
CL: An Action-based Logic for Reasoning about
Contracts ?

Cristian Prisacariu and Gerardo Schneider

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

{cristi,gerardo}@ifi.uio.no

Abstract. This paper presents a new version of the CL contract speci-
fication language. CL combines deontic logic with propositional dynamic
logic but it applies the modalities exclusively over structured actions.
CL features synchronous actions, conflict relation, and an action nega-
tion operation. The CL version that we present here is more expressive
and has a cleaner semantics than its predecessor. We give a direct seman-
tics for CL in terms of normative structures. We show that CL respects
several desired properties from legal contracts and is decidable. We relate
this semantics with a trace semantics of CL which we used for run-time
monitoring contracts.

1 Introduction

Internet-based negotiation and contracting is becoming more diverse and com-
plex in the e-business and e-government environments. This calls for a more
formal apparatus which can be used by the computer to automate and help in
some of the tasks involved in e-contracting; e.g. detection of contradictions and
inconsistencies in contracts, identification of superfluous clauses, and checking
some desired properties on a contract. This contracting style found in e-business
and virtual organizations (and inspired from legal contracts) can also be used in
service oriented architectures, component based systems [1], and agent societies
[2]. In these areas contracts are used to regulate the interaction and exchanges
between the parties involved (being that services, components, or agents).

Much research has been invested into giving a formalization of contractual
clauses, and also into providing a machine readable language for specifying con-
tracts. Such a formal language is desired for doing static (like model-checking)
or dynamic (like run-time monitoring) analysis of (abstractions of) contracts.
Moreover, the automation of the negotiation process becomes a feasible goal.
The most promising approaches are based on variants of deontic logic.

In this paper we present a logic (which we call CL) designed to represent and
reason about contracts. The goal of CL is to preserve many of the natural prop-
erties and concepts relevant to legal contracts, while avoiding deontic paradoxes,
? Partially supported by the Nordunet3 project “COSoDIS – Contract-Oriented Soft-

ware Development for Internet Services” (http://www.ifi.uio.no/cosodis/).

2 C. Prisacariu and G. Schneider

and at the same time to have a suitable language for the specification of soft-
ware contracts. CL combines deontic logic [3] with propositional dynamic logic
(PDL) [4, 5]. CL applies the (deontic and dynamic) modalities exclusively over
actions instead of over formulas (or state of affairs) as is the case in standard
deontic logic (SDL) [3]. Therefore, CL adopts what is known as the ought-to-do
approach to deontic logic as opposed to the ought-to-be approach of SDL. The
ought-to-do approach has been advocated by von Wright [6] which argued that
deontic logic would benefit from a “foundation of actions”, and many of the
philosophical paradoxes of SDL would be eliminated. Important contributions
to this approach were done by Segerberg to introduce actions inside the deontic
modalities [7] and by the seminal work of Meyer on dynamic deontic logic (DDL)
[8, 9].
CL extends the (regular) actions, which are usually considered in DDL and

PDL, with a concurrency operator to model the notion of actions “done at the
same time”. The model of concurrency that we adopt is the synchrony model
of Milner’s SCCS [10]. Synchrony is easy to integrate with the other regular
operations on actions (choice, sequence, and repetition). Moreover, synchrony is
a natural choice for reasoning about the notion “at the same time” for human-
like actions that we have in legal contracts.

The notion of synchrony has different meanings in different areas of com-
puter science. Here we take the distinction between synchrony and asynchrony
as presented in the SCCS calculus and later implemented in e.g. the Esterel syn-
chronous programming language [11]. We understand asynchrony as when two
concurrent systems proceed at indeterminate relative speeds (i.e. their actions
may have different non-correlated durations); whereas in the synchrony model
each of the two concurrent systems instantaneously perform a single action at
each time instant. This is an abstract view of the actions found in contracts and
is good for reasoning about properties of the contract.

The synchrony model of concurrency takes the assumption that time is dis-
crete and that basic actions are instantaneous and represent the time step. More-
over, at each time step all possible actions are performed, i.e. the system is
considered eager and active. For this reason, if at a time point an obligation
to perform an action is enabled, then this action must be immediately exe-
cuted so that the obligation is not violated. The mathematical framework of
the synchrony model is much cleaner and more general than the asynchronous
interleaving model (SCCS has the (asynchronous) CCS as a subcalculus [10]).

Because of the assumption of an eager behavior for the actions the scope of
the obligations (and of the other deontic modalities too) is immediate, making
them transient obligations which are enforced only in the current world. One can
get persistent obligations by using temporal operators, like the always operator
(CL can encode temporal operators with the dynamic modality [5]). The eager-
ness assumption facilitates reasoning both about the existence of the deontic
modalities as well as about violations of the obligations or prohibitions.

Initial investigations into CL have been done in [12]. The CL language pre-
sented in this paper is more expressive. A variant of this syntax of the CL (with-

CL: An Action-based Logic for Reasoning about Contracts 3

out the propositional constants) was used in [13] for doing run-time monitoring
of electronic contracts. There we used a restricted semantics based on traces of
actions. This semantics was specially designed for monitoring the actions of the
contracting parties at run-time with the purpose of detecting when a contract is
violated. In [12] there was no direct semantics for CL. In the present paper we
give full semantics for CL based on normative structures and relate it with the
trace based semantics of [13].

