
university-logo

Specification and Analysis of Contracts
Tutorial

Gerardo Schneider
gerardo@ifi.uio.no

http://folk.uio.no/gerardo/

Department of Informatics,
University of Oslo

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 1 / 88

university-logo

What Is This Tutorial About?

Specification and analysis of contracts for Services
Many of the material is state-of-the-art and on-going research
It is not an exhaustive exposition of

Service-Oriented Architecture (SOA)
Components

We will see how to use (a special kind of) contracts in the context of
Services and Components

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 2 / 88

university-logo

What Is This Tutorial About?

Contracts and Service-Oriented Computing (SOC)

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 3 / 88

university-logo

What Is This Tutorial About?

Contracts and Service-Oriented Computing (SOC)

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 3 / 88

university-logo

What Is This Tutorial About?

Contracts and Components

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 4 / 88

university-logo

What Is This Tutorial About?

Contracts and Components

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 4 / 88

university-logo

What Is This Tutorial About?

We will see:

A bit of formal methods
SOC and components
Deontic logic
A formal language for writing contracts
How to analyze contracts using model checking

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 5 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 6 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 7 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 8 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope? In some cases it is possible to mechanically verify
correctness;

in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope? In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 9 / 88

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection

System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other.

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 10 / 88

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection

System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other.

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 10 / 88

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection
System: An operating system
Requirement: A deadly embracea will never happen

System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other.

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 10 / 88

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection
System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other.

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 10 / 88

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection
System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other.

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 10 / 88

university-logo

What is Validation?

In general, validation is the process of checking if something satisfies a
certain criterion
Do not confuse validation with verification

Validation: "Are we building the right product?", i.e., does the product
do what the user really requires

Verification: "Are we building the product right?", i.e., does the product
conform to the specifications

Remark
Some authors define verification as a validation technique, others talk about
V & V –Validation & Verification– as being complementary techniques.

In this tutorial I consider verification as a validation technique

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 11 / 88

university-logo

What is Validation?

In general, validation is the process of checking if something satisfies a
certain criterion
Do not confuse validation with verification

Validation: "Are we building the right product?", i.e., does the product
do what the user really requires

Verification: "Are we building the product right?", i.e., does the product
conform to the specifications

Remark
Some authors define verification as a validation technique, others talk about
V & V –Validation & Verification– as being complementary techniques.

In this tutorial I consider verification as a validation technique

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 11 / 88

university-logo

What is Validation?

In general, validation is the process of checking if something satisfies a
certain criterion
Do not confuse validation with verification

Validation: "Are we building the right product?", i.e., does the product
do what the user really requires

Verification: "Are we building the product right?", i.e., does the product
conform to the specifications

Remark
Some authors define verification as a validation technique, others talk about
V & V –Validation & Verification– as being complementary techniques.

In this tutorial I consider verification as a validation technique

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 11 / 88

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 12 / 88

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 12 / 88

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 12 / 88

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 12 / 88

university-logo

What are Formal Methods?

“Formal methods are a collection of notations and techniques for
describing and analyzing systems”3

Formal means the methods used are based on mathematical theories,
such as logic, automata, graph or set theory
Formal specification techniques are used to unambiguously describe
the system itself or its properties
Formal analysis/verification techniques serve to verify that a system
satisfies its specification (or to help finding out why it is not the case)

3From D.Peled’s book “Software Reliability Methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 13 / 88

university-logo

What are Formal Methods?

“Formal methods are a collection of notations and techniques for
describing and analyzing systems”3

Formal means the methods used are based on mathematical theories,
such as logic, automata, graph or set theory
Formal specification techniques are used to unambiguously describe
the system itself or its properties
Formal analysis/verification techniques serve to verify that a system
satisfies its specification (or to help finding out why it is not the case)

3From D.Peled’s book “Software Reliability Methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 13 / 88

university-logo

What are Formal Methods?

“Formal methods are a collection of notations and techniques for
describing and analyzing systems”3

Formal means the methods used are based on mathematical theories,
such as logic, automata, graph or set theory
Formal specification techniques are used to unambiguously describe
the system itself or its properties
Formal analysis/verification techniques serve to verify that a system
satisfies its specification (or to help finding out why it is not the case)

3From D.Peled’s book “Software Reliability Methods”.
Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 13 / 88

university-logo

What are Formal Methods?
Some Terminology

The term verification is used in different ways
Sometimes used only to refer the process of obtaining the formal
correctness proof of a system (deductive verification)
In other cases, used to describe any action taken for finding errors in a
program (including model checking and testing)
Sometimes testing is not considered to be a verification technique

We will use the following definition (reminder):

Definition
Formal verification is the process of applying a manual or automatic formal
technique for establishing whether a given system satisfies a given property
or behaves in accordance to some abstract description (formal
specification) of the system

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 14 / 88

university-logo

What are Formal Methods?
Some Terminology

The term verification is used in different ways
Sometimes used only to refer the process of obtaining the formal
correctness proof of a system (deductive verification)
In other cases, used to describe any action taken for finding errors in a
program (including model checking and testing)
Sometimes testing is not considered to be a verification technique

We will use the following definition (reminder):

Definition
Formal verification is the process of applying a manual or automatic formal
technique for establishing whether a given system satisfies a given property
or behaves in accordance to some abstract description (formal
specification) of the system

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 14 / 88

university-logo

Limitations

Software verification methods do not guarantee, in general, the
correctness of the code itself but rather of an abstract model of it
It cannot identify fabrication faults (e.g. in digital circuits)
If the specification is incomplete or wrong, the verification result will
also be wrong
The implementation of verification tools may be faulty
The bigger the system (number of possible states) more difficult is to
analyze it (state explosion problem)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 15 / 88

university-logo

Any advantage?

OF COURSE!

Formal methods are not intended to guarantee absolute reliability but to
increase the confidence on system reliability. They help minimizing the

number of errors and in many cases allow to find errors impossible to find
manually

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 16 / 88

university-logo

Any advantage?

OF COURSE!

