
Algorithmic Analysis of Polygonal Hybrid

Systems, Part I: Reachability

Eugene Asarin a, Gerardo Schneider b,∗, Sergio Yovine c

aLIAFA, Case 7014, 2 pl. Jussieu, 75251 Paris Cedex 5, France

bDept. of Informatics, University of Oslo, P.O. Box 1080 Blindern, NO-0316

Oslo, Norway

cCNRS-VERIMAG, Centre Equation, 2 Ave. Vignate, 38610 Gières, France

Abstract

In this work we are concerned with the formal verification of two-dimensional
non-deterministic hybrid systems, namely polygonal differential inclusion systems

(SPDIs). SPDIs are a class of nondeterministic systems that correspond to piece-
wise constant differential inclusions on the plane, for which we study the reachability
problem.

Our contribution is the development of an algorithm for solving exactly the reach-
ability problem of SPDIs. We extend the geometric approach due to Maler and
Pnueli [MP93] to non-deterministic systems, based on the combination of three
techniques: the representation of the two-dimensional continuous-time dynamics as
a one-dimensional discrete-time system (using Poincaré maps), the characterization
of the set of qualitative behaviors of the latter as a finite set of types of signatures,
and acceleration used to explore reachability according to each of these types.

Key words: Hybrid systems, differential inclusions, verification, decision
algorithm, reachability analysis

∗ Corresponding author.
Email addresses: Eugene.Asarin@liafa.jussieu.fr (Eugene Asarin),

gerardo@ifi.uio.no (Gerardo Schneider), Sergio.Yovine@imag.fr (Sergio
Yovine).

Preprint submitted to Elsevier Science 24 February 2007

Contents

1 Introduction 3

2 Polygonal Differential Inclusions 5

2.1 Preliminaries 5

2.2 Polygonal differential inclusions 7

2.3 SPDI and hybrid systems 9

3 Simplification of Trajectory Segments 10

3.1 Straightening trajectory segments 10

3.2 Removing self-crossings 12

4 Qualitative Analysis of Simplified Trajectory Segments 16

4.1 From Simplified Trajectory Segments to Factorized Signatures 16

4.2 From Factorized Signatures to Types of Signatures 19

4.3 Properties of Types of Feasible Signatures 20

5 Affine Multivalued Operators 22

6 Successor Function 26

7 Reachability Analysis 32

7.1 Main algorithm 32

7.2 Main result 38

7.3 Examples 39

8 Conclusion 41

References 43

A Affine Operators (properties) 47

B Soundness, termination and completeness of Exit∗ and Test∗
functions 54

2

1 Introduction

In the last decades daily life has been dominated by technological devices us-
ing computers or digital controllers. One source of complexity in such systems
arises because these computers perform discrete operations while interacting
with a physical environment which, in turn, has continuous dynamics. These
systems are called hybrid systems because both continuous and discrete behav-
iors interact with each other. A typical example is given by a discrete program
that interacts with (controls, monitors, supervises) a continuous physical en-
vironment. Most hybrid systems are critical systems in which errors can have
serious consequences: air traffic management systems [TLS98], robotic sys-
tems [AGH+00], manufacturing plants [FvS99], automobiles [BBM+00], auto-
mated highway systems [PAT] and chemical plants [BKS00]. To ensure correct-
ness, the behavior of hybrid systems must be formally modeled and verified.

Hybrid systems have been extensively studied in the last decade (for instance,
[GNRR93,AKNS95,AHS96,AKNS97,AKL+98,VvS99,LK00,dBSV01,TG02]). One
widely used formalization for hybrid systems are hybrid automata [ACH+95]
which are finite-state machines enriched with differential equations or inclu-
sions. Hybrid automata allow to model the discrete part of a hybrid system
as transitions between the states of the machine and the continuous part with
differential equations or inclusions.

Most decidability results on algorithmic verification of hybrid systems proved
in the literature are based on the existence of a finite and computable partition
of the state space into classes of states which are equivalent with respect to
reachability. This is the case for timed automata [AD94], certain classes of
rectangular automata [HKPV95] and hybrid automata with linear vector fields
of a special form [LPY01]. Except for timed automata, these results rely on
stringent hypothesis such as the resetting of variables along transitions.

Most implemented computational procedures resort to (forward or backward)
propagation of constraints, typically (unions of convex) polyhedra or ellipsoids
(e.g., [ACH+95,ABDM00,BT00,DM98,GM99,KV00,CK98,Dan00,HPHHt97]).
In general, these techniques provide semi-decision procedures: if the given fi-
nal set of states is reachable, they will eventually terminate, otherwise they
may fail to do so. This is a property of the techniques, not of the problem. In
other words, these algorithms may not terminate for certain systems for which
the reachability problem is indeed decidable. Nevertheless, they provide tools
for computing (approximations of) the reach-set for large classes of hybrid
systems with linear and non-linear vector fields.

Maybe the major drawback of set-propagation, reach-set approximation pro-
cedures is that little attention is paid to the geometric properties of the spe-

3

cific system or the class of systems under analysis. To our knowledge, in the
context of hybrid systems there are two lines of work in the direction of devel-
oping more “geometric” approaches. One is based on the existence of (enough)
integrals and the ability to compute them all [Bro99,DY01]. These methods,
however, do not necessarily result in decision procedures. The other, applicable
to two-dimensional hybrid dynamical systems, relies on the topological prop-
erties of the plane, and explicitly focuses on decidability issues. This method,
originally introduced in [MP93], is the one used in our paper.

In this work we are concerned with the formal verification of two-dimensional
non-deterministic hybrid systems, namely polygonal differential inclusion sys-
tems (SPDIs). SPDIs are a class of nondeterministic systems that correspond
to piecewise constant differential inclusions on the plane, for which we study
the reachability problem.

Previous studies on planar hybrid systems are the following. [GJ94] presents
many examples and a general theory for modeling hybrid systems but no de-
cidability issues are discussed. The starting point for our research was [MP93]
that shows that the reachability problem for two-dimensional piecewise con-
stant systems (PCDs) is decidable. The approach there is based on several
ideas. First, as suggested by Poincaré, the “essence” of the two-dimensional
continuous-time dynamics can be represented as a one-dimensional discrete-
time system (a collection of so-called Poincaré maps [HS74,NS60]). Next, in
the case of PCDs, these maps are particularly simple, they are just scalar affine
functions. Last, due to the topological properties of the plane, the global be-
havior of a planar trajectory is never chaotical and always belongs to a finite
set of qualitative types, and these types can be distinguished and analyzed
using the explicit formulas for Poincaré maps. This result has been extended
in [uV96] for planar piecewise Hamiltonian systems.

Our contribution is the development of an algorithm for solving exactly the
reachability problem of SPDIs. This required the introduction of multi-valued
Poincaré maps, an algorithmics allowing to work with them, and specific topo-
logical considerations, since trajectories of a differential inclusion behave much
“worse” than those of a differential equation. Our approach considers in fact
a subset of “nice” trajectories which is sufficient to obtain the correct reach-
ability relation. This work is an extended and revised version of [ASY01].

On the other hand, using a terminology from the verification community,
both the algorithm of [MP93] for PCDs as well as ours for SPDIs, are based
on acceleration of simple cycles. Acceleration is a well-known technique in
verification that consists in computing, in one step, all the possible (maybe
infinite) states that would be reachable in an unbounded number of steps,
clearly saving computation time and space. This technique was applied in
many contexts, e.g. for automata with counters [BW94] and for automata

4

with queues [AAB99,BGWW97,BH97]. Acceleration for hybrid systems was
considered in [BHJ03], but without applications to decidability.

Outline

In Section 2 we describe the class of two dimensional non-deterministic hybrid
systems studied in this article, namely polygonal differential inclusion systems
(SPDIs). We also give some motivation for studying this model, and compare
it to other classes of hybrid systems

In Sections 3 and 4 we present the difficulties that arise when trying to solve
the reachability problem for SPDIs and we show how to overcome these dif-
ficulties first by simplifying trajectories, and the performing their qualitative
analysis. We abstract trajectories to types of signatures and we show how this
abstraction allows to split the reachability problem into finitely many simpler
subproblems.

In Section 5 we present a useful class of functions called truncated affine multi-
valued operators (TAMF) that serves as a technical basis for characterizing
successor and predecessor operators in Section 6.

In Section 7 we present the main contribution of this article, namely the
decision procedure for the reachability problem of SPDIs. Given, for instance,
two points in an SPDI, the reachability question is: Is one point reachable
from the other? We show how a case analysis simplifies the treatment of cycles
and how to take advantage of the fact that successors are TAMF in order to
accelerate cycles. We finally present our reachability algorithm, we prove its
soundness and completeness, and illustrate it with several examples.

Finally, in Section 8 we present the conclusions.

2 Polygonal Differential Inclusions

2.1 Preliminaries

We first introduce several notations:

• We denote the inner (scalar) product of two vectors x, y by x y;
• Given x = (x1, x2) we denote by x̂ the vector (x2,−x1) obtained from x by

rotating clockwise by the angle π/2;
• We denote the Euclidean norm of x by |x|;
• The ǫ-neighborhood of x is Bǫ(x) = {y | |x− y| < ǫ}.

5

a

b

∠
b

a

Fig. 1. Positive hull of {a,b} with â b < 0.

• The interior of X ⊆ R2 is the set of x ∈ X for which there exists ǫ > 0
such that Bǫ(x) ⊆ X. It is denoted by int(X).
• For a line segment e on the plane we denote by int1(e) its relative interior,

that is e without its endpoints.

For x1, . . .xn ∈ R2 a linear combination is a vector x =
∑n

i=1 λixi for some
λi ∈ R. A positive combination is a linear combination with λi ≥ 0 for every
i. The positive hull of a set X ⊆ R2 is the set of all positive combinations of
points in X. A (closed) half-plane is the set of all points x satisfying a x ≤ b.
A convex closed polygonal set P is the intersection of finitely many half-planes.
An edge e is a line segment in R2.

Let S be a finite index set and P = {Ps}s∈S be a finite set of convex closed
polygonal sets, called regions, such that:

(1) For all s ∈ S, int(Ps) 6= ∅;
(2) For all s 6= r ∈ S, int(Ps ∩ Pr) = ∅.

Condition 1 states that regions are full dimensional. Condition 2 says that the
intersection between two regions is empty, an edge, or a point. Thus, P is a
polygonal partition of a subset of the plane.

We denote by E(P) the set of edges of the form e = P ∩ P ′ with P 6= P ′

and by V (P) the set of vertices of the form v = e ∩ e′ with e, e′ ∈ E(P). Let
int1(E(P)) = {int1(e) | e ∈ P} be the set of all the open edges of P , then let
EV (P) = int1(E(P)) ∪ V (P) be the set of all the vertices and open edges of
P .

Angles on the plane play a special role in this article. An angle ∠
b
a (Fig. 1),

defined by two non-zero vectors a,b is the set of all positive linear combina-
tions x = α a + β b, with α, β ≥ 0. We can always assume that b is situated
in the counter-clockwise direction from a (that is â b < 0).

6

2.2 Polygonal differential inclusions

Informally, a polygonal differential inclusion system (SPDI) consists of a parti-
tion of a plane subset into convex polygonal regions, together with a constant
differential inclusion associated with each region.

Let P = {Ps}s∈S be a partition, and F = {φs}s∈S be such that each φs is an
angle between two vectors as and bs with âs bs < 0 and P be a partition of
the plane.

A polygonal differential inclusion system (SPDI) consists of a partition of
the plane into convex polygonal regions, together with a differential inclusion
associated with each region. More formally,

Definition 2.1 A polygonal differential inclusion system (SPDI) is a pair
H = (P, F). Each region Ps has dynamics ẋ ∈ φs for x ∈ Ps (given a generic
region P we also use the notation φ(P)).

As an example consider the problem of a swimmer trying to escape from a
whirlpool in a river.

Example 2.2 The dynamics ẋ of the swimmer around the whirlpool is ap-
proximated by the piecewise differential inclusion defined as follows. The zone
of the river nearby the whirlpool is divided into 8 regions R1, . . . , R8. To each
region Ri we associate a pair of vectors (ai,bi) meaning that ẋ belongs to
their positive hull:

• a1 = b1 = (1, 5),
• a2 = b2 = (−1, 1

2
),

• a3 = (−1, 11
60

) and b3 =
(−1,−1

4
),

• a4 = b4 = (−1,−1),

• a5 = b5 = (0,−1),
• a6 = b6 = (1,−1),
• a7 = b7 = (1, 0),
• a8 = b8 = (1, 1).

The corresponding SPDI is illustrated in Fig. 2-(a).

Let P be a region and e ∈ E(P) an edge. We say that e is an entry of P if
for all x ∈ int1(e) and for all c ∈ φ(P), x + cǫ ∈ P for some ǫ > 0. We say
that e is an exit of P if the same condition holds for some ǫ < 0. We denote
by In(P) ⊆ E(P) the set of all entries of P and by Out(P) ⊆ E(P) the set of
all exits of P .

Definition 2.3 A trajectory segment on some interval [0, T] ⊆ R, with initial
condition x = x0, is a continuous and almost-everywhere (everywhere except
on finitely many points) differentiable function ξ(·) such that ξ(0) = x0 and
for all t ∈ (0, T):

7

(a) (b)

R3

R7

R1R5

R4

R6

e2 R2

R8

e1

e8e5

e4

e3

e7e6

x0

xf

R3

R7

R1R5

e3R4

R6

e4

e5

e2 R2

e6 e7 R8

e8

e1

Fig. 2. (a) The SPDI of the swimmer; (b) A typical trajectory segment.

(1) if ξ(t) ∈ int(P) then ξ̇(t) is defined and ξ̇(t) ∈ φ(P);
(2) if ξ(t) ∈ e and e ∈ In(P) then ξ̇+(t) is defined and ξ̇+(t) = φ(P), where

ξ̇+(t) = d+ξ

dt
is the right derivative of ξ.

If T =∞, a trajectory segment is called a trajectory.

Example 2.4 Figure 2-(b) shows a typical trajectory of the SPDI presented
in Example 2.2 from point x0 to xf .

Edges, vertices, entry edges, exit edges and the corresponding sets are defined
as for PCDs. The set of all edges of an SPDI will be denoted by E , i.e.,
E =

⋃
s∈S EV (Ps).

