : Tn)→ C e1 . . . en

The list of hypotheses (xi : Ti) is stored as a list of Hypo objects and the indices e1 . . . en
are stored as a list of expressions.

type description
[Hypo] a list of hypotheses
String the name of the category in the return type
[Expression] indices in the return type

Hypo
Every Hypo object represents an argument in some function type. Since we support im-
plicit and explicit arguments, the first field tells us whether we have explicit argument i.e.
(x : T ) or implicit i.e. ({x} : T ). The next two fields are the name of the bound variable
and its type. If no variable is bound then the name is ’ ’.

type description
BindType the binding type i.e. implicit/explicit argument
String a variable name or ’ ’ if no variable is bound
Type the type of the variable
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Equation
Every computable function is represented with a list of equations where the equation is
a pair of list of patterns and an expression. All equations must have the same number of
patterns which is equal to the arity of the function.

type description
[Pattern] a sequence of patterns
Expression an expression

Pattern
This is the representation of a single pattern in a definitional equation for computable
function. The first field is a tag which encodes the kind of pattern.

type description
Int8 a tag

1. tag=0 - pattern matching on constructor application (i.e. c p1 p2 . . . pn)

type description
String the name of the constructor
[Pattern] a list of nested patterns for the arguments

2. tag=1 - a variable

type description
String the variable name

3. tag=2 - a pattern which binds a variable but also does nested pattern matching (i.e.
x@p)

type description
String the variable name
Pattern a nested pattern

4. tag=3 - a wildcard (i.e. ).

5. tag=4 - matching a literal i.e. string, integer or float

type description
Literal the value of the literal

6. tag=5 - pattern matching on an implicit argument (i.e. {p})
type description
Pattern the nested pattern
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7. tag=6 - an inaccessible pattern (∼ p)

type description
Expr the nested pattern

Expression
This is the encoding of an abstract syntax expression (tree).

type description
Int8 a tag

1. tag=0 - a lambda abstraction (i.e. \x→ . . .)

type description
BindType a tag for implicit/explicit argument
String the variable name
Expression the body of the lambda abstraction

2. tag=1 - application (i.e. f x)

type description
Expression the left-hand expression
Expression the right-hand expression

3. tag=2 - a literal value i.e. string, integer or float

type description
Literal the value of the literal

4. tag=3 - a metavariable (i.e. ?0, ?1, . . .)

type description
Int the id of the metavariable

5. tag=4 - an abstract syntax function

type description
String the function name

6. tag=5 - a variable

type description
Int the de Bruijn index of the variable

7. tag=6 - an expression with a type annotation (i.e. 〈e : t〉)
type description
Expression the annotated expression
Type the type of the expression
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8. tag=7 - an implicit argument (i.e. {e})

type description
Expression the expression for the argument

Literal
The Literal object represents the built-in kinds of literal constants. It starts with a tag
which encodes the type of the constant:

type description
Int8 literal type

Currently we support only three types of literals:

1. tag=0 - string

type description
String the value

2. tag=1 - integer

type description
Int the value

3. tag=2 - float

type description
Float the value

BindType
The bind type is a tag which encodes whether we have an explicit or an implicit argument.
Tag 0 is for explicit, and tag 1 is for implicit.

type description
Int8 tag

Concrete
Every concrete syntax C (Definition 3, Section 2.1), in the grammar, is represented with
an object. The name of the concrete syntax is the name of the top-level concrete module
in the grammar.
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type description
String the name of the concrete syntax
[Flag] a list of flags
[PrintName] a list of print names
[Sequence] a table with sequences (Section 2.8.1)
[CncFun] a list of concrete functions
[LinDef] a list of functions for default linearization
[ProductionSet] a list of production sets
[CncCat] a list of concrete categories
Int the total number of concrete categories allocated for the grammar

Note: The lists Flag, PrintName and CncCat are sorted by name which makes it easy to
do binary search.

Note: The total number of concrete categories is used by the parser to determine whether
a given category is part of the grammar, i.e. member of NC , or it was created during the
parsing. This is the way to decide when to put metavariables during the tree extraction
(Section 2.3.7).