Formal methods are not intended to guarantee absolute reliability but to
increase the confidence on system reliability. They help minimizing the

number of errors and in many cases allow to find errors impossible to find
manually

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 16 / 88

university-logo

Using Formal Methods

Formal methods are used in different stages of the development process,
giving a classification of formal methods

1 We describe the system giving a formal specification
2 We can then prove some properties about the specification (formal

verification)
3 We can proceed by:

Deriving a program from its specification (formal synthesis)
Verifying the specification w.r.t. implementation (formal verification)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 17 / 88

university-logo

Formal Specification

A specification formalism must be unambiguous: it should have a
precise syntax and semantics (e.g., natural languages are not suitable)
A trade-off must be found between expressiveness and analysis
feasibility: more expressive the specification formalism more difficult
its analysis (if possible at all)

Do not confuse the specification of the system itself with the specification
of some of its properties

Both kinds of specifications may use the same formalism but not
necessarily.
For example:

The system specification can be given as a program or as a state
machine
System properties can be formalized using some logic

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 18 / 88

university-logo

Formal Specification

A specification formalism must be unambiguous: it should have a
precise syntax and semantics (e.g., natural languages are not suitable)
A trade-off must be found between expressiveness and analysis
feasibility: more expressive the specification formalism more difficult
its analysis (if possible at all)

Do not confuse the specification of the system itself with the specification
of some of its properties

Both kinds of specifications may use the same formalism but not
necessarily.
For example:

The system specification can be given as a program or as a state
machine
System properties can be formalized using some logic

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 18 / 88

university-logo

Formal Specification

A specification formalism must be unambiguous: it should have a
precise syntax and semantics (e.g., natural languages are not suitable)
A trade-off must be found between expressiveness and analysis
feasibility: more expressive the specification formalism more difficult
its analysis (if possible at all)

Do not confuse the specification of the system itself with the specification
of some of its properties

Both kinds of specifications may use the same formalism but not
necessarily.
For example:

The system specification can be given as a program or as a state
machine
System properties can be formalized using some logic

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 18 / 88

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)

INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 3) = ¬a(t + 2)

In the last lesson we will see how to verify contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 19 / 88

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)

INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 3) = ¬a(t + 2)

In the last lesson we will see how to verify contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 19 / 88

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)
INCORRECT! - The error may be found when trying to prove some
properties

Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 3) = ¬a(t + 2)

In the last lesson we will see how to verify contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 19 / 88

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)
INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 3) = ¬a(t + 2)

In the last lesson we will see how to verify contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 19 / 88

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)
INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 3) = ¬a(t + 2)

In the last lesson we will see how to verify contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 19 / 88

university-logo

Formal synthesis

It would be helpful to automatically obtain an implementation from
the specification of a system
Difficult since most specifications are declarative and not constructive

They usually describe what the system should do; not how it can be
achieved

Example
1 Specify the operational semantics of a programming language in a

constructive logic (Calculus of Constructions)
2 Prove the correctness of a given property w.r.t. the operational

semantics in Coq
3 Extract an OCAML code from the correctness proof (using Coq’s

extraction mechanism)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 20 / 88

university-logo

Formal synthesis

It would be helpful to automatically obtain an implementation from
the specification of a system
Difficult since most specifications are declarative and not constructive

They usually describe what the system should do; not how it can be
achieved

Example
1 Specify the operational semantics of a programming language in a

constructive logic (Calculus of Constructions)
2 Prove the correctness of a given property w.r.t. the operational

semantics in Coq
3 Extract an OCAML code from the correctness proof (using Coq’s

extraction mechanism)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 20 / 88

university-logo

Verifying Specifications w.r.t. Implementations

There are mainly two approaches:

Deductive approach (automated theorem proving)
Describe the specification Φspec in a formal model (logic)
Describe the system’s model Φimp in the same formal model
Prove that Φimp =⇒ Φspec

Algorithmic approach
Describe the specification Φspec as a formula of a logic
Describe the system as an interpretation Mimp of the given logic (e.g.
as a finite automaton)
Prove that Mimp is a “model” (in the logical sense) of Φspec

Remark
The same technique may be used to prove properties about the

specification

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 21 / 88

university-logo

Verifying Specifications w.r.t. Implementations

There are mainly two approaches:

Deductive approach (automated theorem proving)
Describe the specification Φspec in a formal model (logic)
Describe the system’s model Φimp in the same formal model
Prove that Φimp =⇒ Φspec

Algorithmic approach
Describe the specification Φspec as a formula of a logic
Describe the system as an interpretation Mimp of the given logic (e.g.
as a finite automaton)
Prove that Mimp is a “model” (in the logical sense) of Φspec

Remark
The same technique may be used to prove properties about the

specification

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 21 / 88

university-logo

When and Which Formal Method to Use?

It depends on the problem, the underlying system and the property we
want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of processes....
(verification of infinite-state systems)
Overflow in programs (static analysis and abstract interpretation)
...

Open distributed concurrent systems with unbounded number of
processes interacting through shared variables and with real-time
constraints => VERY DIFFICULT!!
Need the combination of different techniques

Remark
In this tutorial: Specification and verification of contracts using logics and

model checking techniques

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 22 / 88

university-logo

When and Which Formal Method to Use?

It depends on the problem, the underlying system and the property we
want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of processes....
(verification of infinite-state systems)
Overflow in programs (static analysis and abstract interpretation)
...

Open distributed concurrent systems with unbounded number of
processes interacting through shared variables and with real-time
constraints => VERY DIFFICULT!!
Need the combination of different techniques

Remark
In this tutorial: Specification and verification of contracts using logics and

model checking techniques

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 22 / 88

university-logo

When and Which Formal Method to Use?

It depends on the problem, the underlying system and the property we
want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of processes....
(verification of infinite-state systems)
Overflow in programs (static analysis and abstract interpretation)
...