In this paper we present theoretical results and thus we use a simple and un-
restricted syntax for CL, in practice some syntactic restrictions may be imposed
(see [12]). Since our main objective is to analyze contracts through formal tools
like model-checking and run-time monitoring, we aim at a tractable language
(i.e. decidable and with manageable complexities).

Related work: Compared to [8, 9, 14, 15], which also consider deontic modal-
ities applied over actions, the investigation presented in this paper at the level
of the deontic actions is different in several ways. First we add a synchrony
operation, and second, we exclude the Kleene star ∗. None of the few papers
that consider repetition as an action combinator under deontic modalities [14,
9] give a precise motivation for having such recurring actions inside obligations,
permissions, or prohibitions. Even more, the use of repetition inside the deontic
modalities is counter intuitive: take the expression O(a∗) - “One is obliged to not
pay, or pay once, or pay twice in a row, or...” - which puts no actual obligations;
or take P (a∗) - “One has the right to do any sequence of action a.” - which is
a very shallow permission and is captured by the widespread Closure Principle
in jurisprudence where what is not forbidden is permitted [7]. Moreover, [9] ar-
gues that expressions like F (a∗) and P (a∗) should be simulated with the PDL
modalities as 〈a∗〉F (a) respectively [a∗]P (a). In our opinion the ∗ combinator
under deontic modalities can be captured by using temporal or dynamic logic
modalities along with deontic modalities over ∗-free actions.

Regarding the synchronous actions inside the dynamic modality, CL is in-
cluded in the class of extensions of PDL which can reason about concurrent
actions: PDL∩ with intersection of actions [16] which is undecidable for deter-
ministic structures; or concurrent PDL [17]. In contrast, CL with synchronous
composition over deterministic actions (see Definition 3) inside the dynamic
modality is decidable. This makes CL more attractive for automation of reason-
ing about contracts.

Due to lack of space we do not present full proofs here; please refer to the
technical reports [19, 22] for proofs and more technical details.

2 The Contract Language CL

The syntax of CL is defined by the grammar in Table 1. In what follows we
provide intuitions of the CL syntax and define our notation and terminology.

We call a formula C a (general) contract clause (or plainly contract). We
consider a finite number of propositional constants φ drawn from a set ΦB . We
call OC(α), P (α), and FC(α) the deontic modalities, representing the obligation,

4 C. Prisacariu and G. Schneider

C := φ | OC(α) | P (α) | FC(α) | C → C | [β]C | ⊥
α := a | 0 | 1 | α×α | α · α | α+ α
β := a | 0 | 1 | β×β | β · β | β + β | β∗ | ϕ?
ϕ? := φ | 0 | 1 | ϕ? ∨ ϕ? | ϕ? ∧ ϕ? | ¬ϕ?

Table 1. Syntax of the contract language CL.

permission, or prohibition of performing a given action α. CL includes directly
in the definition of the obligation and prohibition the reparations in case of
violations. Intuitively OC(α) states the obligation to perform α, and the repa-
ration C in case the obligation is violated, i.e. whenever α is not performed.
The reparation may be any contract clause. The modality OC(α) (resp. FC(α))
represents what is called contrary-to-duty obligations, CTDs, (resp. contrary-to-
prohibitions, CTPs) in dynamic deontic logic.1 Obligations without reparations
are written as O⊥(α) where ⊥ (and conversely >) is the Boolean false (respec-
tively true). We usually write O(α) instead of O⊥(α). The prohibition modality
FC(α) states the actual forbidding of the action α together with the reparation C
in case the prohibition is violated. Note that it is possible to express nested CTDs
and CTPs. Permissions have no reparations associated because they cannot be
violated; permissions can only be exercised.

Throughout the paper we denote by a, b, c ∈ AB the basic actions (e.g. “pay”,
“deliver”, or “redraw”), by indexed α ∈ A deontic actions, and by indexed β the
dynamic actions. Actions α are used inside the deontic modalities, whereas the
(more general) actions β are used inside the dynamic modality. An action term
α is constructed from the basic actions a ∈ AB and the special actions 0 and
1 (called the violating action and respectively the skip action) using the binary
constructors: choice “+”, sequence “·”, and synchrony (or concurrency) “×”.
Actions β have the extra operators Kleene star ∗ (for repetition) and Boolean
test ?. Tests ϕ? are constructed with the Boolean operators from basic tests
which in our case are the propositional constants φ ∈ ΦB (also denoted A?

B)
We define a symmetric and irreflexive relation over the basic actions AB ,

which we call conflict relation and denote by #C ⊆ AB × AB . The conflict
relation is a notion often found in legal contracts and is given a priori. The
intuition of the conflict relation is that if two actions are in conflict then the
actions cannot be done at the same time. This intuition explains the need for
the following equational implication at the level of the deontic actions: a#C b→
a×b = 0, ∀a, b ∈ AB . This is necessary for detecting (and for ruling out) a first
kind of conflicts in contracts: “Obligatory to go west and obligatory to go east”
should result in a conflict (see Proposition 2-(16)). The second kind of conflicts

1 The notions of CTD and CTP from CL are in contrast with the classical notion
of CTD as found in the SDL literature [18]. In SDL, what we call reparations are
secondary obligations which hold in the same world as the primary obligation. In
our setting where the action changes the context (the world) one can see a violation
of an obligation (or prohibition) only after the action is performed and thus the
reparations are enforced in the changed context (next world).