In general, E(P) 6= In(P)∪Out(P). We say that P is a good region iff all the
edges in E(P) are entries or exits, that is,

Definition 2.5 A region P of an SPDI is good if and only if E(P) = In(P)∪
Out(P).

Notice that, if P is a good region, then for all e ∈ E(P), e 6∈ φ(P).

Assumption 2.6 (Goodness) In the following we assume that all the re-
gions of the SPDI considered are good.

Example 2.7 In Figure 3-(a), region P (with φ(P) = ∠
b
a) is good, since all

are entry or exit edges. Figure 3-(b) shows a region that is not good: edges e2

and e5 are not in In(P) ∪Out(P).

The reachability problem for an SPDI H can be defined as a predicate

Reach(H,x0,xf) ≡ ∃ξ ∃t ≥ 0 . (ξ(0) = x0 ∧ ξ(t) = xf).

8

b
e1

e2
e6

e1

e2

e3
e4

β a a

xx

e5e5

y y

b

α

P P

e4
e3

e6

(a) (b)

β
α

Fig. 3. a) A good region; b) A bad region.

The edge-to-edge reachability problem is the following: Given two edges e and
e′ of H, is there x0 ∈ e and xf ∈ e′ such that xf is reachable from x0? The
region-to-region reachability problem is defined similarly.

2.3 SPDI and hybrid systems

The notion of SPDI is a straightforward generalization of PCD (piecewise-
constant derivatives) systems introduced and studied in [AMP95,AM94,MP93].
PCDs can be seen as deterministic linear hybrid automata (see [ACH+95])
with an additional constraint of having continuous trajectories. Mathemati-
cally, PCDs are differential equations with piecewise-constant right-hand side.
As established in the references above, reachability is decidable for planar
PCDs, and undecidable in dimensions 3 and more.

Our aim was to find a class of systems richer than planar PCD, but still with
decidable reachability problem. The novel feature of SPDIs with respect to
PCDs is the non-determinism. Technically, differential equations are replaced
by differential inclusions.

In control and applied mathematics, inclusions are used to model systems with
uncertainties and disturbances. One can model such systems using differential
equations of the form ẋ = f(x, u) where u ∈ U is a control or a disturbance.
An alternative representation is a differential inclusion ẋ ∈ g(x) where g(x) =
{f(x, u) | u ∈ U} [PVB96]. The differential inclusion ẋ ∈ g(x) captures every
possible behavior of f . Moreover, polygonal differential inclusions allow to
obtain conservative approximations of complicated nonlinear dynamics.

The class SPDI is also related to hybrid automata. In fact it is not difficult to
show that any SPDI can be represented as a non-deterministic linear hybrid
automaton with continuous trajectories[ACH+95], as illustrated on Fig 4.

9

(a) (b)

x = 0 ∧ y > 1
R1

R4R3

R2

x = 0 ∧ y < 1

x > 0 ∧ y = 1 x < 0 ∧ y = 1

R1 R2

R3R4

y > 1
x > 0 ẏ = a2

2

x < 0
y > 1

ẏ = a4

2

y < 1
x > 0

ẏ = a3

2

y < 1
x < 0

(a2
1, a

2
2)

(a3
1, a

3
2) (a4

1, a
4
2)

a = (a1
1, a

1
2)

b = (b1
1, b

1
2)

(ẋ, ẏ) ∈ ∠
b
a

ẋ = a2

1

ẋ = a3

1ẋ = a4

1

Fig. 4. From an SPDI (a) to a linear hybrid automaton (b).

3 Simplification of Trajectory Segments

In this section we prove that when solving the reachability question we can
restrict the analysis to rectilinear trajectories without self-crossings.

3.1 Straightening trajectory segments

We show here how to transform trajectory segments into rectilinear ones by
straightening them. W.l.o.g. we consider in what follows that ξ(0) ∈ e for
some edge e ∈ E . We have the following objects associated to a trajectory (or
a trajectory segment):

Definition 3.1 An edge signature of an SPDI is a sequence of edges. The
edge signature of a trajectory ξ is the ordered sequence of edges traversed by
this trajectory: Sig(ξ) = e0e1 The trace of ξ is the sequence trace(ξ) =
x0x1 . . . of the intersection points of ξ with the set of edges E (notice that
xi ∈ ei). The region signature of ξ is the sequence RSig(ξ) = P0P1 . . . of
traversed regions, that is, ei ∈ In(Pi).

Definition 3.2 Given a signature Sig(ξ) = e0e1 . . . eh . . . en . . ., the sequence
of edges σ = eh . . . en is a cycle iff eh = en, and σ is a simple edge-cycle if
additionally for all h < i 6= j < n, ei 6= ej. A region signature RSig(ξ) =
P0P1 . . . Pn is a region cycle iff P0 = Pn and it is a simple region cycle if in
addition for all 0 < i 6= j < n, Pi 6= Pj.

Example 3.3 Let us consider the trajectory segment ξ from point x0 to
point x7 shown in Figure 5-(a). Its edge signature is the sequence Sig(ξ) =
e1e2e9e10e11e1e2e3, its trace is trace(ξ) = x0x1 . . .x6x7, and its region signa-
ture is RSig(ξ) = R1R2R4R6R8R1R2.

10

x4

e5

e8

x2
e1x0

x3

x2

x7 x6

x1

x4

x6x7

x1

x5

x3

(a) (b)

e3

e10

e9
e12

e11

e2

e6 e7

e4

e5

e8

x5 e1x0

R2 R1
R3

R4

R5 R6 R7

R8

e3

e10

e9
e12

e11

e2

e6 e7

e4

Fig. 5. (a) A trajectory segment with its trace; (b) The straightened trajectory
segment.

ξ′

xi+1

Pi+1

ξ

ei+1

eixi

Fig. 6. Piecewise constant trajectory.

The following result expresses that any segment of trajectory in a given region
can be straightened, preserving its initial and final points (see Fig. 6).

Proposition 3.4 For every trajectory segment ξ there exists a trajectory seg-
ment ξ′ with the same initial and final points, and edge and region signatures,
such that for each Pi in the region signature, there exists ci ∈ φ(Pi), such that
ξ̇′(t) = ci for all t ∈ (ti, ti+1). Moreover, trace(ξ) = trace(ξ′).

PROOF. Let ξ be a trajectory segment whose trace is trace(ξ) = x0 . . .xk.
Let 0 = t0 < t1 < . . . < tk be such that ξ(ti) = xi. Consider an interval
(ti, ti+1), on this interval ξ(t) stays in some region Pi, hence it satisfies the
inclusion ξ̇ ∈ ∠

bi
ai

, where ∠
bi
ai

= φ(Pi). This means that for some non-negative
functions α, β the following equality holds:

ξ̇(t) = α(t)ai + β(t)bi, ∀t ∈ (ti, ti+1). (1)

Consider now the mean value of the right-hand side:

11

e1

x3

x4

e3

e2x1 x2

y1

y3

y4
y2

In(P)

Out(P)

Fig. 7. Ordering: x1 � x2 � x3 � x4; y1 � y2 � y3 � y4.

ci =
1

ti+1 − ti

∫ ti+1

ti

(α(t)ai + β(t)bi) dt =

=a
1

ti+1 − ti

∫ ti+1

ti

α(t) dt + b
1

ti+1 − ti

∫ ti+1

ti

β(t) dt. (2)

We have just shown that ci is a positive linear combination of ai and bi, and
hence ci ∈ ∠

bi
ai

.

Consider now a “piecewise straight” continuous line ζ(t) such that ζ(t0) = x0

and
ζ̇(t) = ci, ∀t ∈ (ti, ti+1).

It is easy to see now, that

• ∀i. ζ(ti) = ξ(ti) = xi, indeed this holds for t0 and, in virtue of (1) and (2)

ξ(ti+1)− ξ(ti) = ζ(ti+1)− ζ(ti) =
∫ ti+1

ti

(α(t)ai + β(t)bi) dt,

which insures the inductive step;
• ∀t ∈ (ti, ti+1). ζ(t) ∈ Pi since Pi is convex;
• hence ζ satisfies the differential inclusion;
• in conclusion ζ is a trajectory segment with the same trace as ξ. 2

Example 3.5 In Figure 5-(b) it is shown the straightened trajectory segment
of the one given in Figure 5-(a).

Hence, in order to solve the reachability problem it is enough to consider
trajectory segments having piecewise constant slopes. Notice that, however,
such slopes need not be the same for each occurrence of the same region in
the region signature. Hereinafter, we only consider trajectory segments whose
derivatives are piecewise constant.

3.2 Removing self-crossings

Before proceeding to the removing of self-crossing trajectory segments we need
to introduce an order relation which will be intensively used in the sequel.

12

Given a region P we define a dense linear order on Out(P) as follows: let
x1,x2 ∈ P , we say that x1 ≺ x2 if x2 lies in the clockwise direction from x1

w.r.t P . Similarly, on In(P) we say that y1 ≺ y2 if y2 lies in the counter-
clockwise direction from y1 w.r.t P (see Fig. 7). Notice, that these orders are
compatible, in the sense that if x1 and x2 belong to both In(P) and Out(Q),
then the ordering between them with respect to the two regions will be the
same.

We say that a trajectory ξ crosses itself if there exist t 6= t′ such that ξ(t) =
ξ(t′). If a trajectory does not cross itself, the sequence of consecutive intersec-
tion points with In(P) or Out(P) is monotone with respect to �. That is, for
every three points x1, x2 and x3 (visited in this order), if x1 ≺ x2 ≺ x3 the
trajectory is a “counterclockwise expanding spiral”(Fig. 8(a)) or a “clockwise
contracting spiral” (Fig. 8(b)) and if x3 ≺ x2 ≺ x1, the trajectory is a “coun-
terclockwise contracting spiral” (Fig. 8(c)) or a “clockwise expanding spiral”
(Fig. 8(d)).

Lemma 3.6 ([AMP95]) For every trajectory ξ, if ξ does not cross itself,
then for every edge e, the sequence trace(ξ) ∩ e is monotone (with respect to
�).

We prove now that self-crossings can be removed from trajectory segments,
preserving the reachability problem, by showing first that we can always di-
minish the number of self-crossings.

Lemma 3.7 For every trajectory segment ξ that crosses itself at least once,
there exists a trajectory segment ξ′ with the same initial and final points as ξ
having a number of self-crossings strictly smaller.

PROOF. Suppose that the trajectory segment ξ with trace(ξ) = x0 . . .xf

crosses itself once inside the region P . Let e1, e2 ∈ In(P) be the input edges
and e′1, e

′
2 ∈ Out(P) be the output ones. Let x = xi ∈ e1 and y = xj ∈ e2, with

i < j, be the points in trace(ξ) where ξ enters P for the first and the second
times, and let x′ = xi+1 ∈ e′2 and y′ = xj+1 ∈ e′1 be the corresponding output
points. Let cx, cy ∈ φ(P) = ∠

b
a be the derivatives of ξ in the time intervals

(ti, ti+1) and (tj , tj+1), respectively. Indeed, cx and cy are the vectors of the
segments xx′ and yy′, respectively (Fig. 9(a)). Consider now the segment
xy′. Notice that the vector c′x of this segment can be obtained as a positive
combination of the vectors cx and cy. That is, there exist α1, α2 > 0 such
that c′x = α1cx + α2cy (see Fig. 9(b)). Since φ(P) = ∠

b
a is closed under

positive combinations, c′x ∈ φ(P). Similarly we can prove that c′y is a positive
combination of a and b. Hence, there exists a trajectory ξ′ that does not cross
itself in P having trace(ξ′) = x1 . . .xy′ . . .xf (Fig. 10). Notice that the result
also works for the degenerate case when the trajectory segment crosses itself

13

(c) (d)

(a) (b)

x3

x2 x1

x1

x2 x3
x1

x2 x3

x1x2x3

Fig. 8. (a) x1 ≺ x2 ≺ x3: counterclockwise expanding spiral; (b) x1 ≺ x2 ≺ x3:
clockwise contracting spiral; (c) x3 ≺ x2 ≺ x1: counterclockwise contracting spiral;
(d) x3 ≺ x2 ≺ x1: clockwise expanding spiral.

c

a
c c’

b
a

c’ c
b

a
c’x x

y y
x

c y

x

(b)

b

(a)

y
′

e1
x

y

e2

e
′
2

x
′

e
′
1

y
′ x

′

e
′
2

e2

y

x

e1

e
′
1

Fig. 9. A trajectory that crosses itself.

at an edge (or vertex) (see Fig. 11-(a)). If the trajectory segment ξ crosses
itself more than once in region P , then the number of times the trajectory
segment ξ′, obtained by cutting away the loop (Fig. 10(c)), crosses itself in
P is strictly smaller than the number of times ξ does it (see Fig. 12). After
replacing xx′ and yy′ by xy′, the intersection q of xx′ and yy′ disappears. If
the new segment of line xy′ crosses another segment zz′ (say at a point t),
then zz′ necessarily crosses either xx′ (at r) or yy′ (at s) -or both-, before the
transformation. The above is due to the fact that if zz′ crosses one side of the
triangle xy′q then it must also cross one of the other sides of the triangle, say
at r. Thus, no new crossing can appear and the number of crossings in the
new configuration is always less than in the old one.

Notice that in the degenerate case shown in Figure 11-(b) there can be in-

14

(a) (b) (c)

e2 e2

e
′

2

e
′

2 e
′

2

e
′

1 e
′

1 e
′

1

e1

e1 e1

x0 x0x0

xf xf
xf

x
x x

y′
y′ y′x′

x′ x′

c
′

x cx

ab

cy

y

e2

y y

Fig. 10. Obtaining a non-crossing trajectory.

(b)(a)

e2

e1

x0

xf

x

y′

e
′

1

y

x0

xf

y′

e
′

1

e2

e1

x

y

Fig. 11. “Degenerate” self crossings.

finitely many crossing points. In such a case the construction above is still
valid, but the induction proceeds over the number of crossing points and in-
tervals. 2

We have then the following proposition.

Proposition 3.8 (Existence of a non-crossing trajectory) If there exists
an arbitrary trajectory segment from point x0 ∈ e0 to xf ∈ ef then there always
exists a non-crossing trajectory segment between them.