Open distributed concurrent systems with unbounded number of
processes interacting through shared variables and with real-time
constraints => VERY DIFFICULT!!
Need the combination of different techniques

Remark
In this tutorial: Specification and verification of contracts using logics and

model checking techniques

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 22 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 23 / 88

university-logo

Contracts

“A contract is a binding agreement between two or more persons that
is enforceable by law.” [Webster on-line]

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
4. DEFINITIONS
a) Internet traffic may be measured by both Client and Provider by means of Equipment

and may take the two values high and normal.
OPERATIVE PART
1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 24 / 88

university-logo

Contracts

“A contract is a binding agreement between two or more persons that
is enforceable by law.” [Webster on-line]

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
4. DEFINITIONS
a) Internet traffic may be measured by both Client and Provider by means of Equipment

and may take the two values high and normal.
OPERATIVE PART
1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 24 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems

7 “Deontic e-contracts”: representing Obligations, Permissions,
Prohibitions, Power, etc

Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Inspired from a conventional contract
Written directly in a formal specification language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 25 / 88

university-logo

Contracts

In this tutorial: ‘deontic’ e-contracts

Two scenarios:
1 Obtain an e-contract from a conventional contract

Context: legal (e.g. financial) contracts
2 Write the e-contract directly in a formal language

Context: web services, components, OO, etc

Definition
A contract is a document which engages several parties in a transaction
and stipulates their (conditional) obligations, rights, and prohibitions, as
well as penalties in case of contract violations.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 26 / 88

university-logo

Contracts

In this tutorial: ‘deontic’ e-contracts

Two scenarios:
1 Obtain an e-contract from a conventional contract

Context: legal (e.g. financial) contracts
2 Write the e-contract directly in a formal language

Context: web services, components, OO, etc

Definition
A contract is a document which engages several parties in a transaction
and stipulates their (conditional) obligations, rights, and prohibitions, as
well as penalties in case of contract violations.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 26 / 88

university-logo

Links and Papers

Introduction to Formal Methods: See first lecture of the course
“Specification and verification of parallel systems” (INF5140) and
references therein: http://www.uio.no/studier/emner/matnat/ifi/

INF5140/v07/undervisningsmateriale/1-formal-methods.pdf

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 27 / 88

http://www.uio.no/studier/emner/matnat/ifi/INF5140/v07/undervisningsmateriale/1-formal-methods.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5140/v07/undervisningsmateriale/1-formal-methods.pdf

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 28 / 88

university-logo

What is a Component?

We will concentrate only on software components

A component has to be a unit of deployment
It has to be an executable deliverable for a (virtual) machine

A component has to be a unit of versioning and replacement
It has to remain invariant in different contexts
It lives at the level of packages, modules, or classes, and not at the
level of objects

It is useful to see software components as a collection of modules and
resources

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 29 / 88

university-logo

What is a Component?
What is Deployment?

1 Acquisition is the process of obtaining a software component
2 Deployment is the process of readying the component for installation

in a specific environment
3 Installation is the process of making the component available in the

specific environment
4 Loading is the process of enabling an installed component in a

particular runtime context

Deployment is not a development activity: it does not happen at the
supplier’s site

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 30 / 88

university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves

2 A component may contain many objects which are encapsulated and
thus are not accessible from the outer of the components

If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 31 / 88

university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves
2 A component may contain many objects which are encapsulated and

thus are not accessible from the outer of the components
If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 31 / 88

university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves
2 A component may contain many objects which are encapsulated and

thus are not accessible from the outer of the components
If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 31 / 88

university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves
2 A component may contain many objects which are encapsulated and

thus are not accessible from the outer of the components
If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 31 / 88

university-logo

Why Components?

Four main “levels” of reasons:
1 “Make and buy”

Balance between purpose-built software and standard software
2 Reuse partial design and implementation fragments across multiple

solutions or products
3 Use components from multiple sources, and integrate them on site

(i.e., not part of the software build process)
The integration is called deployment
The matching components are called deployable components

4 Achieve highly dynamic servicing, upgrading, extension, and
integration of deployed systems

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 32 / 88

university-logo

Challenges

Practical use of components stop in the third reason above
Truly dynamic components needs to address correctness, robustness
and efficiency

Components can be combined in many ways
No possibility to perform exhaustive and final integration tests at the
component supplier’s site
Verification of component properties are crucial
A compositional reasoning at all levels is required

Remark
A correct component is 100% reliable

A component with a very slight defect is 100% unreliable!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 33 / 88

university-logo

Challenges

Practical use of components stop in the third reason above
Truly dynamic components needs to address correctness, robustness
and efficiency

Components can be combined in many ways
No possibility to perform exhaustive and final integration tests at the
component supplier’s site
Verification of component properties are crucial
A compositional reasoning at all levels is required

Remark
A correct component is 100% reliable

A component with a very slight defect is 100% unreliable!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 33 / 88

university-logo

Components and Contracts I

In “traditional” component-based development, contracts are
understood as specification attached to interfaces

Behavioral interfaces instead of static interfaces

Observation
We propose the use of ’deontic’ e-contracts to help verification of and
reasoning about components

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 34 / 88

university-logo

Components and Contracts I

In “traditional” component-based development, contracts are
understood as specification attached to interfaces

Behavioral interfaces instead of static interfaces

Observation
We propose the use of ’deontic’ e-contracts to help verification of and
reasoning about components

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 34 / 88

university-logo

Components and Contracts II

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Coi

Cci
Coi

Con
Ccn

Pre−execution Analysis

Co1
Cc1

Con
Ccn

Executing Platform

Co1
Cc1

Monitor

Cci

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 35 / 88

university-logo

Components and Contracts II

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Coi

Cci
Coi

Con
Ccn

Pre−execution Analysis

Co1
Cc1

Con
Ccn

Executing Platform

Co1
Cc1

Monitor

Cci

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 35 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 36 / 88

university-logo

What is a Service?

A service is a self-describing, platform-independent computational
element

It supports rapid, low-cost composition of distributed applications
It allows organizations to offer their core competences over intra-nets or
the Internet using standard languages (e.g., XML-based) and protocols

Services must be
Technology neutral: Invocation mechanisms should comply with
standards
Loosely coupled: Not require any knowledge, internal structure, nor
context at the client or service side
Locally transparent: Have their definition and local information stored
in repositories accessible independent of their location

Services may be
Simple
Composite

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 37 / 88

university-logo

What is a Service?

A service is a self-describing, platform-independent computational
element

It supports rapid, low-cost composition of distributed applications
It allows organizations to offer their core competences over intra-nets or
the Internet using standard languages (e.g., XML-based) and protocols

Services must be
Technology neutral: Invocation mechanisms should comply with
standards
Loosely coupled: Not require any knowledge, internal structure, nor
context at the client or service side
Locally transparent: Have their definition and local information stored
in repositories accessible independent of their location

Services may be
Simple
Composite

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 37 / 88

university-logo

What is a Service?