CL: An Action-based Logic for Reasoning about Contracts 5

that CL rules out are: “Obligatory to go west and forbidden to go west” which
is a standard requirement on a deontic logic.

The dynamic logic modality [·]C is parameterized by actions β. The expres-
sion [β]C is read as: “after the action β is performed C must hold”. Therefore, CL
can reason about synchronous actions inside the dynamic modality. We use the
classical Boolean implication operator →; the other operators ∧,∨,¬,↔,>,⊕
(exclusive or) are expressed in terms of → and ⊥ as in propositional logic.

In CL we can write conditional obligations, permissions and prohibitions of
two different kinds. As an example consider conditional obligations. The first
kind is given with the propositional implication: C → OC(α) which is read as “if
C is the case then it is obligatory that action α” (e.g. “If Internet traffic is high
then the Client is obliged to pay”). The second kind is given with the dynamic
box modality: [β]OC(α) which is read as “if action β was performed then it is
obligatory that action α” (e.g. “after receiving necessary data the Provider is
obliged to offer password”).

The formalization of the actions has been thoroughly investigated in [19]
where interpretations for the actions have been defined, and completeness and
decidability results have been established. The semantics of the CL language is
based on the interpretation of the deontic actions as rooted trees with edges
labeled by elements of 2AB . Denote by I(α) the tree interpreting the deontic
action α. Intuitively, + provides the branching in the tree and · provides the
parent-child relation on each branch (see also Theorem 3 in the appendix).

Each dynamic action β denotes a set of guarded concurrent strings.

Definition 1 (guarded concurrent strings). Over the set of basic tests A?
B

we define atoms as functions ν : A?
B → {0, 1} which assign a Boolean value to

each basic test. Denote by Atoms = {0, 1}A?
B the set of all such functions. A

guarded concurrent string (denoted by u, v, w) is a sequence

w = ν0x1ν1 . . . xnνn, n ≥ 0,

where νi ∈ Atoms and xi ∈ 2AB are sets of basic actions.

For each dynamic action β we can construct a special two level finite au-
tomaton (denoted GNFA(β)) which accepts all and only the guarded concurrent
strings denoting β. The important detail is that with each state of the automa-
ton of the upper level it is associated a special finite state automaton (denoted
dse) which accepts a set of atoms. (An atom ν can be seen as a valuation of a
test ϕ? iff the truth assignments of ν to the basic tests make ϕ? true; thus, for
each test ϕ? there is a set of all atoms which make it true.) The results of [19]
ensure that working with the dynamic actions or with the automata on guarded
concurrent strings is the same (they are different notations for the same set).

Proposition 1 (automata for tests). There exists a class of finite state au-
tomata, denoted M, which accept all and only the subsets of Atoms; in notation
L(M) ∈ 2Atoms, M ∈M and ∀A ∈ 2Atoms,∃M ∈M s.t. L(M) = A.

6 C. Prisacariu and G. Schneider

Definition 2 (automata on guarded concurrent strings). Consider a two
level finite automaton GNFA = (S,P(AB), S0, ρ, F, d·e). It consists at the first
level of a finite automaton on concurrent strings (S,P(AB), S0, ρ, F), together
with a map d·e : S → M. An automaton on concurrent strings (i.e. the first
level automation) consists of a finite set of states S, the finite alphabet 2AB

(i.e. the powerset of the set of basic actions AB), a set of initial states S0 ⊆ S,
a transition relation ρ : 2AB → S × S, and a set of final states F . At the lower
level the mapping d·e associates with each state of the first level an automaton
M ∈M as defined in Proposition 1 which accepts a set of atoms denoted L(dse).

Intuitively, a GNFA(β) accepts a guarded concurrent string ν0x1ν1 . . . xnνn
if there is a sequence of nodes s0 . . . sn ∈ S with sn ∈ F s.t. the xi label the
transitions si−1, si and the atoms νi are accepted by the corresponding automata
(on the second level) dsie. The definition with two levels of GNFA is needed when
defining the special operations for fusion product and synchronous composition
corresponding to respectively · and× (see [19]).

3 Semantics

The formulas C of the logic are given a model theoretic semantics in terms of
(what we define as) normative structures.

Definition 3 (normative structure). A normative structure is a tuple de-
noted KN = (W, ρ,V, %) where W is a set of worlds, V : W → 2ΦB is a
valuation function returning for each world the set of propositional constants
which hold in that world. AB is a finite set of basic labels and 2AB represents
the labels of the structure as sets of basic labels; ρ : 2AB → 2W×W is a function
returning for each label a partial function (therefore for each label from one world
there is at most one reachable world), and % : W → 2Ψ is a marking function
which marks each state with one or several markers from Ψ = {◦a, •a | a ∈ AB}.
The marking function respects the restriction that no state can be marked by
both ◦a and •a (for any a ∈ AB). A pointed normative structure is a normative
structure with a designated state i (denoted by KN , i).