PROOF: By induction on the number n of times the trajectory segment
crosses itself using Lemma 3.7 in the induction step. 2

Example 3.9 Given the trajectory segment of Figure 5-(b), after eliminating
the self-crossing we obtain the trajectory segment of Figure 13.

Hence, in order to solve the reachability problem we only need to consider
non-crossing trajectory segments with piecewise constant derivatives. In what
follows, we only deal with trajectory segments of this kind.

15

t

x′
y′

x y

s

z

z′

(a)

r

q

x′
y′

x y
z

z′

(b)

Fig. 12. The number of self-crossings decreases after eliminating a loop. (a) Before
(3 crossings); (b) After (1 crossing).

x1

e8

x0

x7

e1

e3

e10

e9
e12

e11

e2

e6 e7

e4

e5

Fig. 13. A trajectory segment without self-crossing.

4 Qualitative Analysis of Simplified Trajectory Segments

Even considering simplified trajectory segments, there are infinitely many of
them, and of a very different qualitative behavior. We show in this section that
signatures provide a good “symbolic” abstraction of such trajectory segments.
We also prove that there exist finitely many “types” of signatures, laying down
the basis for a reachability algorithm.

4.1 From Simplified Trajectory Segments to Factorized Signatures

Given a trajectory segment ξ of an SPDI considering its edges signature
Sig(ξ) = e0, . . . , ei, . . . , ef provides information on its qualitative behavior.

In what follows we present a representation theorem that allows to express
signatures in a factorized way.

Given a sequence w, ε denotes the empty sequence whereas first(w) and last(w)
are the first and last elements of the sequence respectively. An edge sig-
nature σ can be expressed as a sequence of edges and cycles of the form

16

r1s
k1

1 r2s
k2

2 . . . rnskn
n rn+1, where

(1) For all 1 ≤ i ≤ n + 1, ri is a sequence of pairwise different edges;
(2) For all 1 ≤ i ≤ n, si is a simple cycle (i.e., without repetition of edges)

repeated ki times;

This representation can be obtained by the following procedure of greedy cycle
decomposition.

Algorithm A. Let σ = e1 . . . ep−1ep be an edge signature. Starting from ep−1

and traversing backwards, take the first edge that occurs the second time.
If there is no such edge, then trivially the signature can be expressed as a
sequence of different edges. Otherwise, suppose that the edge ej occurs again
at position i (i.e. ei = ej with i < j), thus σA = wsr, where w, s and r are
obtained as follows, depending on the repeated edge:

w = e0 . . . ei, s = ei+1 . . . ej , r = ej+1 . . . ep−1.

Clearly r is not a cycle and s is a simple cycle with no repeated edges. Let
km = max{l | sl is a suffix of w}. Thus, σA = w′skr with w′ = e0 . . . eh (a
prefix of w) and k = km+1. We repeat recursively the procedure above with w′.
Adding the edge ep to the last r (at the end) we obtain σA = r1s

k1

1 . . . rnskn
n rn+1

that is a representation of signature σ. 2

Notice that the “preprocessing” (taking away the last edge ep) is done in order
to differentiate edge signatures that end with a cycle from those that do not.
There exists many other (maybe easier) ways of decomposing a signature σ (in
particular, traversing forwards instead of backwards), but the one chosen here
permits a clearer and simpler presentation of the reachability algorithm. In
fact, using the above representation, the last visited edge in a cycle e1 . . . ek is
always the last one (ek). The representation obtained by the above algorithm
gives rise to the following theorem.

Theorem 4.1 (Representation Theorem) Let σ = e1 . . . ep be an edge
signature, then it can always be written as σA = r1s

k1

1 . . . rns
kn
n rn+1, where

for any 1 ≤ i ≤ n + 1, ri is a sequence of pairwise different edges and for all
1 ≤ i ≤ n, si is a simple cycle (i.e., without repetition of edges). 2

Each edge signature can then be represented as a sequence of edges and simple
cycles.

Example 4.2 Let us consider the following examples. Suppose that

σ = abcdbcefgefgefgefhi.

Then, after applying once the above procedure of the algorithm we obtain

17

R11

e11

e10

e9 e8

e7

e6

e5

e3

e4

e13

e14
e15

e2

e1

e12

x′

x

R3

R1

R2
R4

R5

R6

R7

R8R9

R10

R12

Fig. 14. A trajectory segment from x to x′.

that

σA = w(s2)
3r1,

with w = abcdbcef ; s2 = gef ; r1 = h. Applying the procedure once more to
w we obtain

w = w′(s3)
1r2

with w′ = r3 = abc; s3 = dbc; r2 = ef . Putting all together and adding the
last edge (i) gives

σA = abc(dbc)1ef(gef)3hi.

Suppose now, that the signature ends with a cycle:

σ = abcdbcefgefgefgefgef.

In this case we apply the preprocessing obtaining

σA = w(s2)
4r1

with w = abcdbce; s2 = fge; r1 = ε. Applying the procedure to w we finally
obtain

w = w′(s3)
1r2

with w′ = r3 = abc; s3 = dbc; r2 = e and that gives (adding f to the end)

σA = abc(dbc)1e(fge)4f.

Example 4.3 Let us consider an SPDI and its trajectory segment from a
point x ∈ e1 to a point x′ ∈ e15 shown in Figure 14. The edge signature of the

18

trajectory segment is σ = e1e2e3 . . . e6e7 . . . e13e6e14e15. Applying Algorithm A
above we obtain the following representation:

σA = e1e2e3(e4e1e2e3)
2e5e6(e7 · · · e13e6)

2e14e15.

Even when considering signatures, their number is still infinite. Our represen-
tation theorem simplifies the analysis but does not decrease the number of
signatures to be considered. The problem is that in principle all the simple
cycles can be iterated an unbounded number of times. Hence, the following
natural step is to abstract away the number of times each simple cycle is
iterated.

4.2 From Factorized Signatures to Types of Signatures

In this section we show how to abstract the signatures obtained in the previous
section via the representation theorem to types of signatures. Given a repre-
sentation of a signature, obtained as before, we have the following definition.

Definition 4.4 Let σ = e1 . . . ep be an edge signature and σA = r1s
k1

1 . . . rns
kn
n rn+1

be its representation (obtained by Algorithm A). Then we define the type of a
signature σ as type(σ) = r1, s1, . . . , rn, sn, rn+1.

When referring to the type of a signature, we will always mean the type being
generated as in Theorem 4.1 (i.e., by Algorithm A). The set of all the types
of signatures of an SPDI will be denoted by T . The set of types of signatures
from one edge e0 to other edge ef will be denoted by T (e0, ef).

Example 4.5 The type of the signature σA = abc(dbc)1ef(gef)3hi of Exam-
ple 4.2 is type(σ) = abc, (dbc), ef, (gef), hi. The type of σA = abc(dbc)1e(fge)4f
is type(σA) = abc, (dbc), e, (fge), f. And the type of the signature of Exam-
ple 4.3 is type(σ) = e1e2e3, (e4e1e2e3), e5e6, (e7 · · · e13e6), e14e15.

We have defined signatures as being arbitrary sequences of edges but we are
particularly interested in signatures that correspond to trajectory segments.

Definition 4.6 We say that a signature σ is feasible if and only if there exists
a trajectory segment ξ with signature σ, i.e., Sig(ξ) = σ.

The set of all the types of feasible signatures will be denoted by Tfeasible.

Given a type of signature we want to characterize the set of all the signatures
with such type, that is the set of signatures that concretize the type.

Definition 4.7 Given a type of signature τ = r1, s1, . . . , sn, rn+1, the con-

19

cretization of τ is the set of all edge signatures with type τ , i.e.,

Concr(τ) = {r1s
k1

1 . . . skn

n rn+1 | ki ∈ N+, 1 ≤ i ≤ n}.

4.3 Properties of Types of Feasible Signatures

Let ξ be a trajectory segment with edge signature Sig(ξ) = e0 . . . ep, and region
signature RSig(ξ) = P0 . . . Pp.

Definition 4.8 An edge e is said to be abandoned by ξ after position i, if
ei = e and for some j, k, i ≤ j < k, Pj . . . Pk forms a region cycle and
e 6∈ {ei+1, . . . , ek}. Since trajectory segments are finite we allow also the trivial
case when e 6= ej for all j, j > i.

Intuitively, the following lemma guarantees that any edge that occurs in a
prefix of an edge signature but does not appear in a cycle following this prefix
cannot occur anymore in any postfix (starting with the cycle) of the edge
signature.

Lemma 4.9 (Abandonment is Irreversible) For every trajectory segment
ξ and edge e, if e is abandoned by ξ after position i, e will not appear in Sig(ξ)
at any position j > i.

SKETCH OF THE PROOF. Let us consider a trajectory ξ that abandons
e. Since ξ is not self-crossing by Lemma 3.6 the sequence of points determined
by the intersection of ξ with e (a prefix of its signature) is monotone. After
abandoning the edge e the only possibility to “visit” the same edge again is by
violating the monotonicity property. See Claim 2 in [AMP95] for a complete
proof. 2

Example 4.10 Let us consider the trajectory segment from x to x′ of Fig-
ure 14, with signature σA = e1e2e3(e4e1e2e3)

2e5e6(e7 · · · e13e6)
2e14e15. In order

to visualize the position, we unfold the above signature and we write the
occurrence position of each edge as a superscript 1 :

σA = e1
1e

2
2e

3
3(e

4
4e

5
1e

6
2e

7
3)(e

8
4e

9
1e

10
2 e11

3)e12
5 e13

6 (e14
7 · · · e

20
13e

21
6)(e22

7 · · · e
28
13e

29
6)e30

14e
31
15.

Notice that R6R7 . . . R11R12R5 forms a region cycle with positions 13, 14, . . .,
19 and 20 respectively. Edge e5, for instance, is abandoned after position 12
since it does not belong to the set of edges {e6, e7, . . . e13} (that have positions
13, 14, . . ., 20 respectively). Moreover, e5 cannot appear in any extension of the
above trajectory segment from x′. Moreover, edges e1 to e4 are also abandoned
at positions 9, 10, 11, and 8, respectively.

1 We have kept the parentheses in order to visualize the cycles.

20

We have that the types of feasible signatures have the following properties.

Lemma 4.11 Let σ = e0 . . . ep be a feasible signature, then its type, type(σ) =
r1, s1, . . . , rn, sn, rn+1 satisfies the following properties:

P1 . For every 1 ≤ i 6= j ≤ n + 1, ri and rj are disjoint;
P2 . For every 1 ≤ i 6= j ≤ n, si and sj are different.

PROOF.

P1 . Let e ∈ ri; we consider two cases:
(1) e 6∈ si: The result follows immediately from Lemma 4.9 (e cannot occur

in any rj, j > i);
(2) e ∈ si: Suppose that e ∈ ri+1. Then we have si = e1 · · · ei · · · ek and

ri+1 = ek+1 · · · ej · · · el, with ei = ej , but this is not possible: the con-
struction of σ was done backwards, and in this case we should have a
cycle s = ei+1 · · · ekek+1 · · · ej . If e ∈ rj (for any j > i + 1) then again
we have two cases: e ∈ sj−1 or e 6∈ sj−1; the first case is not possible by
construction and the latter contradicts Lemma 4.9.

P2 . Let si = e1, . . . , ek be a simple cycle. After cycling ki times the cycle is
abandoned by edge ek (by construction of σA). Let P be a region s.t. ek ∈
In(P) and consider the unfolding of the last iteration and its continuation:
. . . , e1, e2, . . ., ek, e, . . ., where, by feasibility, e = first(ri+1), ek ∈ In(P) and
e1, e ∈ Out(P) (e1 6= e). By the ordering between edges we have that either
e ≺ e1 or e1 ≺ e. By the monotonicity of the trajectory, in both cases e1

cannot occur after e in σ. Thus, any other cycle sj, with i < j, differs from
si at least on e1. Hence, all the cycles are different. 2

We denote the set of types of signatures satisfying properties P1 and P2 by
TP . By Lemma 4.11,

Tfeasible ⊆ TP .

We have the following proposition.

Proposition 4.12 The set TP , and hence the set of types of feasible signatures
Tfeasible are finite. 2

In our reachability algorithm we will use the larger but still finite set of types
of signatures TP instead of Tfeasible, because the former one is described by
simple syntactic properties P1 and P2 and can be easily enumerated.

Remember that the point-to-point reachability for SPDIs can be stated as:

Reach(H,x0,xf) ≡ ∃ξ ∃t ≥ 0 . (ξ(0) = x0 ∧ ξ(t) = xf),

21

and for a given ξ, we have the following predicate:

Reachξ(H,x0,xf) ≡ ∃t ≥ 0 . (ξ(0) = x0 ∧ ξ(t) = xf).

Let us define the reachability following a given signature as:

Reachσ(H,x0,xf) ≡ ∃ξ . (Sig(ξ) = σ ∧ Reachξ(H,x0,xf)).

Finally, the following predicate defines the point-to-point reachability for a
given type of signature τ :

Reachτ (H,x0,xf) ≡ ∃σ ∈ Concr(τ) . Reachσ(H,x0,xf)).

Putting together the steps presented in this section we obtain the following
result.

Theorem 4.13 Given an SPDI H and two points x0 and xf , then the fol-
lowing holds:

Reach(H,x0,xf) iff Reachτ (H,x0,xf) for some τ ∈ TP .

Thus, by Proposition 4.12, to solve the reachability problem we can proceed
by examining one by one the types of signatures that guarantee to preserve
reachability by the above theorem.

5 Affine Multivalued Operators

In this section we introduce a class of functions called truncated affine multi-
valued functions (TAMFs) and we study some of its properties. TAMFs serve
as a theoretical basis for the reachability analysis presented in section 7. See
the Appendix for a proof of the results presented here and other auxiliary
lemmas concerning TAMFs.

Definition 5.1 A positive affine function 2 f : R→ R is defined by a formula
f(x) = ax + b with a > 0.

Affine functions can be extended to multi-valued functions.

Definition 5.2 An affine multi-valued operator (AMF) F : R → 2R is de-
termined by two affine functions fl(x) and fu(x); it maps x to the interval
〈fl(x), fu(x)〉, where 〈a, b〉 means (a, b), [a, b], (a, b] or [a, b) :

F (x) = 〈fl(x), fu(x)〉

2 We will sometimes omit the word “positive”.

22

with Dom(F) = {x | fl(x) ≤ fu(x)}.