A service is a self-describing, platform-independent computational
element

It supports rapid, low-cost composition of distributed applications
It allows organizations to offer their core competences over intra-nets or
the Internet using standard languages (e.g., XML-based) and protocols

Services must be
Technology neutral: Invocation mechanisms should comply with
standards
Loosely coupled: Not require any knowledge, internal structure, nor
context at the client or service side
Locally transparent: Have their definition and local information stored
in repositories accessible independent of their location

Services may be
Simple
Composite

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 37 / 88

university-logo

Service-Oriented Computing

Definition
“Service-Oriented Computing (SOC) is the computing paradigm that
utilizes services as fundamental elements for developing applications /
solutions.
To build the service model, SOC relies on the Service-Oriented Architecture
(SOA), which is a way of reorganizing software applications and
infrastructure into a set of interacting services.”

(*) From “Service-Oriented Computing: Concepts, Characteristics and Directions”, by
Mike P. Papazoglou

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 38 / 88

university-logo

What is a Web Service?

Def. 1: A web service is a web site to be used by software instead of
by humans
Def. 2: A web service is a specific kind of service identified by a URI
(Uniform Resource Indicator), that:

It is exposed over Internet using standard languages and protocols
It can be implemented via a self-describing interface based on open
Internet standards (e.g. XML)

Web services require special consideration since they use a public,
insecure, low-fidelity mechanism for inter-service interactions
Service descriptions are usually expressed using WSDL (Web Services
Description Language)
UDDI (Universal Description, Discovery and Integration)

Providing registry and repository services for storing and retrieving web
service interfaces

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 39 / 88

university-logo

What is a Web Service?

Def. 1: A web service is a web site to be used by software instead of
by humans
Def. 2: A web service is a specific kind of service identified by a URI
(Uniform Resource Indicator), that:

It is exposed over Internet using standard languages and protocols
It can be implemented via a self-describing interface based on open
Internet standards (e.g. XML)

Web services require special consideration since they use a public,
insecure, low-fidelity mechanism for inter-service interactions
Service descriptions are usually expressed using WSDL (Web Services
Description Language)
UDDI (Universal Description, Discovery and Integration)

Providing registry and repository services for storing and retrieving web
service interfaces

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 39 / 88

university-logo

Services vs. Components

Payment of services is on execution basis (per-use value) for the
delivery of the service

In components, there is a one-time payment for the implementation of
the software

Services may be a non-component implementation
A deployed component may offer one or more services

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 40 / 88

university-logo

Services and Contracts I

In web services, a service contract is usually understood as
service-level agreement (SLA)

Example: how much the client might pay for the service; guarantees
from the provider: minimal performance, capacity, etc

Challenges:
How to reason about service contracts
How to address (automatic) negotiation
How to enforce the fulfillment of the contract

Observation
We propose the use of ’deontic’ e-contracts to help verification of and

reasoning about services.
Such contracts may also be useful in the negotiation process.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 41 / 88

university-logo

Services and Contracts I

In web services, a service contract is usually understood as
service-level agreement (SLA)

Example: how much the client might pay for the service; guarantees
from the provider: minimal performance, capacity, etc

Challenges:
How to reason about service contracts
How to address (automatic) negotiation
How to enforce the fulfillment of the contract

Observation
We propose the use of ’deontic’ e-contracts to help verification of and

reasoning about services.
Such contracts may also be useful in the negotiation process.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 41 / 88

university-logo

Services and Contracts I

In web services, a service contract is usually understood as
service-level agreement (SLA)

Example: how much the client might pay for the service; guarantees
from the provider: minimal performance, capacity, etc

Challenges:
How to reason about service contracts
How to address (automatic) negotiation
How to enforce the fulfillment of the contract

Observation
We propose the use of ’deontic’ e-contracts to help verification of and

reasoning about services.
Such contracts may also be useful in the negotiation process.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 41 / 88

university-logo

Services and Contracts II

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 42 / 88

university-logo

Links and Papers

M. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions
E. Newcomer. Understanding Web Services
C. Szyperski. Component Technology - What, Where, and How?
O. Owe, G. Schneider and M. Steffen. Objects, Components and
Contracts
COSoDIS project: http://www.ifi.uio.no/cosodis

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 43 / 88

http://www.ifi.uio.no/cosodis

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 44 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 45 / 88

university-logo

Why Deontic Logic?

We propose the use of ‘deontic’ e-contracts in the context of
Service-Oriented Computing and Components
We need then some knowledge of deontic logic

Though we only get inspiration from deontic logic and not build upon
its standard formalization

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 46 / 88

university-logo

(Standard) Deontic Logic
In One Slide

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indifference,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organizations and security systems

Difficult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
“Practical oddities”, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

“The Internet Provider must send a password to the Client”
ought-to-be: expressions consider state of affairs (results of actions)

“The average bandwidth must be more than 20kb/s”

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 47 / 88

university-logo

(Standard) Deontic Logic
In One Slide

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indifference,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organizations and security systems

Difficult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
“Practical oddities”, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

“The Internet Provider must send a password to the Client”
ought-to-be: expressions consider state of affairs (results of actions)

“The average bandwidth must be more than 20kb/s”

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 47 / 88

university-logo

(Standard) Deontic Logic
In One Slide

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indifference,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organizations and security systems

Difficult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
“Practical oddities”, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

“The Internet Provider must send a password to the Client”
ought-to-be: expressions consider state of affairs (results of actions)

“The average bandwidth must be more than 20kb/s”

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 47 / 88

university-logo

(Standard) Deontic Logic
In One Slide

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indifference,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organizations and security systems

Difficult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
“Practical oddities”, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

“The Internet Provider must send a password to the Client”
ought-to-be: expressions consider state of affairs (results of actions)

“The average bandwidth must be more than 20kb/s”

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 47 / 88

university-logo

A Bit of Prehistory

Since Aristotle (384 BC–322 BC) there were some philosophers’
writing on obligation, permission and prohibition
Leibniz (1646–1716) related obligation, permission and prohibition
with logical modalities of necessity, possibility and impossibility
Ernst Mally (1926) used the term deontik for his “Logic of the Will”

Also called it: The logic of what ought to be
No mention of Leibniz nor of relation between modal and normative
notions

A lot of discussions in the late 1930s and early 1940s
Jørgen Jørgensen and Alf Ross

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 48 / 88

university-logo

The Beginnings

It is accepted that the deontic logic was born as discipline from the
following (independent) works

G.H. von Wright published the paper “Deontic Logic” (1951)
O. Becker (1952, in German)
J. Kalinowski (1953, in French)

All 3 authors explored the analogy between normative and modal
concepts

von Wright (1951)
Started by exploring the formal analogy between the modalities
“possible”, “impossible” and “necessary” with the quantifiers “some”,
“no” and “all”
Extended his study to the analogy with the normative notions (the
1951 paper)

A. Prior (1954) criticized von Wright’s paper
How to obtain derived obligations, i.e. conditional obligations?
von Wright’s answer by adding relative permission:

P(p/q): “it is permitted that p on the condition that q”
Much more followed...