Notation: We denote by t a node of a tree (or by r the root) and by s (or
i for initial) a world of a normative structure. Henceforth we use the more

graphical notation t
α×−→ t′ (s

β×−→ s′) for an edge (transition) in a tree (normative
structure), where α×, β× ∈ 2AB denote labels. Note that we consider both the
trees and the normative structures to have the same set of basic labels AB . For
the sake of notation we can view the valuation of one particular world V(s) as
a function from ΦB to {0, 1} where ∀ϕ ∈ ΦB , V(s)(ϕ) = 1 iff ϕ ∈ V(s) and 0
otherwise. Therefore, we can say that V(s) is accepted by the automata of the
second level of GNFA and write V(s) ∈ L(dse).

One difference from the standard PDL is that we consider deterministic struc-
tures. This is natural and desired in legal contracts as opposed to the program-
ming languages community where nondeterminism is an important notion. In

CL: An Action-based Logic for Reasoning about Contracts 7

contracts the outcome of an action like “deposit 100$ in the bank account” is
uniquely determined. The deterministic restriction of Kripke structures was in-
vestigated in [20]. Note that deterministic PDL is undecidable if action negation
(or intersection of actions) is added [5].

The marking function and the markers are needed to identify obligatory (i.e.
◦) and prohibited (i.e. •) actions. Markers with different purposes were used in
[8] to identify violations of obligations, in [14] to mark permitted transitions, and
in [15] to identify permitted events. The labels of the normative structure (and of
the trees I(α) or automata GNFA(β)) are sets of basic labels AB . Therefore, we
can compare them using set inclusion (and call one label bigger than another).

Definition 4 (simulation). For a tree T = (N , E ,AB) and a normative struc-
ture KN = (W, ρ,V, %) we define a relation S ⊆ N × W which we call the
simulation of the tree node by the state of the structure.

tS s iff ∀t γ−→ t′∈T , ∃s γ′−→s′∈KN s.t. γ⊆γ′ ∧ t′Ss′ and

∀s γ′−→s′∈KN with γ⊆γ′ then t′ S s′.
We say that a tree T , with root r is simulated by a normative structure KN

w.r.t. a state s, denoted T SsKN , iff r S s.

Note two differences with the classical definition of simulation: first, the labels
of the normative structure may be bigger than the labels in the tree because
respecting an obligatory action means executing an action which includes it (is
bigger). We can drop this condition and consider only γ = γ′, in which case we
call the relation strong simulation and denote by Ss . Second, any transition in
the normative structure that can simulate an edge in the tree must enter under
the simulation relation. This is because from the state s′ onwards we need to be
able to continue to look in the structure for the remaining tree (to see that it is
simulated). We can weaken the definition by combining this condition with the

one before into: ∀t γ−→ t′ ∈ T , ∀s γ′−→ s′ ∈ KN with γ ⊆ γ′ then t′ S̃ s′. We call
the resulting relation partial simulation and denote it by S̃ .

Definition 5 (semantics). We give in Table 2 a recursive definition of the
satisfaction relation |= of a formula C w.r.t. a pointed normative structure KN , i;
it is written KN , i |= C and is read as “C is satisfied in the normative structure
KN at state i”. The notions of satisfiability and validity are defined as usual.

CL has particular properties found in legal contracts (which we list in Propo-
sitions 2 and 3). Some intuitive motivation for these properties from the perspec-
tive of legal contracts has been given in [12]. Here we explain how these properties
influenced our decisions in the design of the semantics of CL.

For the OC the semantics has basically two parts. The first part (lines one to
four) gives the interpretation of the obligation. Line one says how to walk on the
structure depending on the tree of the action α. The normative structure must
simulate the tree of the action, completely. This is because all the actions (i.e. on
all the choices) that are obligatory must appear as transitions in the structure in
order to guarantee properties like (21) and (8). Moreover, the simulation relation

8 C. Prisacariu and G. Schneider

KN , i |= ϕ iff ϕ ∈ V(i).
KN , i |= C1 → C2 iff whenever KN , i |= C1 then KN , i |= C2.
KN , i |=OC(α) iff I(α) SiKN , and

∀t γ−→ t′ ∈ I(α), ∀s γ′−→s′ ∈ KN s.t. tS s ∧ γ ⊆ γ′ then
∀a ∈ γ, ◦a ∈ %(s′), and

∀s γ′−→s′ ∈ KI(α),i
rem , ∀a ∈ γ′ then ◦a 6∈ %(s′), and

KN , s |= C ∀s ∈ N with tSs s ∧ t ∈ leaves(I(α)).

KN , i |= FC(α) iff I(α) S̃iKN then
∀σ ∈ I(α) a full path s.t. σ SiKN ,

∃t γ−→ t′ ∈ σ s.t. ∀s γ′−→ s′ ∈ KN with tS s ∧ γ ⊆ γ′ then
∀a ∈ γ′, •a ∈ %(s′), and

KN , s |= C ∀s ∈ N with tS s ∧ t ∈ leaves(σ).
KN , i |= P (α) iff I(α) SiKN , and

∀t γ−→ t′ ∈ I(α), ∀s γ−→ s′ ∈ KN s.t. tSs s ∧ t′ Ss s′ then
∀a ∈ γ, •a 6∈ %(s′).