We use the notation F = 〈fl, fu〉. Such an operator can be naturally extended
to subsets of R:

F (S) =
⋃

x∈S

F (x).

In particular, if S = 〈l, u〉 is an interval, then:

F (〈l, u〉) = 〈fl(l), fu(u)〉,

where the domain of F is given by Dom(F) = {〈l, u〉 | fl(l) ≤ fu(u)} (we
consider just well-formed intervals 〈l, u〉, i.e. with l ≤ u).

We are interested in considering a kind of affine function restricted with respect
to some intervals.

Definition 5.3 A truncated affine multi-valued operator (TAMF) FF,S,J :
R → 2R is determined by an affine multi-valued operator F and intervals
S ⊆ R+ and J ⊆ R+ as follows:

FF,S,J(x) =

F (x) ∩ J if x ∈ S

∅ otherwise.

A TAMF can also be expressed as FF,S,J(x) = F ({x}∩S)∩J , or as FF,S,J(x) =
F |S (x)∩J , where F |S stands for the restriction of F to S. We use calligraphic
typeface to denote TAMF operators and in general we will write F instead of
FF,S,J .

Truncated affine multi-valued functions can be also extended to sets and in
particular to intervals, as shown in what follows.

F(I) =
⋃

x∈I F(x) (by definition)

=
⋃

x∈I F ({x} ∩ S) ∩ J (by definition of F)

= F (∪x∈I{x} ∩ S) ∩ J = F (I ∩ S) ∩ J.

We define the inverse of an AMF:

Definition 5.4 The inverse of F is defined by F−1(x) = {y | x ∈ F (y)}.

It is not difficult to show that F−1 = 〈f−1
u , f−1

l 〉 and the inverse of a TAMF
F is given by the following Lemma:

Lemma 5.5 Given a F(I) = F (I ∩ S) ∩ J , then F−1(I) = F−1(I ∩ J) ∩ S.

23

Definition 5.6 A TAMF F is normalized if S = Dom(F) = {x | F (x)∩J 6=
∅} and J = Im(F).

Notice that, for normalized TAMFs, S ⊆ F−1(J) and J = F(S). In fact, any
TAMF can be normalized as stated in the following lemma.

Lemma 5.7 Every TAMF F can be represented in normal form.

In what follows, we consider just TAMFs in normal form. The following result
shows an important property of affine operators, that is the closure under
composition.

Lemma 5.8 (composition of affine operations) Affine functions, affine
multi-valued operators, and truncated affine multi-valued operators are closed
under composition.

In particular, as proved in the Appendix (Lemma A.5), for

F1(x) = F1({x} ∩ S1) ∩ J1; F2(x) = F2({x} ∩ S2) ∩ J2

we have that

F2 ◦ F1(x) = F ′({x} ∩ S ′) ∩ J ′

with

F ′ = F2 ◦ F1; J
′ = J2 ∩ F2(J1 ∩ S2); S

′ = S1 ∩ F−1
1 (J1 ∩ S2).

Example 5.9 Let x ∈ J0 (where J0 = [0, 1]), and

F1(x) =
(
2x−

3

5
, 3x + 5

]
, F2(x) = [5x + 2, 7x + 6]

be two (non-truncated) affine multi-valued functions, F1 = F1 ∩ J1 (with
J1 = (1, 6]), and F2 = F2 ∩ J2 (with J2 = [6, 10)) their truncated versions.
We have that

F−1
1 (y) =

(
y − 5

3
,
5y + 3

10

]
, F−1

2 (y) =
[
y − 6

7
,
y − 2

5

]
.

To obtain F2 ◦ F1(x) we need to compute F ′, S ′ and J ′ as in Lemma 5.8 but
first we compute S1 and S2:

24

S1 = F−1
1 (J1) ∩ J0 = F−1

1 ((1, 6]) ∩ [0, 1] =
(
−

4

3
,
33

10

)
∩ [0, 1] = [0, 1];

S2 = F−1
2 (J2) ∩ J1 = F−1

2 ([6, 10)) ∩ (1, 6] =
[
0,

8

5

)
∩ (1, 6] =

(
1,

8

5

)
;

S ′ = S1 ∩ F−1
1 (J1 ∩ S2) = [0, 1] ∩ F−1

1

(
(1, 6] ∩

(
1,

8

5

))
=

= [0, 1] ∩ F−1
1

((
1,

8

5

))
= [0, 1] ∩

(
−

4

3
,
11

10

)
= [0, 1];

J ′ = J2 ∩ F2(J1 ∩ S2) = [6, 10) ∩ F2

(
(1, 6] ∩

(
1,

8

5

))
=

= [6, 10) ∩ F2

((
1,

8

5

))
= [6, 10) ∩ (7, 10) = (7, 10);

F ′(x) = F2 ◦ F1(x) =
(
5

(
2x−

3

5

)
+ 2, 7(3x + 5) + 6

]
= (10x− 1, 21x + 41].

Hence, the truncated affine multi-valued operator F2 ◦ F1(x) is

F2 ◦ F1(x) =

(10x− 1, 21x + 41] ∩ (7, 10) if x ∈ [0, 1]

∅ otherwise.

Another useful result gives the fixpoints of AMFs:

Lemma 5.10 Let 〈l0, u0〉 be any initial interval and 〈ln, un〉 = F n(〈l0, u0〉).
The following properties hold:

(1) The sequences ln and un are monotonous;
(2) They converge to limits l∗ and u∗ (finite or infinite), which can be effec-

tively computed.

We use the notation F̂ for truncated affine multi-valued operators with S = J ;
i.e. the image and the domain coincide (we denote this set by H) and then
F̂(I) = F (I ∩ H) ∩ H . The following TAMF property will have a key role
in the acceleration of cycles when computing successors for the reachability
algorithm in section 7.

Lemma 5.11 (Fundamental lemma) Let F̂ be a truncated affine multi-
valued operator. Then F̂n(I) = F n(I ∩H) ∩ H.

Intuitively, what the above lemma says is that in order to obtain the iterated
truncated affine multi-valued function truncated with an interval H (both
the argument and the final result), we only need to iterate the non-truncated
function intersecting the argument just once at the beginning and once at the
end.

25

(b)(a) (c)

P

v

e

P
P

v

e
(e′, x′)

x′

(e, x)v

+
x1

e

v
+

x2
e

x

v + xe

ĉx1

x2

x

ct

Fig. 15. (a) Representation of edges; (b) Representation of an interval; (c) One-step
successor.

6 Successor Function

Let us introduce a one-dimensional coordinate system on each edge. For each
edge e we chose a point on it (the origin) with radius-vector v, and a director
vector e going in the positive direction in the sense of the order ≺.

To characterize e we need the coordinates of its extreme points: two more
numbers el, eu ∈ Q∪ {−∞,∞} such that e = {v + xe | el < x < eu}. Clearly,
having fixed v and e for every edge we can represent every point x ∈ e by a
pair (e, x) identifying the edge e and the coordinate x (see Fig.15(a)). Every
interval 〈x1,x2〉 contained in e is represented as (e, 〈x1, x2〉), where x1 = (e, x1)
and x2 = (e, x2) (see Fig.15(b)). Notice that if e is a vertex, then e = {v},
where v is the only vector that characterizes e. Moreover, all the vertices have
local coordinates x ∈ [0, 0], i.e. a vertex v is represented by a pair (v, 0); hence,
whenever e is a vertex, e = 〈el, eu〉 must be understood as e = [el, eu] whereas
if e is a “true” edge then e = (el, eu).

We define the edge-to-edge successor Succc
ee′ following a given vector c.

Definition 6.1 Let e ∈ In(P) and e′ ∈ Out(P) be two edges, x = (e, x) a
point, and c ∈ φ(P) a given vector. The edge-to-edge successor following a
given vector c is defined as

Succc
ee′(x) = x′,

where x′ = (e′, x′) is a point such that x′ = x + ct for some t > 0.

Notice that x′ is unique. We say that the point (e′, x′) is the successor of (e, x)
in the direction c (see Fig.15(c)). We prove now that successors are TAMFs.

Lemma 6.2 The function Succc
ee′ is truncated affine.

26

PROOF. Let e = 〈el, eu〉 and e′ = 〈e′l, e′u〉.

Expanding x′ = x + ct, we obtain v′ + x′e′ = v + xe + tc. Multiplying both
expressions by ĉ (the right rotation of c) and eliminating x′ we obtain x′ =
α(c)x+β(c) with α(c) = eĉ

e′ĉ
and β(c) = v−v′

e′ĉ
ĉ. With our choice of orientation

of director vectors for e and e′, the coefficient α(c) is always positive.

Notice that we have x′ = Succc
ee′(x) iff x ∈ e, x′ ∈ e′ and x′ = α(c)x + β(c).

Thus, x′ = F ({x} ∩ S) ∩ J with F (x) = α(c)x + β(c), S = 〈el, eu〉 and
J = 〈e′l, e′u〉, i.e. x′ = FF,〈el,eu〉,〈e′l,e′u〉. 2

The notion of successor can be extended on all possible directions c ∈ φ(P).
Succee′(x) is the set of all points in e′ reachable from x by a trajectory segment
in P . More formally,

Definition 6.3 Let P ∈ P, e ∈ In(P) and e′ ∈ Out(P). For x = (e, x), the
edge-to-edge successor Succee′(x) is defined as

Succee′(x) = {x′ | x′ = (e′, x′) ∧ ξ(0) = x ∧ ξ(t) = x′ ∧ Sig(ξ) = ee′}.

F c
ee′(x) will denote the non-truncated function α(c)x+β(c). The above notion

of successor can be applied to any subset A ⊆ 〈el, eu〉 and in particular to
intervals 〈l, u〉:

Lemma 6.4 Let φ(P) = ∠
b
a , x = (e, x) and 〈l, u〉 ⊆ 〈el, eu〉. Then:

(1) Succee′(x) =
⋃

c∈φ(P) Succc
ee′(x) =

[
F b

ee′(x), F a
ee′(x)

]
∩ 〈e′l, e′u〉;

(2) Succee′(〈l, u〉) = 〈F b
ee′(l), F

a
ee′(u)〉 ∩ 〈e′l, e′u〉.

PROOF. It follows from the results given in section 5. 2

Therefore, Succee′ is truncated affine multivalued:

Succee′(〈l, u〉) = Fee′(〈l, u〉 ∩ 〈e
l, eu〉) ∩ 〈e′l, e′u〉.

This lemma shows that in order to find a successor of an interval in an edge e,
we should apply the rightmost dynamics (a) to its right end and the leftmost
(b) to its left end, and intersect the result with the target edge. Fig. 16 shows
the difference between non-truncated and truncated successors.

The successor operator will be used as a building block in the reachability
algorithm. It can be naturally extended on edge signatures: for σ1 = e1e2 . . . en

27

(a) (b)

l1

l0

u0

u1 u1l0

u0

l1

e1
e1

Fig. 16. (a) Non-truncated operator: Succe1
(l0, u0) = 〈l1, u1〉, with

l1 < el
1 < u1 ≤ eu

1 ; (b) Truncated successor: Succe1
(l0, u0) = 〈l1, u1〉 ∈ 〈e

l
1, e

u
1 〉.

let Succσ1
(I) = Succen−1en

◦ · · · ◦ Succe2e3
◦ Succe1e2

(I) that by Lemma 5.8 is
truncated affine.

Notice that since we use edge signatures the semi-group property takes the
following form.

Lemma 6.5 For any edge signatures σ1 and σ2 and an edge e

Succeσ1
◦ Succσ2e = Succσ2eσ1

.

It is convenient to define a (trivial) successor Succe where e is a single edge. The
only way to do it preserving the semi-group property is to put Succe(x) = x.

In order to manipulate successor operators we should investigate their al-
gebraic properties. Since one-step successors Succe1e2

are truncated affine,
Lemma 6.5 and Lemma 5.8 guarantee that all the multi-step Succu are trun-
cated affine as well. In the sequel we will apply the iteration analysis to their
non-truncated versions Fu.

The following result plays a technical role in the reachability algorithm.

Lemma 6.6 Let P be a region, φ(P) = ∠
b
a its dynamics, e ∈ In(P), e1, e2 ∈

Out(P), and Feei
(x) = Fi(x) = Fi({x} ∩ Si) ∩ Ji be a truncated affine multi-

valued function (with Fi = [f l
i , f

u
i] and Ji = 〈Li, Ui〉). Given that e2 ≺ e1 we

have that

(1) if L1 < f l
1(x) then F2(x) = ∅;

(2) if fu
2 (y) < U2 then F1(x) = ∅.

PROOF: (See Fig. 17).

28

F2(x)

P

In

Out

e x

e2

L2

U2

ab

fu
2 (x)

f1(x)

L1

e1

U1

f l
2(x)

Fig. 17. Proof of Lemma 6.6.

(1) Looking from the point x, the directions to (e2, L2), (e2, U2), (e1, L1), the
vector b, the set (e2, F2(x)) and the vector a are situated in the clockwise
order. This implies emptiness of F2(x) ∩ 〈L2, U2〉 = F2(x).

(2) Similar. 2

Example 6.7 Let us come back to the example of the swimmer trying to
escape from a whirlpool in a river (see Fig. 2). Suppose that the swimmer
is following a trajectory with edge signature (e1 . . . e8)

∗. It is not difficult to
find a representation of the edges such that for each edge ei, (el

i, e
u
i) = (0, 1).

Besides, the (non-truncated) affine successor functions are:

Fe1e2
(x) =

{
x
2

}
; Feiei+1

(x) = {x}, for all i ∈ [3, 7];

Fe2e3
(x) =

[
x− 1

4
, x + 11

60

]
; Fe8e1

(x) =
{
x + 1

5

}
.

The truncated affine version of the functions above (normalized) are

29

Succe1e2
(x) =

{
x
2

}
∩ (0, 1) if x ∈ (0, 1)

∅ otherwise;

Succe2e3
(x) =

[
x− 1

4
, x + 11

60

]
∩ (0, 1) if x ∈ (0, 1)

∅ otherwise;

Succeiei+1
(x) =

{x} ∩ (0, 1) if x ∈ (0, 1)

∅ otherwise;

Succe8e1
(x) =

{
x + 1

5

}
∩ (0, 1) if x ∈ (0, 4

5
)

∅ otherwise.