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 49 / 88

university-logo

The Beginnings

It is accepted that the deontic logic was born as discipline from the
following (independent) works

G.H. von Wright published the paper “Deontic Logic” (1951)
O. Becker (1952, in German)
J. Kalinowski (1953, in French)

All 3 authors explored the analogy between normative and modal
concepts

von Wright (1951)
Started by exploring the formal analogy between the modalities
“possible”, “impossible” and “necessary” with the quantifiers “some”,
“no” and “all”
Extended his study to the analogy with the normative notions (the
1951 paper)

A. Prior (1954) criticized von Wright’s paper
How to obtain derived obligations, i.e. conditional obligations?
von Wright’s answer by adding relative permission:

P(p/q): “it is permitted that p on the condition that q”
Much more followed...

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 49 / 88

university-logo

Ought-to-do vs. Ought-to-be

Ought-to-do: expressions consider names of actions
“One ought to close the window”

Ought-to-be: expressions consider state of affairs (results of actions)
“The window ought to be closed”

Why is this so important?
Some things are easier to represent in one approach and others in the
other

“The average bandwidth must be more than 20kb/s”
Sergot’s example on the “strict University code”

The logical system may have some nicer properties in one or the other
approach

Paradoxes...

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 50 / 88

university-logo

Ought-to-do vs. Ought-to-be

Ought-to-do: expressions consider names of actions
“One ought to close the window”

Ought-to-be: expressions consider state of affairs (results of actions)
“The window ought to be closed”

Why is this so important?
Some things are easier to represent in one approach and others in the
other

“The average bandwidth must be more than 20kb/s”
Sergot’s example on the “strict University code”

The logical system may have some nicer properties in one or the other
approach

Paradoxes...

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 50 / 88

university-logo

Why Is This All So Complicated?

Norms as prescriptions for conduct, are not true or false
If norms have no truth-value, how can we reason about them and
detect contradictions and define logical consequence?

According to von Wright: norms and valuations are still subject to
logical view
Consequence: Logic has a wider reach than truth!
Prescriptive vs. descriptive view
Conditional norms
Meta-norms
How to represent what happens when an obligation is not fulfilled or a
prohibition is violated?
Paradoxes
A lot more...

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 51 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 52 / 88

university-logo

Standard Deontic Logic

Takes different modal logics and makes analogies between “necessity”
and “possibility”, with “obligation” and “permission”
It turns out to be difficult!

Many of the rules in modal logic do not extrapolate to deontic logic

Example
In modal logic:

If 2p then p (if it is necessary that p, then p is true)
If p then ♦p (if p is true, then it is possible)

The deontic analogs:
If O(p) then p (if it is obligatory that p, then p is true)
If p then P(p) (if p is true, then it is permissible)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 53 / 88

university-logo

Standard Deontic Logic

Takes different modal logics and makes analogies between “necessity”
and “possibility”, with “obligation” and “permission”
It turns out to be difficult!

Many of the rules in modal logic do not extrapolate to deontic logic

Example
In modal logic:

If 2p then p (if it is necessary that p, then p is true)
If p then ♦p (if p is true, then it is possible)

The deontic analogs:
If O(p) then p (if it is obligatory that p, then p is true)
If p then P(p) (if p is true, then it is permissible)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 53 / 88

university-logo

Paradoxes and Practical Oddities

Deontic paradoxes. A paradox is an apparently true statement that
leads to a contradiction, or a situation which is counter-intuitive.

The Gentle Murderer Paradox
1 It is obligatory that John does not kill his mother;
2 If John does kill his mother, then it is obligatory that John kills her

gently;
3 John does kill his mother.

It could be possible to infer that John is obliged to kill his mother
(contradicting 1 above)

Practical oddities. A situation where you can infer two assertions
which are contradictory from the intuitive practical point of view,
though they might not represent a logical contradiction

Assume you have the following norms and facts:
1 Keep your promise;
2 If you haven’t kept your promise, apologize;
3 You haven’t kept your promise.

It could be possible to deduce that you are both obliged to keep your
promise and to apologize for not keeping it

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 54 / 88

university-logo

Paradoxes and Practical Oddities

Deontic paradoxes. A paradox is an apparently true statement that
leads to a contradiction, or a situation which is counter-intuitive.

The Gentle Murderer Paradox
1 It is obligatory that John does not kill his mother;
2 If John does kill his mother, then it is obligatory that John kills her

gently;
3 John does kill his mother.

It could be possible to infer that John is obliged to kill his mother
(contradicting 1 above)

Practical oddities. A situation where you can infer two assertions
which are contradictory from the intuitive practical point of view,
though they might not represent a logical contradiction

Assume you have the following norms and facts:
1 Keep your promise;
2 If you haven’t kept your promise, apologize;
3 You haven’t kept your promise.

It could be possible to deduce that you are both obliged to keep your
promise and to apologize for not keeping it

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 54 / 88

university-logo

Paradoxes
Ross’s paradox

1 It is obligatory that one mails the letter
2 It is obligatory that one mails the letter or one destroys the letter

In Standard Deontic Logic (SDL) these are expressed as:

1 O(p)

2 O(p ∨ q)

Problem: in SDL one can infer that O(p) ⇒ O(p ∨ q)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 55 / 88

university-logo

Paradoxes
Free Choice Permission Paradox

1 You may either sleep on the sofa or sleep on the bed.
2 You may sleep on the sofa and you may sleep on the bed.

In SDL this is:
1 P(p ∨ q)

2 P(p) ∧ P(q)

The natural intuition tells that P(p ∨ q)⇒ P(p) ∧ P(q)

In SDL this would lead to P(p)⇒ P(p ∨ q) which is
P(p)⇒ P(p) ∧ P(q),
so P(p)⇒ P(q)

Thus: If one is permitted something, then one is permitted anything.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 56 / 88

university-logo

Paradoxes
Sartre’s Dilemma

1 It is obligatory I now meet Jones (as promised to Jones).
2 It is obligatory I now do not meet Jones (as promised to Smith).