KN , i |= [β]C iff ∀t ∈ W with (i, t) ∈ ρ(β) then KN , t |= C.

ρ(β) = {(s, t) | ∃k, ∃σ = x0 . . . xk a final path in GNFA(β),
∃s0 . . . sk ∈ W s.t. s0 = s, sk = t, and ∀i ≤ k, V(si) ∈ L(dxie), and

∀0 ≤ i < k with xi
β×−→ xi+1 ∈ σ then (si, si+1) ∈ ρ(β×)}

Table 2. Semantics for CL.

allowes for the labels of the structure to be bigger than (not necessary the same
as) the labels in the tree. This is to guarantee property (7). Intuitively it means
that if we do these (bigger) actions the obligation of α is still respected. The
second condition of the simulation relation is needed also for properties like (8)
because regardless of the way to respect a first obligation we must be able to
enforce the subsequent obligations; which is related to property (8).

Lines two and three in the semantics of OC say how the states must be
marked with ◦. Note that the markers correspond exactly to the basic actions in
the tree and not to the basic actions in the structure (which may be more). This
is needed in the proof of the property (7) and property (17) and, in conjunction
with the restriction on the normative structures, that no state is marked with
both markers ◦a and •a for any a ∈ AB , also for properties like (6) and (14).
Moreover, note that all the relevant transitions in the normative structure must
enter under the marking function in order to have properties like (18).

Line four ensures that no other reachable relevant transitions of the struc-
ture (i.e. from the non-simulating remainder structure KI(α),i

rem) are marked with
obligation markers ◦. (See Definition 8 of KI(α),i

rem in Appendix.) This is needed
for property (22). It says that all the transitions which are outside the action
(say outside α) should not be labeled with ◦ markers. Thus transitions from any
other actions of a choice (e.g. of α′ from α+ α′) cannot be marked correctly.

The second part of the semantics of OC is just the last line and handles
our notion of reparation in case of violations of obligations. The negation of a
compound action α encodes all possible ways of violating the obligation O(α).

CL: An Action-based Logic for Reasoning about Contracts 9

Therefore, at the end of each of these possible ways of violation the reparation
must be enforced. (See the Definition 9 of α in Appendix.)

The conflict relation #C with the equational implication a#C b→ a×b = 0
and properties (1) and (7) is needed to prove how CL avoids conflicts like (16).

In the semantics of FC the first condition uses partial simulation. This is be-
cause we want to capture the assumption that if a transition is not present in the
normative structure then this is forbidden by default. In the second condition we
consider all the paths in the tree which are simulated by the structure (i.e. come
from the partial simulation) to have the property (10); prohibition of a choice
must prohibit all. Note that we are interested only in full paths simulated by the
structure because for the other paths some of the transitions are missing in the
structure and thus there is some action on the sequence which is forbidden. On
the other hand, in the third condition we consider at least one of the transitions
on this full path in order to have the property (11); forbidding a sequence means
forbidding some action on that sequence. Moreover, note that the • markers are
associated with the labels in the normative structure and not with the labels in
the tree (as for OC) in order to capture the property (9); i.e., forbidding an action
implies forbidding any action that is bigger. Also note that all the transitions
in the normative structure that simulate the chosen transition in the path are
considered so that to capture the property (23). The last condition takes care
to put the reparations where a violation of a prohibition is observed; i.e. after
executing one full path in the tree of the prohibited action.

The semantics of P is similar to that of OC . It considers the simulation
relation in order to have properties like (12). The difference is that the states
must not be marked with • markers in order to have properties (15), (3), and
(4); and to capture the principle that what is not forbidden is permitted.

The semantics of the dynamic modality [β]C is classical; it checks that the
clause C holds at all β-reachable states. The reachability function ρ is extended to
all compound actions β. Special for CL is that we extend the regular actions with
synchrony and thus we define the reachability function for compound actions
using the associated automata GNFA(β), in the style of APDL [21].

4 Properties

Proposition 2 (validities). The following statements hold:

|= ¬OC(0) (1)

|= OC(1) (2)

|= P (α)→ ¬FC(α) (3)

|= OC(α)→ P (α) (4)

if α = α′ then |= OC(α)↔ OC(α
′) (5)

|= OC(α)→ ¬FC(α) (6)

|= OC(α) ∧OC(α′)→ OC(α×α′) (7)

|= OC(α · α′)↔ OC(α) ∧ [[α]]OC(α
′) (8)

|= FC(α)→ FC(α×α′) (9)

|= FC(α+ α′)↔ FC(α) ∧ FC(α′) (10)

|= FC(α · α′)↔ FC(α) ∨ 〈〈α〉〉FC(α′) (11)

|= P (α+ α′)↔ P (α) ∧ P (α′) (12)

|= P (α · α′)↔ P (α) ∧ [α]P (α′) (13)

The following point out conflicts that are avoided in CL:

10 C. Prisacariu and G. Schneider

|= ¬(OC(α) ∧ FC(α)) (14)

|= ¬(P (α) ∧ FC(α)) (15)

if α#C α
′ then |= ¬(OC(α) ∧OC(α′)) (16)

The symbols [[·]] and 〈〈·〉〉 are the corresponding of the dynamic modalities
[·] and 〈·〉 only that they consider any action bigger than the action inside the
modality. With the semantics of Table 2 we cannot prove validity of expressions
like F (a) ∧ (φ → P (a)) which may be intuitive for the reader; e.g. some action
a is forbidden and only in exceptional cases (when ϕ holds) it is permitted.
The formula is not satisfied in a model which has a state s s.t. •a ∈ %(s) (from
F (a)) and where φ holds and thus from the semantics of P (a) is required that
•a 6∈ %(s) which is impossible. Nevertheless, the example can be modelled in CL
as (¬ϕ→ F (a)) ∧ (ϕ→ P (a)) which is also more natural.

The following result shows that the semantics avoids unwanted implications.

Proposition 3 (unwanted implications). The following statements hold:

6|= OC(α)→ OC(α×α′) (17)

6|= OC(α×α′)→ OC(α) (18)

6|= OC(α+ α′)→ OC(α×α′) (19)

6|= OC(α×α′)→ OC(α+ α′) (20)

6|= OC(α)→ OC(α+ α′) (21)

6|= OC(α+ α′)→ OC(α) (22)

6|= FC(α×α′)→ FC(α) (23)

6|= P (α×α′)→ P (α) (24)

6|= OC(α)⊕OC(α′)→ OC(α+ α′) (25)

6|= OC(α+ α′)→ OC(α)⊕OC(α′) (26)

We show that CL is decidable by showing that it has the finite model property.
We do this by first showing that CL has the tree model property. For proving
the finite model property we use the selection technique [23, sec.2.3] because it
is hard to use the filtration technique in our case as we do not know what are
subformulas of an obligation of a complex action like OC(a · (b+ c)). (For proofs
see technical report [22].)

Theorem 1 (decidability). CL with the semantics of Table 2 is decidable.
In Appendix A.1 we give the relation between the full semantics presented

so far and a trace semantics for CL from [13]. The results hold in a slightly
restricted setting which is due to the restrictions on CL coming from the trace
semantics and the run-time monitoring setting where it is used.

5 Conclusion

Some technical details of the interpretation of the actions and of the CL formulas
have been omitted due to space restrictions in favor of intuitive explanations;
the interested reader can find these details in [22]. The CL logic presented here
has a decidable satisfiability problem. The technical difficulties in the underlying
semantics come from the many properties that the logic needs to capture. Some
of the novelties of CL are the use of synchronous actions and the definitions of
the conflict relation and the normative structures.

CL: An Action-based Logic for Reasoning about Contracts 11

References

1. Owe, O., Schneider, G., Steffen, M.: Components, objects, and contracts. In:
SAVCBS’07. ACM Digital Library, Dubrovnik, Croatia (September 2007) 91–94

2. van der Torre, L.: Contextual deontic logic: Normative agents, violations and
independence. Ann. Math. Artif. Intell. 37(1-2) (2003) 33–63

3. von Wright, G.H.: Deontic logic. Mind 60 (1951) 1–15
4. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: STOC’77,

ACM (1977) 286–294
5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
6. von Wright, G.H.: An Essay in Deontic Logic and the General Theory of Action.

North Holland Publishing Co., Amsterdam (1968)
7. Segerberg, K.: A deontic logic of action. Studia Logica 41(2) (1982) 269–282
8. Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a

variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1) (1988) 109–
136

9. Broersen, J., Wieringa, R., Meyer, J.J.C.: A fixed-point characterization of a
deontic logic of regular action. Fundam. Inf. 48(2-3) (2001) 107–128

10. Milner, R.: Calculi for synchrony and asynchrony. TCS 25 (1983) 267–310
11. Berry, G.: The foundations of Esterel. In: Proof, language, and interaction: essays

in honour of Robin Milner. MIT Press (2000) 425–454
12. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In:

FMOODS’07. Volume 4468 of LNCS., Springer (2007) 174–189
13. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic con-

tracts. In: ATVA’08. Volume 5311 of LNCS., Springer-Verlag (2008) 397–407
14. Van der Meyden, R.: Dynamic logic of permission, the. In: LICS’90, IEEE Com-

puter Society Press (1990) 72–78
15. Castro, P.F., Maibaum, T.: A complete and compact propositional deontic logic.

In: ICTAC’07. Volume 4711 of LNCS., Springer-Verlag 109–123
16. Harel, D.: Recurring dominoes: Making the highly undecidable highly understand-

able. In: FCT’83. Volume 158 of LNCS., Springer (1983) 177–194
17. Peleg, D.: Concurrent dynamic logic. In: STOC’85, ACM (1985) 232–239
18. Prakken, H., Sergot, M.: Dyadic deontic logic and contrary-to-duty obligation. In:

Defeasible Deontic Logic. Kluwer Academic Publishers (1997) 223–262
19. Prisacariu, C.: Extending Kleene Algebra with Synchrony – technicalities. Tech-

nical Report 376, Univ. Oslo (2008)
20. Ben-Ari, M., Halpern, J.Y., Pnueli, A.: Finite models for deterministic proposi-

tional dynamic logic. In: ICALP’81. Volume 115 of LNCS., Springer (1981) 249–263
21. Harel, D., Sherman, R.: Propositional dynamic logic of flowcharts. In: FCT’83.