The successor function for the loop s = e1 . . . e8 is obtained by composition of
the above functions as follows. Let us first compute Succe1e2e3

(x) = F ({x} ∩
S) ∩ J, where

F = Fe2e3
◦ Fe1e2

, S = S1 ∩ F−1
e1e2

(J1 ∩ S2), J = J2 ∩ Fe2e3
(J1 ∩ S2),

with

J0 = e1 = (0, 1),

J1 = e2 = (0, 1), S1 = F−1
e1e2

(J1) ∩ J0,

J2 = e3 = (0, 1), S2 = F−1
e2e3

(J2) ∩ J1,

and

F−1
e1e2

(x) = {2x}, F−1
e2e3

(x) =
[
x−

11

60
, x +

1

4

]
.

We compute now all the parameters above in order to obtain F, S and J

S1 = F−1
e1e2

((0, 1)) ∩ (0, 1) = (0, 2) ∩ (0, 1) = (0, 1);

S2 = F−1
e2e3

((0, 1)) ∩ (0, 1) =
(
−11

60
, 5

4

)
∩ (0, 1) = (0, 1);

F (x) =
[

x
2
− 1

4
, x

2
+ 11

60

]
;

S = (0, 1) ∩ F−1
e1e2

((0, 1) ∩ (0, 1)) = (0, 1) ∩ (0, 2) = (0, 1);

J = (0, 1) ∩ Fe2e3
((0, 1) ∩ (0, 1)) = (0, 1) ∩

(
−1

4
, 71

60

)
= (0, 1).

We have then that

Succe1e2e3
(x) =

[
x
2
− 1

4
, x

2
+ 11

60

]
∩ (0, 1) if x ∈ (0, 1)

∅ otherwise.

30

Since Feiei+1
for i ∈ [3, 7] are the identity functions, we have that

Succe3...e8
(x) =

{x} ∩ (0, 1) if x ∈ (0, 1)

∅ otherwise,

and composing the functions above we obtain Succe1...e8
= Succe1e2e3

. We com-
pute now Succe1...e8e1

(x) = F ′({x} ∩ S ′) ∩ J ′, where

F ′ = Fe8e1
◦ Fe1...e8

, S ′ = S1 ∩ F−1
e1...e8

(J1 ∩ S2), J ′ = J2 ∩ Fe8e1
(J1 ∩ S2),

with

J0 = e1 = (0, 1),

J1 = J = (0, 1), S1 = F−1
e1...e8

(J1) ∩ J0,

J2 = e1 = (0, 1), S2 = F−1
e8e1

(J2) ∩ J1,

and

F−1
e1...e8

(x) =
[
2x− 11

30
, 2x + 1

2

]
,

F−1
e8e1

(x) =
{
x− 1

5

}
.

We compute the parameters above to obtain F ′, S ′ and J ′:

S1 = F−1
e1...e8

((0, 1)) ∩ (0, 1) =
(
−11

30
, 5

2

)
∩ (0, 1) = (0, 1);

S2 = F−1
e8e1

((0, 1)) ∩ (0, 1) =
(
−1

5
, 4

5

)
∩ (0, 1) =

(
0, 4

5

)
;

F ′(x) =
[

x
2
− 1

20
, x

2
+ 23

60

]
;

S ′ = (0, 1) ∩ F−1
e1...e8

(
(0, 1) ∩

(
0, 4

5

))
= (0, 1) ∩ (−11

30
, 21

10
) = (0, 1);

J ′ = (0, 1) ∩ Fe8e1

(
(0, 1) ∩

(
0, 4

5

))
= (0, 1) ∩ (1

5
, 1) =

(
1
5
, 1

)
.

Hence,

Succe1...e8e1
(x) =

[x
2
− 1

20
, x

2
+ 23

60
] ∩ (1

5
, 1) if x ∈ (0, 1)

∅ otherwise.

Finally, by Lemma 5.10 we obtain the limits: l∗ =
(
− 1

20

)
/

(
1− 1

2

)
= − 1

10
,

and u∗ =
(

23
60

)
/

(
1− 1

2

)
= 23

30
.

The notion of edge signature introduced in the previous section allows to con-
sider one dimensional discrete systems instead of the two dimensional contin-
uous systems we are dealing with. The following evident lemma shows that a
successor function computes the Poincaré map of a trajectory segment.

Lemma 6.8 Given an SPDI H and two points x0 = (e0, x0) and xf =
(ef , xf), the predicate Reachσ(H,x0,xf) holds iff xf ∈ Succσ(x0).

31

function Reach(H,x0,xf)
for each τ ∈ T (e0, ef)

if (Reachtype(x0, xf , τ))
then ←− true

←− false

Fig. 18. Main algorithm.

function Reachtype(x0, xf , τ) :
Z = Succr1f1

(x0)
for i = 1 to n− 1

Z = Succri+1fi+1
(Exit(Z, si, exi

))
if loopend(τ)

then ←− Test(Z, sn, xf)
else ←− xf ∈ Succrn+1

(Exit(Z, sn, exn
))?

Fig. 19. Reachtype function.

7 Reachability Analysis

In this section we present our main result, namely a decision procedure to solve
the reachability problem for SPDIs. We adopt here the top-down programming
style.

7.1 Main algorithm

Given an SPDI H, we are interested in the reachability analysis between two
points. We know that there exists a finite number of types of signatures in
TP of the form r1, s1 . . . rn, sn, rn+1. Moreover, the types of signatures are
restricted to those with e0 = first(r1) and ef ∈ rn+1. Given such a set of
types of signatures T (e0, ef), the algorithm shown in Fig. 18 is guaranteed to
terminate, answering YES if xf is reachable from x0 or NO otherwise:

Reachability from x0 to xf with fixed type of signature τ is tested by the
function Reachtype(x0, xf , τ), shown in Fig. 19.

Let the type τ have the form τ = r1, s1, . . . , rn, sn, rn+1. Put fi = first(si)
and exi

= first(ri+1) if ri+1 is non-empty and fi+1 otherwise (i.e. exi
is the

edge to which the trajectory exits from the loop si). Let us say that a type
of signature τ has a loopend property if first(rn+1) = first(sn), i.e. signatures of
type τ terminate by several repetitions of the last loop.

Reachtype(·, ·, ·) uses two functions:

32

(1) Test(Z, s, x) that answers whether x is reachable from a set Z (repre-
sented as a finite union of intervals) in the loop s. Formally, it checks
whether x ∈ Succs+first(s)(I), i.e.,

∃k ≥ 1 . x ∈ Succskfirst(s)(I)?

(2) The function Exit(Z, s, e) that for an initial set Z, a loop s, and an edge
e (not in this loop) finds all the points on e reachable by making s several
times and then exiting to e. Formally, it computes

Succs+e(I) =
⋃

k≥1

Succske(I),

which is always a finite union of intervals.

Since we know how to calculate the successor of a given interval in one and
in several steps (Succee′(·) and Succr(·)), in order to implement Test(·) and
Exit(·) it remains to show how to analyze the (simple) cycles si and even-
tually their continuation. Both algorithms Test(·) and Exit(·) start by doing
qualitative analysis of the cycle (see next subsections for a detailed description
of these algorithms). This analysis proceeds as follows.

Let s be a simple cycle, f = first(s) its first edge, and I = 〈l, u〉 ⊂ f an initial
interval and Succsf(x) = Fsf({x} ∩ S) ∩ J . Notice that the successor can be
iterated (applied again) only if Succsf(I) intersects with S ∩ J , and only from
this intersection. In what follows 〈L, U〉 will denote S ∩ J .

The first thing to do is to determine the qualitative behavior of the leftmost
and rightmost trajectories of the interval endpoints in the cycle. This can be
done without iterating Succsf . Indeed, by Lemma 5.10, we can compute the
limits (l∗, u∗) = limn→∞ F n

sf(〈l, u〉) (notice that those are limits only for the
non-truncated operator F), not taking into account that the edges are possible
bounded (we use Lemma 5.11) and compare these limit points corresponding
to unrestricted dynamics with L and U . There are five possibilities:

1. STAY The cycle is not abandoned by any of the two trajectories: L ≤
l∗ ≤ u∗ ≤ U ;

2. DIE The right trajectory exits the cycle through the left (consequently the
left one also exits) or the left trajectory exits the cycle through the right
(consequently the right one also exits). In symbols, u∗ < L ∨ l∗ > U , see
Fig. 20;

3. EXIT-BOTH Both trajectories exit the cycle (the left one through the
left and the right one through the right): l∗ < L ∧ u∗ > U , see Fig. 21;

4. EXIT-LEFT The leftmost trajectory exits the cycle but not the other:
l∗ < L ≤ u∗ ≤ U , see Fig. 22.

5. EXIT-RIGHT The rightmost trajectory exits the cycle but not the other:
L ≤ l∗ ≤ U < u∗.

33

u
l

(b)

u
l

(c)

u
l

(a)

e1

e6 e6 e6

e4e4
e4

e7 e7 e7

e2 e2 e2 e3e3e3

e5 e5 e5

e1 e1

Fig. 20. [DIE] (a) Both trajectories leave the cycle (e1, e2, e3, e4)
∗ through the left;

(b) Reachable points on the cycle (in bold); (c) Possible continuation after leaving
the cycle (in bold).

(b)(a) (c)

u
l

u
l

u
l

e1

e6 e6 e6

e5 e5 e5

e4 e4 e4

e3 e3 e3e2 e2 e2

e7 e7 e7

e1 e1

Fig. 21. [EXIT-BOTH]] (a) Both trajectories leave the cycle (e1, e2, e3, e4)
∗; (b)

Reachable points on the cycle (in bold); (c) Possible continuation after leaving the
cycle (in bold).

This qualitative analysis is implemented in the function Analyze(I, s) which
returns the kind of qualitative behavior of the interval I = 〈l, u〉 under the
loop s. See Fig. 23.

Notice that one (or both) of the successor functions can be the identity. In this
case we have an infinite number of fixpoints but the analysis above continues
to apply.

7.1.1 Exit

In this section we describe the EXIT algorithm (see Fig. 24) and show its
soundness and termination. The exit set on a given edge ex after cycling on s,

34

(c)

l
u

*

(a)

l
u

(b)

l
u

u∗
3

e6 e6

e5 e5 e5

e4 e4 e4

e3 e3e2 e2 e2

u∗
1

u∗
3u∗

2u∗
3

u∗
4

e1

e6

e1
e1

e3

u∗
1 u∗

1

u∗
4

u∗
2

u∗
4

u∗
2

Fig. 22. [EXIT-LEFT] (a) The left trajectory leave the cycle (e1, e2, e3, e4)
∗ through

the left, whereas the right one tends to the limit u∗; (b) Reachable points on the
cycle (in bold); (c) Possible continuation after leaving the cycle (in bold).

function Analyze(I, s)
cases

L ≤ l∗ ≤ u∗ ≤ U : ←− STAY
u∗ < L ∨ l∗ > U : ←− DIE
l∗ < L ∧ u∗ > U : ←− EXIT-BOTH
L ≤ l∗ ≤ U < u∗ : ←− EXIT-RIGHT
l∗ < L ≤ u∗ ≤ U : ←− EXIT-LEFT

endcases

Fig. 23. Analyze function.

for a given initial interval I, is

Ex =
⋃

m>0

Succsex
◦ Succm

sf(I).

The function Exit(Z, s, ex) should return Succs+ex
(Z). Both the argument Z

and the result are finite collections of intervals. The exploration is made for
each initial interval separately.

Notice that the call Succsf(I) ensures that I ⊆ 〈L, U〉. Preliminary analy-
sis for each initial interval I is done by the function Analyze(I, s) returning
the kind of behavior k. After that, according to the result of this analysis,
Exitk(I, s, ex), that is one of five specialized procedures ExitSTAY , ExitLEFT ,
ExitRIGHT , ExitBOTH , ExitDIE , is launched and calculates the exit set. These
specialized algorithms are presented in Fig. 25 (we only omit ExitRIGHT which
is symmetrical to ExitLEFT). Their termination and soundness will be estab-
lished in the appendix. This will imply termination and soundness of the Exit
function itself.

35

function Exit(Z, s, ex)
E = ∅
for each I ∈ Z

if Succsf(I) ∩ S 6= ∅
then k = Analyze(I, s)

E = E ∪ Exitk(Succsf(I) ∩ S, s, ex)
else E = E ∪ Succsex

(Succsf(I))
←− E

Fig. 24. Exit function.

function ExitSTAY (I, s, ex)
←− ∅

function ExitDIE(I, s, ex)
Z = ∅
repeat

I = Succsf(I)
Z = Z

⋃
Succsex

(I)
until I = ∅
←− Z

function ExitBOTH(I, s, ex)
←− Succsex

(Succsf(〈L, U〉))

function ExitLEFT (I, s, ex)
←− Succsex

(Succsf(〈L, max{u, u∗}〉))

Fig. 25. Specialized Exit functions.

7.1.2 Test

In this section we describe the Test function and show its soundness and ter-
mination. In what follows, l ↑ means that the sequence l, l1, l2, . . . of successive
successors of l is increasing whereas l ↓ means that the sequence is decreas-
ing. Similarly for u ↑ and u ↓. Notice that detecting whether the sequences
ln and un are increasing or decreasing can be easily done at the stage of the
preliminary analysis of the loop. The algorithm is shown in Fig. 26.

The upper-level structure is the same as for EXIT: each initial interval is
treated separately, first by Analyze which detects the kind k of the loop and
next by Testk, which delegates all the remaining to one of the five specialized
functions TestSTAY , TestLEFT , TestRIGHT , TestBOTH , TestDIE. The special-
ized Test functions (except TestRIGHT symmetrical to TestLEFT) are shown

36

function Test(Z, s, x)
for each I ∈ Z such that Succsf(I) ∩ S 6= ∅

k = Analize(I, s)
if Testk(Succsf(I), s, x)

then ←− true

←− false

Fig. 26. Test function.

function TestSTAY (I, s, x)
cases

l∗ < x < u∗ : ←− YES
x ≤ l∗ ∧ l ↓ : ←− NO
x ≥ u∗ ∧ u ↑ :←− NO
else : ←− Search(I, x)

endcases

function TestDIE(I, s, x)
←− Search(I, x)

function TestBOTH(I, s, x)
←− x ∈ Succsf(〈L, U〉)?

function TestLEFT (I, s, x)
cases

x ∈ Succsf(〈L, u∗〉) : ←− YES
x < Succsf(〈L, u∗〉) : ←− NO
Succsf(〈L, u∗〉) < x ∧ u ↑ : ←− NO
else : ←− Search(I, x)

endcases

Fig. 27. Specialized Test functions.

in Fig. 27. Their soundness and correctness are stated in the appendix.