In SDL this is:
1 O(p)

2 O(¬p)

The problem is that in the natural language the two obligations are
intuitive and often happen
But the logical formulae are inconsistent when put together (in
conjunction) in SDL
(In SDL, O(p) ⇒ ¬O(¬p) and we get a contradiction.)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 57 / 88

university-logo

Paradoxes
The Good Samaritan Paradox

1 It ought to be the case that Jones helps Smith who has been robbed.
2 It ought to be the case that Smith has been robbed.

And one naturally infers that:
Jones helps Smith who has been robbed if and only if Jones helps
Smith and Smith has been robbed.

In SDL the first two are expressed as:
1 O(p ∧ q)

2 O(q)

The problem is that in SDL one can derive that O(p ∧ q) ⇒ O(q)
which is counter intuitive in the natural language

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 58 / 88

university-logo

Paradoxes
Chisholm’s Paradox

1 John ought to go to the party.
2 If John goes to the party then he ought to tell them he is coming.
3 If John does not go to the party then he ought not to tell them he is

coming.
4 John does not go to the party.

In Standard Deontic Logic (SDL) these are expressed as:
1 O(p)

2 O(p ⇒ q)

3 ¬p ⇒ O(¬q)

4 ¬p
The problem is that in SDL one can infer O(q) ∧ O(¬q) (due to
statement 2)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 59 / 88

university-logo

Paradoxes
The Gentle Murderer Paradox

1 It is obligatory that John does not kill his mother.
2 If John does kill his mother, then it is obligatory that John kills her

gently.
3 John does kill his mother.

In Standard Deontic Logic (SDL) these are expressed as:
1 O(¬p)

2 p ⇒ O(q)

3 p

The problem is that when adding a natural inference like q ⇒ p, one
can infer that O(p) (contradicting 1 above)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 60 / 88

university-logo

Role of Deontic Logic in Services

Reminder
We want to use deontic e-contracts to specify and reason about
contracts in Internet services
We need a formal system to relate the normative notions of obligation,
permission and prohibition
We want to represent (nested) “exceptions”: Can we represent and
reason about what happens when an obligation is not fulfilled or a
prohibition is violated?
We want to avoid the philosophical problems of deontic logic (restrict
its use to our application domain)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 61 / 88

university-logo

Links and Papers

G.H. von Wright. Deontic Logic: A personal view.
P. McNamara. Deontic Logic. See the entry at the Stanford
Encyclopedia of Philosophy
(http://plato.stanford.edu/entries/logic-deontic)
J.-J. Ch. Meyer, F.P.M. Dignum and R.J. Wieringa. The Paradoxes
of Deontic Logic Revisited: A Computer Science Perspective.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 62 / 88

http://plato.stanford.edu/entries/logic-deontic

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 63 / 88

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 64 / 88

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 64 / 88

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 64 / 88

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 64 / 88

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 64 / 88

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 64 / 88

university-logo

A Formal Language for Contracts

A precise and concise syntax and a formal semantics
Expressive enough as to capture natural contract clauses
Restrictive enough to avoid (deontic) paradoxes and be amenable to
formal analysis

Model checking
Deductive verification

Allow representation of complex clauses: conditional obligations,
permissions, and prohibitions
Allow specification of (nested) contrary-to-duty (CTD) and
contrary-to-prohibition (CTP)

CTD: when an obligation is not fulfilled
CTP: when a prohibition is violated

We want to combine
The logical approach (e.g., dynamic, temporal, deontic logic)
The automata-like approach (labelled Kripke structures)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 65 / 88

university-logo

A Formal Language for Contracts

A precise and concise syntax and a formal semantics
Expressive enough as to capture natural contract clauses
Restrictive enough to avoid (deontic) paradoxes and be amenable to
formal analysis

Model checking
Deductive verification

Allow representation of complex clauses: conditional obligations,
permissions, and prohibitions
Allow specification of (nested) contrary-to-duty (CTD) and
contrary-to-prohibition (CTP)

CTD: when an obligation is not fulfilled
CTP: when a prohibition is violated

We want to combine
The logical approach (e.g., dynamic, temporal, deontic logic)
The automata-like approach (labelled Kripke structures)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 65 / 88

university-logo

The Contract Specification Language CL
Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 66 / 88

university-logo

The Contract Specification Language CL
Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 66 / 88

university-logo

The Contract Specification Language CL
Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 66 / 88

university-logo

The Contract Specification Language CL
Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 66 / 88

university-logo

The Contract Specification Language CL
Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 66 / 88

university-logo

Actions
Test and Negation

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds
then action a is performed
Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C

Action negation α
It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 67 / 88

university-logo

Actions
Test and Negation

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds
then action a is performed
Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C

Action negation α
It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 67 / 88

university-logo

Actions
Concurrent actions

a&b
“The client must pay immediately, or the client must notify the service
provider by sending an e-mail specifying that he delays the payment”

O(p)⊕ O(d&n)

O(d&n) ≡ O(d) ∧ O(n)

Action algebra enriched with a conflict relation to represent
incompatible actions

a = “increase Internet traffic” and b = “decrease Internet traffic”
a #C b
O(a) ∧ O(b) gives an inconsistency

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 68 / 88

university-logo

Actions
Concurrent actions

a&b
“The client must pay immediately, or the client must notify the service
provider by sending an e-mail specifying that he delays the payment”

O(p)⊕ O(d&n)

O(d&n) ≡ O(d) ∧ O(n)

Action algebra enriched with a conflict relation to represent
incompatible actions

a = “increase Internet traffic” and b = “decrease Internet traffic”
a #C b
O(a) ∧ O(b) gives an inconsistency

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 68 / 88

university-logo

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTD)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTP)

FC(α) = F (α) ∧ [α]C

Example
“[...] the client must immediately lower the Internet traffic to the low level,
and pay . If the client does not lower the Internet traffic immediately, then
the client will have to pay three times the price”

In CL: �(OC(l) ∧ [l]♦(O(p&p)))

where C = ♦O(p&p&p)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 69 / 88

university-logo

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTD)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTP)