Volume 158 of LNCS., Springer (1983) 195–206
22. Prisacariu, C., Schneider, G.: CL: A Logic for Reasoning about Legal Contracts

–Semantics. Technical Report 371, Univ. Oslo (2008)
23. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Volume 53 of Cambridge

Tracts in Theoretical Computer Science. Cambridge Univ. Press (2001)

12 C. Prisacariu and G. Schneider

A Additional proofs and definitions

This Appendix contains formal definitions for some of the concepts given in the
paper, as well as more thorough presentation of the results. All these, and more
detailed explanations, examples, and full proofs can be found in the technical
report [22].

The Definition 9 of action negation and the tree interpretation of the deontic
actions in Theorem 3 are based on a notion of canonical form.

Definition 6 (canonical form). We say that an action α is in canonical form
denoted by α iff it has the following form:

α = +i∈I αi× · αi
where αi× ∈ A×B and αi ∈ A is an action in canonical form. The indexing set I
is finite as αi× ∈ A×B are finite; therefore there is a finite number of application
of the + combinator. Actions 0 and 1 are in canonical form.

Theorem 2 ([19]). For every action α there exists a corresponding action α in
canonical form and equivalent to α.

Definition 7 (rooted tree). A rooted tree is an acyclic connected graph (N , E)
with a designated node r called root node. N is the set of nodes and E is the set
of edges (where an edge is an ordered pair of nodes (n,m)). We consider rooted
trees with labeled edges and denote the labeled directed edges with (n, α,m)
and the tree with (N , E ,AB). The labels α ∈ 2AB are sets of basic labels; e.g.
α1 = {a, b} or α2 = {a} with a, b ∈ AB. Labels are compared for set equality (or
set inclusion). Note the special empty set label. We consider a special label Λ to
stand for an impossible label. We restrict our presentation to finite rooted trees
(i.e., there is no infinite path in the graph starting from the root node). The set
of all such defined trees is denoted T .

Theorem 3 (interpretation of deontic actions). For any action α there
exists a tree representation corresponding to the canonical form α.

Proof. The representation is an interpretation function I : A → T which inter-
prets all action terms as trees. More precisely, given an arbitrary action of A, the
canonical form is computed first and then I generates the tree representation.

n

r

a

iii

n

r

n

r

10

i ii

n

r

iv

ab

Fig. 1. Trees corresponding to 0, 1, a ∈ AB , and a×b ∈ A×B .

CL: An Action-based Logic for Reasoning about Contracts 13

The function I is defined inductively. The basis is to interpret each concurrent
action of A×B as a tree with labeled edges from 2AB as pictured in Fig.1. Note
that actions ofA×B∪{0,1} are in canonical form. For a general action in canonical
form α = +i∈I αi× · αi the tree is generated by adding one branch to the root
node for each element αi× of the top summation operation. The label of the
branch is the set {αi×} corresponding to the concurrent action. The construction
continues inductively by attaching at the end of each newly added branch the
tree interpretation of the smaller action αi.

The semantics for OC relies on a notion of non-simulating reminder structure
and on the operation of action negation for deontic actions.

Definition 8 (non-simulating reminder). Whenever T SiKN then we call
the maximal simulating structure w.r.t. T and i, and denote it by KT,i

max =
(W ′, ρ′,V ′, %′) the sub-structure of KN = (W, ρ,V, %) s.t.:

1. i ∈ W ′
2. V ′ = V|W′ and %′ = %|W′
3. ∀t γ−→ t′ ∈ T then ∀s γ′−→s′ ∈ KN s.t. tS s ∧ γ ⊆ γ′ ∧ t′ S s′ do add s′ to W ′

and add s
γ′−→s′ to ρ′.

We call the non-simulating remainder of KN w.r.t. T and i the sub-structure
KT,i
rem = (W ′′, ρ′′,V ′′, %′′) of KN s.t.: s

γ−→ s′ ∈ ρ′′ iff s
γ−→ s′ 6∈ KT,i

max ∧ s ∈
KT,i
max ∧∃s

γ−→s′′ ∈ KT,i
max; and s ∈ W ′′ iff s is part of a transition in KT,i

rem; and
V ′′ = V|W′′ and %′′ = %|W′′ .

Definition 9 (action negation). The action negation is denoted by α and
is defined as a function : A → A (i.e. action negation is not a principal
combinator for the actions) and works on the equivalent canonical form α as:

α = +
i∈I

αi× · αi = +
β×∈R

β× + +
j∈J

γj× · +
i∈I′

αi

Consider R = {αi× | i ∈ I}. The set R contains all the concurrent actions β×
with the property that β× is not bigger than any of the actions αi×:

R = {β× | β×∈ A×B and ∀i ∈ I, αi× 6⊂ β×};

and γj× ∈ A×B and ∃αi× ∈ R s.t. αi× ⊆ γj×. The indexing set I ′ ⊆ I is defined for
each j ∈ J as:

I ′ = {i ∈ I | αi×⊆ γ
j
×}.