The five specialized Test functions use the following two procedures (see Fig.
28): The function Found(I, x) determines, if the current interval I contains x
(YES), does not contain x and moves in the opposite direction (NO), or none
of both these cases (NOTYET). The function Search(I, x) iterates the loop s
until the previous function Found gives a definite answer YES or NO. Special
measures will be taken to guarantee termination.

37

function Found(I, x)
cases

x ∈ I : ←− YES
I = ∅ : ←− NO
x < I ∧ l ↑ : ←− NO
x > I ∧ u ↓ :←− NO
else : ←− NOTYET

endcases

function Search(I, x)
while Found(I, x) = NOTYET

I = Succsf(I)
←− Found(I, x)

Fig. 28. Found function.

7.2 Main result

Notice that the function Reachtype(x0, xf , τ) of the previous section computes
Reachτ (H,x0,xf) and hence the algorithm Reach(H,x0,xf) computes the
following:

Reach(H,x0,xf) ≡ ∃τ ∈ TP . Reachτ (H,x0,xf).

From the previous section and the results of section 4 we have the following
theorem.

Theorem 7.1 (Point–to–Point Reachability) The algorithm above for de-
ciding Reach(H,x0,xf) is sound and complete. Hence point-to-point reacha-
bility is decidable for SPDI.

PROOF. Soundness follows from the soundness of all the functions used in
the algorithm that has already been proved. We have to prove that Reach(H,x0,xf)
computes the good result for all the existing trajectory segments from x0 to
xf , but this follows from Theorem 4.13 and the fact that all the types of
feasible signatures are considered. 2

It is not difficult to see that the result also holds for edge–to–edge and region–
to–region reachability.

Remark. Notice that the above decidability result holds for SPDIs under the
goodness condition (see assumption 2.6). Non-good SPDIs can not be reduced
to good SPDIs though we conjecture the reachability problem for non-good
SPDIs is decidable.

38

...

e7

R7

u∗ =
23

30

L =
1

5

e8

e9

e1

R6

e5

R5

e4

R4

e6

e3

R8

R1
x0 =

1

2

eu = U = 1xf =
3

4R3

e2

R2

el = 0

l∗ = − 1

5

Fig. 29. xf = (e1,
3
4) is reachable from x0 = (e1,

1
2), i.e. 3

4 ∈ Succe1e8···e1
(L, u∗).

7.3 Examples

In this section we present two examples of the application of the reachability
algorithm for SPDIs.

Example 7.2 Consider again the swimmer of Figure 2 defined in section 2.2.
Let x0 =

(
e1,

1
2

)
be her initial position. We want to decide whether she is able

to escape from the whirlpool and reach the final position xf = (e1,
3
4
). Recall

that (L, U) = S ∩ J =
(

1
5
, 1

)
, and

l∗ =
(
−

1

20

)
/

(
1−

1

2

)
= −

1

10
, u∗ =

(
23

60

)
/

(
1−

1

2

)
=

23

30
.

Thus, by the Analyze function we know that the cycle behaves as an Exit-
LEFT and applying the function TestLEFT we obtain that xf = (e1,

3
4
) is

reachable from x0 = (e1,
1
2
) because we have that

Succe1e8···e1
((L, u∗)) = Succe1e8···e1

((
1

5
,
23

30

))
=

(
1

20
,
23

30

)
,

and
3

4
∈

(
1

20
,
23

30

)
.

See Figure 29.

Example 7.3 Let us change the above example in order to show another
behavior. For simplicity we consider the same partition as in the swimmer
example but with the following differential inclusion dynamics:

• R1 : a =
(
1, 10

3

)
,b = (1, 5);

• R2 : a = b = (−1, 1);
• R3 : a = b = (−1, 0);
• R4 : a = b = (−1,−1);

• R5 : a = b = (0,−1);
• R6 : a = b = (1,−1);
• R7 : a = b = (1, 0);
• R8 : a = b = (1, 1).

39

We are interested in the edge signature e0(e1 . . . e8)
∗e9, and what matters for

computing the reachable points of e9 starting from x0 ∈ e0 are the following
edge-to-edge successor functions:

Succe0e1
(x) =

[
1
5
x, 3

10
x
]
∩ (0, 1) if x ∈ (0, 1)

∅ otherwise;

Succeiei+1
(x) =

{x} ∩ (0, 1) if x ∈ (0, 1)

∅ otherwise;

Succe8e1
(x) =

[
x + 1

5
, x + 3

10

]
∩ (0, 1) if x ∈ (0, 4

5
)

∅ otherwise;

Succe8e9
(x) =

[
5x− 4, 10

3
x− 7

3

]
∩ (0, 1) if x ∈ (7

10
, 1)

∅ otherwise.

Let x0 be equal to 1
2

on edge e0 and xf be 3
10

on e9; deciding whether exists a
trajectory from (e0,

1
2
) to (e9,

3
10

) can be done following the steps:

(1) Compute the “enter interval” to the loop: Succe0e1
(1

2
) =

[
1
10

, 3
20

]
.

(2) Compute the successor function of the loop (e1 . . . e8)
∗ 3 :

Succe1...e8e1
(x) =

[
x + 1

5
, x + 3

10

]
∩ (1

5
, 1) if x ∈ (0, 4

5
)

∅ otherwise.

(3) Compute the limits of the loop signature: By Lemma 5.10 we have that
u∗ = l∗ = ∞ for both affine functions. We can then conclude that the
trajectories will be counterclockwise expanding spirals and the Analyze
function gives that the loop will behave as a DIE (see section 7.1).

(4) Execute the function ExitDIE(
[

1
10

, 3
20

]
, e1 . . . e8, e9) = {[0, 1]}.

The execution trace is given in Table 1, where in the Z column we can see
the set of (truncated) exit intervals over the edge e9: in the third iteration the
exit interval is the whole edge e9. From the above we conclude that (e9,

3
10

) is
reachable from (e0,

1
2
).

As an example of a non reachable point, consider the edge signature (e1 . . . e8)
∗

with [9
10

, 19
20

] ∈ e1 as initial interval and xf = 3
10

in e9 as before. After computing

3 Notice that in fact this function is the same as Succe8e1
since the other functions

are the identity.

40

Iteration I Z

0 [1
10 , 3

20] ∅

1 [3
10 , 9

20] ∅

2 [12 , 3
4] {[0, 1

6]}

3 [7
10 , 1] {[0, 1]}

4 [9
10 , 1] {[0, 1]}

Table 1
Execution trace of the cycle e1 . . . e8 starting from [0.1, 0.15] ∈ e1. I represents the
current interval (in e1) and Z is the set of exit intervals (in e9).

the corresponding functions we obtain that in the first iteration the loop is
left and the exit interval on edge e9 is [1

2
, 5

6
], from where we can conclude that

(e9,
3
10

) is not reachable from (e1,
[

9
10

, 19
20

]
).

8 Conclusion

We have presented an algorithm for solving the reachability problem for polyg-
onal differential inclusion systems. The novelty of the approach for the domain
of hybrid systems is the combination of two techniques, namely, the representa-
tion of the two-dimensional continuous dynamics as a one-dimensional discrete
system (due to Poincaré), and the characterization of the set of qualitative be-
haviors of the latter as a finite set of types of signatures. The enumeration
of such a set is the base for proving decidability, which naturally gives a
depth-first search algorithm. A breadth-first search algorithm has been given
in [PS03].

An interesting issue is the complexity analysis of the algorithm. The algorithm
is based on counting all “feasible” types of signatures; our finiteness argument
(lemma 4.11) gives a doubly exponential estimation. In practice, the types of
signatures are computed on-the-fly, and due to acceleration, the time for an-
alyzing each type of signature is not significant. Moreover, by combining the
space reduction techniques based on topological and geometrical optimiza-
tions recently presented in [PS06b] with the compositional parallel algorithm
given in [PS06a], we envisage even greater gains in terms of space and time
complexity.

Some other results on SPDIs and related systems have been given in the last
years. SPDIs can be seen as non-deterministic piece-wise constant derivative
systems, for which the reachability problem is decidable for two dimensional
systems [MP93] and undecidable for three or higher dimensions [AM94]. The
frontier between decidability and undecidability is not sharp. We can certainly

41

find (stringent) conditions, such as planarity of the automaton, “memory-less”
resets, etc., under which decidability follows almost straightforwardly from the
decidability of SPDIs. On the other hand, it is not difficult to see that reach-
ability for hybrid automata whose locations are equipped with SPDIs and
similar classes of systems, which do not satisfy such conditions, is equivalent
to deciding whether given a piece-wise linear map f on the unit interval and
a point x in this interval, the sequence of iterates x, f(x), f(f(x)), and so on,
reaches some point y. This last question is still open [Koi]. The (un)decidability
frontier has been studied in [AS02] and refined recently in [MP05]. Reachabil-
ity of slight extensions of such classes turn out to be undecidable [AS02,MP05].
On another line of research, the qualitative behavior, i.e. the phase portrait,
of SPDIs has been analyzed in [ASY02] and [Sch04]. The algorithm presented
here has been implemented in a tool-kit called SPeeDI [APSY02] and recently
extended to compute SPDIs phase portraits.

One open question on SPDIs is whether it could be possible to apply the same
technique for solving the parameter synthesis problem, that is, for any two
points, x0 and xf , assign a constant slope cP ∈ φ(P) to every region P such
that xf is reachable from x0, or conclude that such an assignment does not
exist. Clearly, the decidability of the reachability problem does not imply the
decidability of the parameter synthesis one.

Another question that naturally arises is decidability of the reachability prob-
lem for General SPDIs, i.e. SPDIs without goodness (assumption 2.6). We con-
jecture that the problem is indeed decidable. Preliminary works have shown,
however, that if such a reachability algorithm exists it cannot be based on a
reduction to the reachability of SPDIs; an extension of the technique presented
here would be needed.

Though the class of SPDIs is rather simple from the modelling point of view,
it is a rather complex one from the analysis point of view. Indeed, it is well
known that even for slight extensions of this class of systems, reachability be-
comes undecidable, and adding jumps in 2-dim leads immediately to an ”in-
termediate” complexity equivalent to a well-known open problem for which
decidability analysis is difficult [AS02,MP05]. Moreover, SPDIs could be used
for approximating complex non-linear differential equations on the plane, for
which an exact solution is not known. The decidability of SPDI’s reachabil-
ity and of its phase portrait construction would be of invaluable help for the
qualitative analysis of such equations. The challenge would be to find an “in-
telligent” partition of the plane in order to get an optimal approximation of
the equations.

42

References

[AAB99] P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification
of lossy channel systems: Application to the bounded retransmission
protocol. In TACAS, volume 1579 of LNCS, pages 208–222, 1999.

[ABDM00] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate
reachability analysis of piecewise-linear dynamical systems. In Lynch
and Krogh [LK00], pages 20–31.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3–34,
1995.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.

[AGH+00] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification
of hybrid systems in charon. In Lynch and Krogh [LK00], pages 6–19.

[AHS96] R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems

III, volume 1066 of LNCS, Rutgers University in New Brunswick, NJ,
USA, October 1996. Springer.

[AKL+98] P.J. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, editors.
Hybrid Systems V, volume 1567 of LNCS, Notre Dame, Indiana, USA,
September 1998. Springer.

[AKNS95] P.J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid

Systems II, volume 999 of LNCS, Ithaca, NY, USA, October 1995.
Springer.

[AKNS97] P.J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid

Systems IV, volume 1273 of LNCS, Ithaca, NY, USA, October 1997.
Springer.

[AM94] E. Asarin and O. Maler. On some relations between dynamical systems
and transition systems. In S. Abiteboul and E. Shamir, editors,
ICALP’94, number 820 in LNCS, pages 59–72. Springer, 1994.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical
systems having piecewise-constant derivatives. Theoretical Computer

Science, 138:35–65, 1995.

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a verification
tool for polygonal hybrid systems. In CAV’2002, volume 2404 of LNCS,
pages 354–358, Copenhagen, Denmark, July 2002. Springer-Verlag.

[AS02] E. Asarin and G. Schneider. Widening the boundary between decidable
and undecidable hybrid systems. In CONCUR’2002, volume 2421 of

43

LNCS, pages 193–208, Brno, Czech Republic, August 2002. Springer-
Verlag.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the
reachability problem for planar differential inclusions. In di Benedetto
and Sangiovanni-Vincentelli [dBSV01], pages 89–104.

[ASY02] E. Asarin, G. Schneider, and S. Yovine. Towards computing phase
portraits of polygonal differential inclusions. In Tomlin and Greenstreet
[TG02], pages 49–61.

[BBM+00] A. Balluchi, L. Benvenuti, G.M. Miconi, U. Pozzi, T. Villa, M.D. Di
Benedetto, H. Wong-Toi, and A.L. Sangiovanni-Vincentelli. Maximal
safe set computation for idle speed control of an automotive engine. In
Lynch and Krogh [LK00], pages 32–44.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. In Static Analysis Symposium, volume 1302 of LNCS, pages
172–186. Springer, September 1997.

[BH97] A. Bouajjani and P. Habermehl. Symbolic Reachability Analysis
of FIFO Channel Systems with Nonregular Sets of Configurations
(extended abstract). In Automata, Languages and Programming,

24th International Colloquium, volume 1256 of LNCS, pages 560–570.
Springer-Verlag, July 1997.

[BHJ03] B. Boigelot, F. Herbreteau, and S. Jodogne. Hybrid acceleration using
real vector automata. In CAV, volume 2725 of LNCS, pages 193–205.
Springer, 2003.

[BKS00] N. Bauer, S. Kowalewski, and G. Sand. A case study: Multi product
batch plant for the demonstration of control and scheduling problems.
In ADPM, pages 969–974, Dortmund, Germany, 2000.

[Bro99] M. Broucke. A geometric approach to bisimulation and verification of
hybrid systems. In Vaandrager and van Schuppen [VvS99], pages 61–75.