FC(α) = F (α) ∧ [α]C

Example
“[...] the client must immediately lower the Internet traffic to the low level,
and pay . If the client does not lower the Internet traffic immediately, then
the client will have to pay three times the price”

In CL: �(OC(l) ∧ [l]♦(O(p&p)))

where C = ♦O(p&p&p)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 69 / 88

university-logo

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTD)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTP)

FC(α) = F (α) ∧ [α]C

Example
“[...] the client must immediately lower the Internet traffic to the low level,
and pay . If the client does not lower the Internet traffic immediately, then
the client will have to pay three times the price”

In CL: �(OC(l) ∧ [l]♦(O(p&p)))

where C = ♦O(p&p&p)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 69 / 88

university-logo

CL Semantics
Cµ – A variant of the modal µ-calculus

Translation into a variant of µ-calculus (Cµ)
The syntax of the Cµ logic
ϕ := P | Z | Pc | > | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | µZ .ϕ(Z)

Main differences with respect to the classical µ-calculus:

1 Pc is set of propositional constants Oa and Fa, one for each basic
action a

2 Multisets of basic actions: i.e. γ = {a, a, b} is a label

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 70 / 88

university-logo

CL Semantics
Cµ – A variant of the modal µ-calculus

Translation into a variant of µ-calculus (Cµ)
The syntax of the Cµ logic
ϕ := P | Z | Pc | > | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | µZ .ϕ(Z)

Main differences with respect to the classical µ-calculus:

1 Pc is set of propositional constants Oa and Fa, one for each basic
action a

2 Multisets of basic actions: i.e. γ = {a, a, b} is a label

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 70 / 88

university-logo

CL Semantics
Obligation

Obligation

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Oa
{a, b}

O(a&b)

Ob

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 71 / 88

university-logo

CL Semantics
Obligation

Obligation

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Oa
{a, b}

O(a&b)

Ob

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 71 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 72 / 88

university-logo

Properties of the contract language

Theorem

The following paradoxes are avoided in CL:
Ross’s paradox
The Free Choice Permission paradox
Sartre’s dilemma
The Good Samaritan paradox
Chisholm’s paradox
The Gentle Murderer paradox

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 73 / 88

university-logo

Properties of the contract language (II)

Theorem
The following hold in CL:

P(α) ≡ ¬F (α)

O(α)⇒ P(α)

P(a) 6⇒ P(a&b)

F (a) 6⇒ F (a&b)

F (a&b) 6⇒ F (a)

P(a&b) 6⇒ P(a)

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 74 / 88

university-logo

Outline

1 Lesson 1: Introduction
Formal Methods
Contracts ‘and’ Informatics

2 Lesson 2: Components, Services and Contracts
Components
Service-Oriented Computing

3 Lesson 3: Deontic Logic
Deontic Logic
Paradoxes in Deontic Logic

4 Lesson 4: Specification and Analysis of Contracts
The Contract Language CL
Properties of the Language
Verification of Contracts

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 75 / 88

university-logo

Model Checking in a Nutshell

A model checker is a software tool that given:
A model M (usually a Kripke model)
A property φ (usually a temporal logic formula)

It decides whether

M |= φ

It returns YES if the property is satisfied,
Otherwise returns NO and provides a counterexample

It is completely automatic!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 76 / 88

university-logo

Model Checking in a Nutshell

A model checker is a software tool that given:
A model M (usually a Kripke model)
A property φ (usually a temporal logic formula)

It decides whether

M |= φ

It returns YES if the property is satisfied,
Otherwise returns NO and provides a counterexample

It is completely automatic!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 76 / 88

university-logo

Model Checking Contracts

NO

YES

Model

Property:
Client never obliged to pay(x)

Checker

Contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 77 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Model Checking Contracts

1 Model the conventional contract (in English) as a CL expression
2 Translate the CL specification into Cµ
3 Obtain a Kripke-like model (LTS) from the Cµ formulas
4 Translate the LTS into the input language of NuSMV
5 Perform model checking using NuSMV

Check the model is ‘good’
Check some properties about the client and the provider

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satisfied

7 In some cases rephrase the original contract

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 78 / 88

university-logo

Case Study
A Contract Example

1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.
2. Whenever the Internet Traffic is high then the Client must pay [price]
immediately, or the Client must notify the Provider by sending an e-mail
specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must
immediately lower the Internet traffic to the normal level, and pay later twice
(2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.
6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 79 / 88

university-logo

Case Study
A Contract Example

1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.
2. Whenever the Internet Traffic is high then the Client must pay [price]
immediately, or the Client must notify the Provider by sending an e-mail
specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must
immediately lower the Internet traffic to the normal level, and pay later twice
(2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.
6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 79 / 88

university-logo

Case Study
Translating into CL syntax

1. �F (fi)

2. Whenever the Internet Traffic is high then the Client must pay [price]
immediately, or the Client must notify the Provider by sending an e-mail
specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must
immediately lower the Internet traffic to the normal level, and pay later twice
(2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.
6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

7. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Translating into CL syntax

1. �F (fi)

2. Whenever the Internet Traffic is high then the Client must pay [price]
immediately, or the Client must notify the Provider by sending an e-mail
specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must
immediately lower the Internet traffic to the normal level, and pay later twice
(2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.
6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Translating into CL syntax

1. �FP(s)(fi)

2. Whenever the Internet Traffic is high then the Client must pay [price]
immediately, or the Client must notify the Provider by sending an e-mail
specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must
immediately lower the Internet traffic to the normal level, and pay later twice
(2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.

6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Translating into CL syntax

1. �FP(s)(fi)

2. �[h](φ ⇒ O(p + (d&n)))

3. If the Client delays the payment as stipulated in 2, after notification he must
immediately lower the Internet traffic to the normal level, and pay later twice
(2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.

6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Translating into CL syntax

1. �FP(s)(fi)

2. �[h](φ ⇒ O(p + (d&n)))

3. �([d&n](O(l) ∧ [l]♦O(p&p)))

4. If the Client does not lower the Internet traffic immediately, then the Client
will have to pay 3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.

6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Translating into CL syntax

1. �FP(s)(fi)

2. �[h](φ ⇒ O(p + (d&n)))

3. �([d&n](O(l) ∧ [l]♦O(p&p)))

4. �([d&n · l]♦O(p&p&p))

5. The Client shall, as soon as the Internet Service becomes operative, submit
within seven (7) days the Personal Data Form from his account on the Provider’s
web page to the Client Relations Department of the Provider.