PrintName
Every function or category can have a print name which is a user friendly name that can be
displayed in the user interface instead of the real one. The print names are defined in the
concrete syntax which makes it easier to localize the user interface to different languages.

type description
String the name of the function or the category
String the printable name

Sequence
This is the representation of a single sequence in PMCFG, produced during the common
subexpression optimization (Section 2.8.1).

type description
[Symbol] a list of symbols

Symbol
The Symbol (Definition 4, Section 2.1) represents either a terminal or a function argument
in some sequence. The representation starts with a tag encoding the type of the symbol:
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type description
Int8 expression tag

The supported symbols are:

1. tag=0. This is the representation of an argument, i.e. a pair 〈k; l〉 where k is the
argument index and l is the constituent index.

type description
Int argument index
Int constituent index

2. tag=1 This is again an argument but we use different tag to indicate that the target
can be a literal category (see Section 2.6). If the target category is not a new fresh
category, generated by the parser, then it is treated as a literal category. In the
pgf_pretty format, we print this kind of symbols as {d; r} instead of 〈d; r〉.

type description
Int argument index
Int constituent index

3. tag=2 A high-order argument i.e. 〈d; $r〉 (Section 2.7).

type description
Int argument index
Int variable number

4. tag=3 This is a terminal symbol and represents a list of tokens.

type description
[String] sequence of tokens

5. tag=4 An alternative terminal symbol representing phrase, whose form depends
on the prefix of the next token. It corresponds to the pre construction in GF and
encodes variations like a/an in English.

type description
[String] the default form
[Alternative] a sequence of alternatives

Alternative
Every Alternative represents one possible form of a phrase which is dependent on the
prefix of the next token. For example when the construction:

pre {”beau”; ”bel”/”ami”}
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is compiled then the alternative bel / ami will be represented by the pair ([”bel”],[”ami”]).

type description
[String] The tokens to use if the prefix matches
[String] The prefix matched with the following tokens

CncFun
This is the definition of a single concrete function (Definition 4, Section 2.1). The first
field is the name of the corresponding abstract function which gives us the direct definition
of the ψF mapping. The second field is the function definition given as a list of indices
pointing to the sequences table (see the Concrete object).

type description
String the name of the corresponding abstract function
[Int] list of indices into the sequences array

LinDef
The LinDef object stores the list of all concrete functions that can be used for the default
linearization of some concrete category (Section 2.5).

type description
Int the concrete category
[Int] a list of concrete functions

ProductionSet
A group of productions with the same result category. The productions are grouped be-
cause this makes it easier for the parser to find the relevant productions in the prediction
step:

type description
Int the result category
[Production] a list of productions

Production
The production can be either an application of some function or a coercion.

type description
Int8 tag
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1. tag=0 the production is an application (Definition 4, Section 2.1):

type description
Int the concrete function
[PArg] a list of arguments

2. tag=1 the production is a coercion (Section 2.8.1):

type description
Int a concrete category

PArg
An argument in a production.

type description
[Int] the categories of the high-order arguments (Section 2.7)
Int a concrete category

CncCat
This is the representation of a set of concrete categories which map to the same abstract
category. Since all concrete categories generated from the same abstract category are
always represented as consequtive integers, here we store only the first and the last cate-
gory. The compiler also generates a name for every constituent so here we have the list of
names. The length of the list is equal to the dimension of the category.

type description
String the name of the corresponding (by ψN ) abstract category
Int the first concrete category
Int the last concrete category
[String] a list of constituent names
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Michael Hanus. Curry: An integrated functional logic language. Technical report, Curry
Community, March 2006.



BIBLIOGRAPHY 141

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J.
ACM, 40:143–184, January 1993. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/
138027.138060. URL http://doi.acm.org/10.1145/138027.138060.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979. ISBN 0-201-02988-X.

Gérard Huet. A unification algorithm for typed lambda-calculus. Theoretical Com-
puter Science, 1(1):27–57, 1975. URL http://linkinghub.elsevier.com/
retrieve/pii/0304397575900110.

Graham Hutton. Higher-order functions for parsing. Journal of Functional Program-
ming, 2(3):323–343, July 1992. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.34.1287.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars.
J. Comput. Syst. Sci., 10:136–163, February 1975. ISSN 0022-0000. doi: http:
//dx.doi.org/10.1016/S0022-0000(75)80019-5. URL http://dx.doi.org/10.
1016/S0022-0000(75)80019-5.

Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Springer, 2010. ISBN 978-
3-642-14845-3.

Janna Khegai and Aarne Ranta. Multilingual syntax editing in GF. In Proceedings of
the 4th International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing 03, pages 453–464. Springer-Verlag, 2003.
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