A.1 Relations with the trace semantics of CL

In [13] we presented a trace semantics for CL with the goal of monitoring elec-
tronic contracts at run-time. This semantics is intended for identifying the re-
specting and violating traces of actions for a CL clause. Here we just present

14 C. Prisacariu and G. Schneider

For >,⊥,→,∧,∨,⊕ take a standard LTL-style semantics.

σ |= [α×]C if α×= σ(0) and σ(1..) |= C, or α× 6= σ(0).

σ |= [β · β′]C if σ |= [β][β′]C.
σ |= [β + β′]C if σ |= [β]C and σ |= [β′]C.
σ |= [β∗]C if σ |= C and σ |= [β][β∗]C.
σ |= [C1?]C2 if σ 6|= C1, or ifσ |= C1 and σ |= C2.
σ |= OC(α×) if α×⊆ σ(0), or if σ(1..) |= C.
σ |= OC(α · α′) if σ |= OC(α) and σ |= [[α]]OC(α

′).

σ |= OC(α+ α′) if σ |= O⊥(α) or σ |= O⊥(α′) or σ |= [α+ α′]C.
σ |= FC(α×) if α× 6⊆ σ(0), or if α×⊆ σ(0) and σ(1..) |= C.
σ |= FC(α · α′) if σ |= F⊥(α) or σ |= [[α]]FC(α

′).

σ |= FC(α+ α′) if σ |= FC(α) and σ |= FC(α
′).

Table 3. Trace semantics of CL.

briefly the trace semantics and then concentrate on relating it with the full
semantics of Table 2.

Consider an infinite trace denoted σ = a0, a1, . . . as a map σ : N→ A×B ∪{1}
from natural numbers (denoting positions) to concurrent actions from A×B . We
denote by σ(i) the element of a trace at position i, by σ(i..j) a finite subtrace,
and by σ(i..) the infinite subtrace starting at position i in σ.

Consider the satisfaction relation |=t defined over pairs (σ, C) of a trace and
a contract which we write σ |=t C and read as “trace σ respects the contract
(clause) C”. For a brief definition of |=t see Table 3 and for details see [13].

The standard interpretation of [α×]C is over branching structures as we did in
Table 2. Here we interpret the two dynamic modalities over linear structures, i.e.
over traces. A trace σ respects the formula [α×]C if either the first (set of actions)
element of the trace σ(0) is not equal with the (set of basic actions forming the)
action α× or otherwise σ(0) is the same as action α× and C is respected by the
rest of the trace (i.e. σ(1..) |= C).

A trace σ respects an obligation OC(α×) if any of the two complementary
conditions is satisfied. The first condition deals with the obligation itself: O(α×)
is respected if the first action of the trace includes α×. Otherwise, in case the
obligation is violated,2 the only way to fulfill the contract is by respecting the
reparation C; i.e. σ(1..) |=C.

A folk technique called linearization takes (in our case) a pointed normative
structure and returns all the (in)finite traces that start in the designated state
i of the pointed structure. Denote this set of traces by ‖KN , i‖. We use the
notation σ ∈ ‖KN , i‖ to mean that the trace σ is part of the traces of KN

starting as state i. Therefore, the following statement is obvious: For any trace
σ we can find a normative structure KN and a state i s.t. σ ∈ ‖KN , i‖.
2 Violation of an obligatory action is encoded by the action negation.

CL: An Action-based Logic for Reasoning about Contracts 15

When not mentioned otherwise, the following results hold for a restricted
syntax of CL which does not consider negation of clauses, nor tests inside the
dynamic modalities. These syntactic restrictions are enough for doing run-time
monitoring. For proofs see technical report [22].

Lemma 1. For any KN and i ∈ KN , if KN , i |= C then ∀σ ∈ ‖KN , i‖ σ |=t C.

Corollary 1. ⋃
KN ,i|=C

‖KN , i‖ ⊆ {σ | σ |=t C}

Proposition 4. With the general syntax of CL from Table 1 we can find a
contract clause C s.t. ∃σ s.t. σ |=t C and 6 ∃KN , 6 ∃i ∈ KN s.t. KN , i |= C.

Lemma 2 states the relation between the satisfiability in the trace semantics
and satisfiability in the branching semantics. It says that if a contract clause is
respected by some trace of actions then the contract is satisfiable in the branching
semantics.

Lemma 2. If ∃σ s.t. σ |=t C then ∃KN ,∃i ∈ KN s.t. KN , i |= C.

Lemma 3. If σ |=t C then ∃KN ,∃i ∈ KN s.t. KN , i |= C and σ ∈ ‖KN , i‖.

Corollary 2.
{σ | σ |=t C} ⊆

⋃
KN ,i|=C

‖KN , i‖

The two corollaries relate the validities in the two semantics (under the re-
stricted syntax). If a clause C is valid w.r.t. the trace semantics (i.e. there is no
way of doing a sequence of actions to violate the contract) then the clause is valid
in the full semantics (i.e. any model of the contract also entails the existence of
this contract clause).