[BT00] O. Botchkarev and S. Tripakis. Verification of hybrid systems with
linear differential inclusions using ellipsoidal approximations. In Lynch
and Krogh [LK00], pages 73–88.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets.
In Proceedings of the 6th International Conference on Computer Aided

Verification, volume 818 of LNCS, pages 55–67, 1994.

[CK98] A. Chutinan and B.H. Krogh. Computing polyhedral approximations
to dynamic flow pipes. In Proc. of the 37th Annual International

Conference on Decision and Control, CDC’98. IEEE, 1998.

[Dan00] T. Dang. d/dt manual. Technical report, Verimag, Grenoble, 2000.

[dBSV01] M.D. di Benedetto and A. Sangiovanni-Vincentelli, editors. Hybrid

Systems: Computation and Control, volume 2034 of LNCS, Rome, Italy,
March 2001. Springer.

44

[DM98] T. Dang and O. Maler. Reachability analysis via face lifting. In
HSCC’98, number 1386 in LNCS, pages 96–109. Springer Verlag, 1998.

[DY01] J. Della Dora and S. Yovine. Looking for a methodology for analyzing
hybrid systems. In European Control Conference, Porto, Portugal,
September 2001.

[FvS99] J.J.H. Fey and J.H. van Schuppen. VHS case study 4 - modeling and
control of a juice processing plant. http://www-verimag.imag.fr/

VHS/CS4/dcs42.ps.gz, 1999.

[GJ94] J. Guckenheimer and S. Johnson. Planar hybrid systems. In Hybrid

Systems and Autonomous Control Workshop, pages 202–225, 1994.

[GM99] M. R. Greenstreet and I. Mitchell. Reachability analysis using polygonal
projections. In Vaandrager and van Schuppen [VvS99], pages 103–116.

[GNRR93] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid

Systems, volume 736 of LNCS. Springer-Verlag, 1993.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In 27th Annual Symposium on Theory of

Computing, pages 373–382. ACM Press, 1995.

[HPHHt97] T.A. Henzinger, P.-H.Ho, and H.Wong-toi. Hytech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1(1):110–122,
1997.

[HS74] M.W. Hirsch and S. Smale. Differential Equations, Dynamical Systems

and Linear Algebra. Academic Press Inc., 1974.

[Koi] P. Koiran. My favourite problems. http://www.ens-lyon.fr/
∼koiran/problems.html.

[KV00] A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
analysis. In Lynch and Krogh [LK00], pages 202–214.

[Lay82] S.R. Lay. Convex sets and their applications. John Wiley and Sons,
New York, 1982.

[LK00] N. Lynch and B.H. Krogh, editors. Hybrid Systems: Computation and

Control, volume 1790 of LNCS. Springer-Verlag, 2000.

[LPY01] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic reachability
computation of families of linear vector fields. Journal of Symbolic

Computation, 32(3):231–253, September 2001.

[MP93] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear
systems. In C. Courcoubetis, editor, CAV’93, number 697 in LNCS,
pages 194–209. Springer-Verlag, 1993.

[MP05] V. Mysore and A. Pnueli. Refining the undecidability frontier of hybrid
automata. In FSTTCS, volume 3821 of LNCS, pages 261–272. Springer-
Verlag, 2005.

45

[NS60] V.V. Nemytskii and V.V. Stepanov. Qualitative theory of differential

equations. Princeton University Press, 1960.

[PAT] PATH Project. http://paleale.eecs.berkeley.edu/.

[PS03] G. Pace and G. Schneider. Model checking polygonal differential
inclusions using invariance kernels. In VMCAI’04, number 2937 in
LNCS, pages 110–121, Venice, Italy, December 2003. Springer Verlag.

[PS06a] G. Pace and G. Schneider. A compositional algorithm for parallel model
checking of polygonal hybrid systems. In ICTAC 2006, volume 4281 of
LNCS, pages 168–182. Springer-Verlag, 2006.

[PS06b] G. Pace and G. Schneider. Static analysis for state-space reduction of
polygonal hybrid systems. In FORMATS’06, volume 4202 of LNCS,
pages 306–321. Springer-Verlag, 2006.

[PVB96] A. Puri, P. Varaiya, and V. Borkar. Epsilon approximations of
differential inclusions. In Alur et al. [AHS96], pages 362–376.

[Sch04] G. Schneider. Computing invariance kernels of polygonal hybrid
systems. Nordic Journal of Computing, 11(2):194–210, 2004.

[TG02] C.J. Tomlin and M.R. Greenstreet, editors. Hybrid Systems:

Computation and Control, volume 2289 of LNCS, Stanford, CA, USA,
March 2002. Springer.

[TLS98] C. Tomlin, J. Lygeros, and S. Sastry. Conflict resolution for air
traffic management: A study in multi-agent hybrid systems. IEEE

Transactions on Automatic Control, 43(4):509–521, April 1998.

[uV96] K. C̆erāns and J. V̄iksna. Deciding reachability for planar multi-
polynomial systems. In Alur et al. [AHS96], pages 389–400.

[VvS99] F.W. Vaandrager and J.H. van Schuppen, editors. Hybrid Systems :

Computation and Control, volume 1569 of LNCS, Berg en Dal, The
Netherlands, March 1999. Springer-Verlag.

46

A Affine Operators (properties)

We will prove here the lemmas introduced in Section 5 as well as other inter-
esting properties of iterations of affine operations.

To start with, we prove that to obtain the inverse of a truncated affine multi-
valued function F we just need to inverse the corresponding non-truncated
affine function and truncate it with the domain and co-domain of F inter-
changed.

Lemma A.1 (5.5) Given a F(I) = F (I ∩ S) ∩ J , then F−1(I) = F−1(I ∩
J) ∩ S.

PROOF. We prove first that F−1(I) ⊆ F−1(I ∩J)∩S. Let y ∈ F−1(I), then
it exists x ∈ I such that x ∈ F(y) = F ({y} ∩ S) ∩ J . It is immediate that
y ∈ S and x ∈ J , and hence x ∈ I ∩ J . We deduce that y ∈ F−1(I ∩ J), and
conclude that y ∈ F−1(I ∩ J) ∩ S.
For the other inclusion, given y ∈ S and y ∈ F−1(I ∩ J) we prove now that
y ∈ F−1(x). Indeed, it exists x ∈ I ∩ J such that x ∈ F (y). We have then
that x ∈ J , x ∈ F (y) and y ∈ S, and hence x ∈ F(y) = F ({y} ∩ S) ∩ J . We
conclude that y ∈ F−1(I). 2

Lemma A.2 (5.7) Every TAMF F can be represented in normal form.

PROOF. Let F(I) = F (I ∩ S) ∩ J be a TAMF. We show that there exists
a TAMF F ′(I) = F ′(I ∩ S ′) ∩ J ′ such that F = F ′ and F ′ is in normal form.
Let F ′ be the above function with F ′ = F , S ′ = S ∩ F−1(J) and J ′ = F(S).
Clearly S ′ = Dom(F ′) and J ′ = Im(F ′). It remains to show that F = F ′.

If x 6∈ S or x 6∈ F−1(J), then the result follows, since F(x) = ∅ and F ′(x) = ∅.
Suppose now that x ∈ S and x ∈ F−1(J). Hence x ∈ S ′ and F(x) = F (x)∩ J
and F ′(x) = F (x) ∩ J ′ = F (x) ∩ F (S) ∩ J = F (x) ∩ J . The two maps F and
F ′ are identical for all x. 2

We will use in the sequel the one-dimensional case of a classical result from
convex geometry:

Theorem A.3 (Helly, see [Lay82]) If intervals I1, . . . , Ik ⊆ R intersect
pairwise:

∀i, j : Ii ∩ Ij 6= ∅,

then they have a common point.

47

Before showing that the class of functions above defined are closed under
composition we prove the following lemma.

Lemma A.4 Let F be a multi-valued affine operator. If I ∩H 6= ∅ or I = ∅
or H = ∅ then F (I ∩H) = F (I) ∩ F (H).

PROOF. Clearly if I = ∅ or H = ∅ then F (I ∩H) = ∅ = F (I) ∩ F (H).
Suppose now that I ∩ H 6= ∅. The inclusion F (I ∩ H) ⊆ F (I) ∩ F (H) is
trivial. To prove the other direction, suppose that x ∈ F (I) and x ∈ F (H).
Then F−1(x) ∩ I 6= ∅, and F−1(x) ∩ H 6= ∅, and, by hypothesis I ∩ H 6= ∅.
In other words, the three intervals F−1(x), I and H intersect pairwise, and
hence, by Helly’s theorem they have a common point y. Immediately we have
x ∈ F (y) ⊆ F (I ∩H). 2

Now we can prove the closure under composition for the three classes of func-
tions introduced before.

Lemma A.5 (5.8, composition of affine operations) Affine functions, affine
multi-valued operators, and truncated affine multi-valued operators are closed
under composition.

PROOF.

Affine functions: For f(x) = ax + b and g(x) = cx + d the composition
g ◦ f(x) = c(ax + b) + d = (ca)x + (cb + d) has the required form. Notice,
that the coefficient ca is positive since c and a are positive.

Affine multi-valued operators For F = 〈fl, fu〉 and H = 〈hl, hu〉, the com-
position H ◦ F is nothing other than 〈hl ◦ fl, hu ◦ fu〉.

Truncated affine multi-valued operators For

F1(x) = F1({x} ∩ S1) ∩ J1, F2(x) = F2({x} ∩ S2) ∩ J2

we will establish that F2 ◦ F1(x) = FF ′,S′,J ′(x) with F ′ = F2 ◦ F1, J ′ =
J2 ∩ F2(J1 ∩ S2) and S ′ = S1 ∩ F−1

1 (J1 ∩ S2).
Indeed, by definition of F1 and F2

F2 ◦ F1(x) =F2(F1({x} ∩ S1) ∩ J1)

=F2((F1({x} ∩ S1) ∩ J1) ∩ S2) ∩ J2. (A.1)

We split the proof into two cases:
(1) x ∈ S ′, that reduces, using the formula for S ′, to two conditions: x ∈ S1

and F1(x) ∩ (J1 ∩ S2) 6= ∅. In this case F1({x} ∩ S1) = F1(x) and then

48

expression (A.1) is equal to F2((F1(x) ∩ J1) ∩ S2) ∩ J2 that is equal to

F2(F1(x) ∩ (J1 ∩ S2)) ∩ J2. (A.2)

In this case the distributivity holds (see Lemma A.4) and expression (A.2)
is equal to F2(F1(x)) ∩ F2(J1 ∩ S2) ∩ J2, and hence to FF ′,S′,J ′(x).

(2) x 6∈ S ′ which splits into two subcases: x 6∈ S1 or F1(x) ∩ (J1 ∩ S2) = ∅.
In both cases it is easy to see that F2 ◦ F1(x) = ∅. This also matches
with FF ′,S′,J ′(x). 2

We show next that normalization is preserved by composition.

Lemma A.6 If F1 and F2 are normalized, then F2◦F1, represented as stated
in Lemma A.5 is also normalized.

PROOF. By Lemma A.5,

F2 ◦ F1(x) = FF ′,S′,J ′(x)

with F ′ = F2 ◦ F1, J ′ = J2 ∩ F2(J1 ∩ S2) and S ′ = S1 ∩ F−1
1 (J1 ∩ S2).

We have to prove that S ′ = Dom(F ′) = F ′−1(J ′) ∩ S ′ and J ′ = Im(F ′) =
F ′(S ′) ∩ J ′. This is equivalent to S ′ ⊆ F ′−1(J ′) and J ′ ⊆ F ′(S ′).

J′ ⊆ F′(S′) We have to prove that

J2 ∩ F2(J1 ∩ S2) ⊆ F2(F1(S1 ∩ F−1
1 (J1 ∩ S2))).

Indeed suppose that x ∈ J2 and x ∈ F2(J1 ∩ S2). Then x ∈ F2(y) for some
y ∈ J1 ∩ S2. By normalization of F1, for this y there exists a z ∈ S1, such
that y ∈ F1(z). Clearly this z ∈ F−1

1 (y) ⊆ F−1
1 (J1 ∩ S2). We have thus:

z ∈S1 ∩ F−1
1 (J1 ∩ S2)

y ∈F1(S1 ∩ F−1
1 (J1 ∩ S2))

x∈F2(F1(S1 ∩ F−1
1 (J1 ∩ S2))),

which concludes the proof of the first inclusion.
S′ ⊆ F′−1(J′) We have to prove that

S1 ∩ F−1
1 (S2 ∩ J1) ⊆ [F2 ◦ F1]

−1(J2 ∩ F2(J1 ∩ S2)).

Suppose that x ∈ S1 and x ∈ F−1
1 (S2 ∩ J1), i.e.

F1(x) ∩ (S2 ∩ J1) 6= ∅,

49

(b)

(d)(c)

(a)

y = ax + b

x∗

y = x

x0x0

y = x

x∗ = −∞ x0

y = ax + b

y = x

x0 x∗ = +∞

x0
x∗ x0

y = x

y = ax + b

y = ax + b

Fig. A.1. (a): a < 1, x∗ = b/(1 − a); (b): a > 1, x∗ = −∞ if x0 < x∗,x
∗ = x0 if

x0 = x∗, x∗ = +∞ if x0 > x∗; (c): a = 1 and b > 0, x∗ = +∞; (d): a = 1 and b < 0,
x∗ = −∞

then there exists some y ∈ F1(x)∩ (S2 ∩J1), and by normalization of F2 we
have that F2(y) ∩ J2 6= ∅, hence

F2(F1(x) ∩ (S2 ∩ J1)) ∩ J2 6= ∅.

By Lemma A.4 we have that

F2(F1(x)) ∩ F2(S2 ∩ J1) ∩ J2 6= ∅.

Hence
x ∈ [F2 ◦ F1]

−1(J2 ∩ F2(J1 ∩ S2)). 2

The following result shows how to compute fixpoints of affine functions [MP93].

Lemma A.7 Let f be an affine function, x0 be any initial point and xn =
fn(x0). The following properties hold

(1) The sequence xn is monotonous;

50

(2) It converges to a limit x∗ (finite or infinite), which can be effectively
computed knowing a, b and x0.

PROOF. Monotonicity of xn follows from the identity xn+1 − xn = an(x1 −
x0):

xn = fn(x0) =⇒ fn(x0) = anx0 + an−1b + . . . + ab + b =⇒

xn+1 − xn = (an+1x0 + anb + . . . + ab + b)− (anx0 + an−1b + . . . + ab + b)

= an(ax0 + b− x0) = an(x1 − x0)

Existence of limit is immediate from the monotonicity. To calculate the limit
several cases should be considered (see Fig. A.1):

a < 1: In this case the limit is finite and it is the unique fixpoint of the function
f : ax∗ + b = x∗, and hence x∗ = b/(1− a).

a = 1: In this case

x∗ =

−∞ if b < 0

x0 if b = 0

∞ if b > 0

a > 1: In this case we should calculate first the (unstable) fixpoint x∗ = b/(1−
a). However in this case the limit is not necessary equal to x∗ . Namely,

x∗ =

−∞ if x0 < x∗

x0 if x0 = x∗

∞ if x0 > x∗ 2

This result can be easily extended to intervals and affine multi-valued opera-
tors.

Lemma A.8 (5.10) Let 〈l0, u0〉 be any initial interval and 〈ln, un〉 = F n(〈l0, u0〉).
The following properties hold

(1) The sequences ln and un are monotonous;
(2) They converge to limits l∗ and u∗ (finite or infinite), which can be effec-

tively computed.

PROOF. Direct consequence of Lemma A.7 considering ln and un. 2

51

The following result is a direct consequence of monotonicity of ln and un.

Lemma A.9 (Convexity) Let F be an affine multi-valued operator.

(1) If H∩I 6= ∅, and H∩F n(I) 6= ∅, then for all k ∈ 0..n also H∩F k(I) 6= ∅.
(2) If x ∈ I, and x ∈ F n(I), then for all k ∈ 0..n also x ∈ F k(I).

PROOF. We will use the following evident fact: for non-empty intervals
[a, b] ∩ [c, d] 6= ∅ if and only if a ≤ d and b ≥ c.

(1) W.l.o.g. we suppose that I and H are closed intervals. Let F k(I) = [lk, uk],
and H = [L, U]. Sequences lk and uk are monotonous (increasing or
decreasing) due to Lemma A.8. From nonemptyness hypotheses U ≥ l0
and U ≥ ln, and by monotonicity also U ≥ lk for all intermediate values
of k. Similarly L ≤ uk, and hence H ∩ F k(I) 6= ∅.

(2) Apply the previous statement with H = [x, x]. 2

Our next aim is to prove the Fundamental Lemma (Lemma 5.11) and a result
(Lemma A.11) allowing to compute iterations of arbitrary TAMFs.

Lemma A.10 (5.11, Fundamental lemma) Let F̂ be a truncated affine
multi-valued operator of the form F̂(I) = F (I ∩ H) ∩ H. Then F̂n(I) =
F n(I ∩H) ∩H.

PROOF.

Base case (n = 1): By definition F̂(I) = F (I ∩H) ∩H .
Inductive step (from n ≥ 1 to n + 1): Applying inductive hypothesis we

have that

F̂n+1(I) = F̂(F̂n(I))

= F̂(F n(I ∩H) ∩ H) (By inductive hypothesis)

=F (F n(I ∩H) ∩ H) ∩ H (By definition of F̂) (A.3)

In order to prove the required

F̂n+1(I) = F n+1(I ∩H) ∩H (A.4)

we will establish two inclusions between the two expressions.
(1) ⊆: This inclusion is easy, removing one intersection can only augment

the set:

F̂n+1(I) = F (F n(I∩H)∩H)∩H ⊆ F (F n(I∩H))∩H = F n+1(I∩H)∩H.

52

(2) ⊇ : This direction is more involved. Suppose that x belongs to the right-
hand side of (A.4), that is x ∈ F (F n(I ∩H)) ∩H . We have to deduce
that it also belongs to the left-hand side. We notice the following three
facts:
(a) Since x ∈ H and x ∈ F n+1(H), by Convexity Lemma A.9 we have

that x ∈ F (H). We prefer to write it down as

F−1(x) ∩H 6= ∅. (A.5)

(b) Since x ∈ F (F n(I ∩H)), then

F−1(x) ∩ F n(I ∩H) 6= ∅. (A.6)

(c) Notice that H ∩ I ∩H = I ∩H 6= ∅ (otherwise x would not exist),
and also H ∩ F n+1(I ∩ H) 6= ∅ since it contains x. Then by the
interval Convexity Lemma A.9 we have that

H ∩ F n(I ∩H) 6= ∅. (A.7)

Equations (A.5-A.7) and Helly’s Theorem A.3 guarantee that the three
intervals F n(I ∩H), H , and F−1(x) have a common point z. Immedi-
ately z ∈ F n(I ∩H) ∩H and x ∈ F (z). Hence x ∈ F (F n(I ∩H) ∩H),
which together with the hypothesis x ∈ H gives the required:

x ∈ F (F n(I ∩H) ∩H) ∩H = F̂n+1(I). 2

Notice, that the Fundamental Lemma allows to compute the iteration of
TAMFs of the special form F̂(I) = F (I ∩H) ∩H . However the general case
can be reduced to this special one. Indeed, for any TAMF F(I) = F (I∩S)∩J
we can introduce H = S ∩ J and an auxiliary special form TAMF F̂(I) =
F (I ∩H) ∩H .

The following Lemma shows that in order to compute the iteration of F we
need to apply it once at the beginning and once at the end and compose them
with the iteration of F̂ given by the Fundamental Lemma.

Lemma A.11 Fn+2 = F ◦ F̂n ◦ F .

PROOF. The following two identities can be proved by straightforward com-
putation

F ◦ F ◦ F =F ◦ F̂ ◦ F (A.8)

F̂ ◦ F ◦ F = F̂ ◦ F̂ ◦ F (A.9)

53

For the first one:

F ◦ F ◦ F(I)= F ((F ((F (I ∩ S) ∩ J) ∩ S) ∩ J) ∩ S) ∩ J =

= F ((F ((F (I ∩ S) ∩ J) ∩ (S ∩ J)) ∩ (J ∩ S)) ∩ S) ∩ J =

= F ((F ((F (I ∩ S) ∩ J) ∩H) ∩H) ∩ S) ∩ J =

=F ◦ F̂ ◦ F(I).

The proof of the second identity is similar.

We can now prove the main statement by induction:

Base case (n = 0): Trivial.
Base case (n = 1): Immediate from (A.8).
Inductive step (from n ≥ 1 to n + 1): Suppose Fn+2 = F ◦ F̂n ◦F . Then

applying (A.9) we can transform Fn+3 to the required form:

Fn+3 =Fn+2 ◦ F = F ◦ F̂n ◦ F ◦ F = F ◦ F̂n−1 ◦ F̂ ◦ F ◦ F =

=F ◦ F̂n−1 ◦ F̂ ◦ F̂ ◦ F = F ◦ F̂n+1 ◦ F 2

B Soundness, termination and completeness of Exit∗ and Test∗
functions

Notation. We recall the notations introduced before and we introduce others
to simplify the proofs. As before, let s be a simple cycle, f = first(s) its first
edge and I = 〈l, u〉 ⊂ f be the initial interval. Notice that the functions Exit∗
are always called with I ⊆ 〈L, U〉 (in fact this is the precondition for iterating,
see Lemma A.10). Let Ii = 〈li, ui〉 = Succi

sf(I) and Ĩi = 〈l̃i, ũi〉 = F i
sf(I).

The Fundamental Lemma (Lemma A.10) guarantees that Ii = Ĩi ∩ 〈L, U〉.
Remember that F(I) = Succsf(I) = Fsf(I ∩ S) ∩ J and F̂(I) = Fsf(I ∩ S ∩
J) ∩ S ∩ J . We use notation Ex for the set returned by Exit∗.

Exit-STAY: soundness By hypothesis, L < l∗ < u∗ < U . Hence, for all
i, Ĩi = 〈l̃i, ũi〉 ⊆ 〈L, U〉, hence Ii = Ĩi and by Lemma 6.6 we have that
Succi

sex
(I) = ∅.

Exit-STAY: termination Trivial.
Exit-DIE: soundness Trivial.
Exit-DIE: termination From the hypothesis we know that there exists an

n s.t. Ĩn ∩ 〈L, U〉 = ∅ (either because ũn < L if u∗ < L or because U < l̃n if
U < l∗). Both cases imply that Succn

sf(I) = ∅.
Exit-BOTH: soundness Notice that we call ExitBOTH with Succsf(I)∩S =
F(I). On the other hand, because the limits are out of 〈L, U〉, we know
that there exists an n such that 〈L, U〉 ⊂ Ĩn and by the Fundamental

54

Lemma (Lemma A.10), F̂n(I) = In = 〈L, U〉 (i.e. F̂n ◦ F(I) = 〈L, U〉).
By Lemmay A.11 we have that Fn(I) = F ◦ F̂n−2 ◦ F(I) = F(〈L, U〉) =
Succsf(〈L, U〉).
(1) We prove first that the algorithm produces just ‘exits’:

Succsex
(Succsf(〈L, U〉)) ⊆ Ex.

This follows directly from the fact that Succsf(〈L, U〉) = Succn
sf(I) ⊆

∪m>0Succm
sf(I);

(2) We prove now that all the ‘exits’ are computed (Ex ⊆ Succsex
(Succsf(〈L, U〉))).

By definition, Ex = ∪m>0Succsex
◦ Fm(I), that can be written as

Ex = Succsex
◦F(I)∪ Succsex

◦F ◦F(∪m≥2F
m−2(I)). Let A be the set

∪m≥2F
m−2(I), thus F ◦F(A) = F(S∩F(A)) ⊆ F(S∩J) = F(〈L, U〉).

On the other hand, Succsex
◦F(I) ⊆ Succsex

◦F(〈L, U〉), since I ⊆ 〈L, U〉
and by monotonicity of both functions. Hence, Ex ⊆ Succsex

◦F(〈L, U〉).
Exit-BOTH: termination Trivial.
Exit-LEFT: soundness By hypothesis, l∗ < L < u∗ ≤ U . Thus, there exists

a natural number n s.t. l̃n ≤ L and for all i, ui = ũi ≤ U . Let’s consider the
following two cases:
(1) If f ≺ ex then Ex = ∅ (by definition of Exit-LEFT) and Succsex

(Ii) = ∅
for any i (by Lemma 6.6-2), so Succsex

(Succsf(〈L, max{u, u∗}〉)) = ∅;
(2) If ex ≺ f , we consider two cases:

(a) If u < u∗ then for all i, ui = ũi ≤ u∗ and then ∪m>0Succm
sf(I) =

Succsf(L, u∗), thus Ex = Succsex
(Succsf(L, u∗));

(b) If u∗ < u then for all i, ui = ũi ≤ u and ∪m>0Succm
sf(I) =

Succsf(L, u). Consequently, Ex = Succsex
(Succsf(L, u));

From both cases we have that Ex = Succsex
(Succsf(〈L, max{u, u∗}〉)).

Exit-LEFT: Termination Trivial.
Exit-RIGHT Similar to the previous case.

Test-STAY: soundness We prove the soundness considering each case sep-
arately:
(1) We have to prove that if l∗ < x < u∗ then x ∈ Reach(I). By hypothesis

l∗ < xf < u∗, then there exists a positive real number ǫ such that
l∗ + ǫ < xf < u∗−ǫ. It’s not difficult to see that exists two real numbers
N1 and N2 such that for all n greater (or equal) than N1, un > u∗ − ǫ
and for all n greater (or equal) than N2, ln < l∗ + ǫ. Let N be equal to
the maximum between N1 and N2, then it follows that lN < l∗ + ǫ and
u∗ − ǫ < uN . Thus, lN < xf < uN and xf is reachable.

(2) We have to prove that if x ≤ l∗ ∧ l ↓ then x 6∈ Reach(I). Trivial, by
definition of limit and monotonicity of the sequence.

(3) We have to prove that if u∗ ≤ x ∧ u ↑ then x 6∈ Reach(I). Trivial, by
definition of limit and monotonicity of the sequence.

(4) We have to prove that if (x < l∗ ∧ l ↑) ∨ (u∗ < x ∧ u ↓) then
Search(I, x) ≡ (x ∈ Reach(I)?). Computing Search(I, x) gives a se-

55

quence of intervals I, I1, . . . , In s.t. Reach(I) =
⋃

i Ii. If Search(I, x)
terminates then ∃i · (Found(Ii, x) = YES ∨Found(Ii, x) = NO) and
∀j < i · Found(Ii, x) = NOTYET. We analyze then each of the cases
of Found(I, x):
(a) If x ∈ I then Found(Ii, x) = YES and x ∈ Ii, i.e. x ∈ Reach(I).
(b) If I = ∅ then Found(Ii, x) = NO and ∀k ≥ i · Ik = ∅ and x 6∈ Ij .

Thus x 6∈ Reach(I).
(c) If x < I ∧ l ↑ then Found(Ii, x) = NO and ∀k ≥ i · x < li < lk and

because x 6∈ Ij then x 6∈ Ik and hence x 6∈ Reach(I).
(d) If I < x ∧ u ↓ then Found(Ii, x) = NO and ∀k ≥ i · uk < ui < x

and because x 6∈ Ij then x 6∈ Ik and hence x 6∈ Reach(I).
Test-STAY: termination We have to show termination just when (x <

l∗∧l ↑) ∨ (u∗ < x∧u ↓). If x < l∗∧l ↑ then ∃i·(x < li < l∗ ∧ Found(Ii, x) =
NO). Thus, it terminates. Similarly for the other case.

Test-DIE: soundness Trivial.
Test-DIE: termination Eventually I becomes empty. Hence, at this stage

Found(I, x) = NO and Search terminates.
Test-BOTH: soundness Immediate from the proof of soundness of the Exit

algorithm for EXIT-BOTH.
Test-BOTH: termination Trivial.
Test-LEFT: soundness The proof is similar to the STAY case.
Test-LEFT: termination We have to consider just the case when u ↓ and

Succsf(〈L, u∗〉) < x. In this case we know that ∃i · u∗ < ui < x ∧
Found(Ii, x) = NO. Thus the algorithm terminates.

Test-RIGHT The algorithm and its correctness proof are similar to the pre-
vious case.

56