6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Translating into CL syntax

1. �FP(s)(fi)

2. �[h](φ ⇒ O(p + (d&n)))

3. �([d&n](O(l) ∧ [l]♦O(p&p)))

4. �([d&n · l]♦O(p&p&p))

5. �([o]O(sfD))

6. Provider may, at its sole discretion, without notice or giving any reason or
incurring any liability for doing so:
a) Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 80 / 88

university-logo

Case Study
Handcrafting the model

φ = the Internet traffic is high
fi = client supplies false information

to Client Relations Department
h = client increases Internet traffic

to high level
p = client pays [price]
d = client delays payment
n = client notifies by e-mail
l = client lowers the Int. traffic

sfD = client sends the Personal
Data Form to Client Relations
Department

o = provider activates the Internet
Service (it becomes operative)

s = provider suspends service

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 81 / 88

university-logo

Case Study
Handcrafting the model

φ = the Internet traffic is high
fi = client supplies false information

to Client Relations Department
h = client increases Internet traffic

to high level
p = client pays [price]
d = client delays payment
n = client notifies by e-mail
l = client lowers the Int. traffic

sfD = client sends the Personal
Data Form to Client Relations
Department

o = provider activates the Internet
Service (it becomes operative)

s = provider suspends service

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 81 / 88

university-logo

Case Study
Checking the contract on the model

1. �FP(s)(fi)
2. �[h](φ ⇒ O(p + (d&n)))
3. �([d&n](O(l) ∧ [l]♦O(p&p)))

4. �([d&n · l]♦O(p&p&p))
5. �([o]O(sfD))

1, 2, and 4: OK
3 and 5: FAIL!

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 82 / 88

university-logo

Case Study
Checking the contract on the model

1. �FP(s)(fi)
2. �[h](φ ⇒ O(p + (d&n)))
3. �([d&n](O(l) ∧ [l]♦O(p&p)))

4. �([d&n · l]♦O(p&p&p))
5. �([o]O(sfD))

1, 2, and 4: OK

3 and 5: FAIL!

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 82 / 88

university-logo

Case Study
Checking the contract on the model

1. �FP(s)(fi)
2. �[h](φ ⇒ O(p + (d&n)))
3. �([d&n](O(l) ∧ [l]♦O(p&p)))

4. �([d&n · l]♦O(p&p&p))
5. �([o]O(sfD))

1, 2, and 4: OK
3 and 5: FAIL!

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 82 / 88

university-logo

Case Study
Checking the contract on the model (cont.)

Failure of 3. It fails since there is a dependency with clause 2
We need to combine clauses 2 and 3: it model checks!

Failure on our formalization in CL!
Failure of 5. (�([o]O(sfD)))

The system should become operative only once

1 We rewrite the original contract
2 This is formulated in CL, written in NuSMV, and it

model checks!

’Failure’ on the original contract!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 83 / 88

university-logo

Case Study
Checking the contract on the model (cont.)

Failure of 3. It fails since there is a dependency with clause 2
We need to combine clauses 2 and 3: it model checks!

Failure on our formalization in CL!

Failure of 5. (�([o]O(sfD)))

The system should become operative only once

1 We rewrite the original contract
2 This is formulated in CL, written in NuSMV, and it

model checks!

’Failure’ on the original contract!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 83 / 88

university-logo

Case Study
Checking the contract on the model (cont.)

Failure of 3. It fails since there is a dependency with clause 2
We need to combine clauses 2 and 3: it model checks!

Failure on our formalization in CL!
Failure of 5. (�([o]O(sfD)))

The system should become operative only once

1 We rewrite the original contract
2 This is formulated in CL, written in NuSMV, and it

model checks!

’Failure’ on the original contract!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 83 / 88

university-logo

Case Study
Checking the contract on the model (cont.)

Failure of 3. It fails since there is a dependency with clause 2
We need to combine clauses 2 and 3: it model checks!

Failure on our formalization in CL!
Failure of 5. (�([o]O(sfD)))

The system should become operative only once

1 We rewrite the original contract
2 This is formulated in CL, written in NuSMV, and it

model checks!

’Failure’ on the original contract!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 83 / 88

university-logo

Case Study
Checking the contract on the model (cont.)

Failure of 3. It fails since there is a dependency with clause 2
We need to combine clauses 2 and 3: it model checks!

Failure on our formalization in CL!
Failure of 5. (�([o]O(sfD)))

The system should become operative only once

1 We rewrite the original contract
2 This is formulated in CL, written in NuSMV, and it

model checks!

’Failure’ on the original contract!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 83 / 88

university-logo

Case Study
Verifying a property about client obligations

“It is always the case that
whenever the Internet traffic is
high, if the clients pays
immediately, then the client is
not obliged to pay again
immediately afterward”

It fails!
We get a counter-example
–Problem: state s4
We modify the original contract
to capture the above more
precisely

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 84 / 88

university-logo

Case Study
Verifying a property about client obligations

“It is always the case that
whenever the Internet traffic is
high, if the clients pays
immediately, then the client is
not obliged to pay again
immediately afterward”
It fails!

We get a counter-example
–Problem: state s4
We modify the original contract
to capture the above more
precisely

s2

s
¬

Ffi

Ol
OpOsfD ,

Od On, Opφ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 84 / 88

university-logo

Case Study
Verifying a property about client obligations

“It is always the case that
whenever the Internet traffic is
high, if the clients pays
immediately, then the client is
not obliged to pay again
immediately afterward”
It fails!
We get a counter-example
–Problem: state s4

We modify the original contract
to capture the above more
precisely

s2

s
¬

Ffi

Ol
OpOsfD ,

l
−

Od On, Opφ,

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 84 / 88

university-logo

Case Study
Verifying a property about client obligations

“It is always the case that
whenever the Internet traffic is
high, if the clients pays
immediately, then the client is
not obliged to pay again
immediately afterward”
It fails!
We get a counter-example
–Problem: state s4
We modify the original contract
to capture the above more
precisely

φ

s
¬

Ffi

Ol
OpOsfD ,

l
−

Od On,

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

s2

p

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 84 / 88

university-logo

Case Study
Verifying a property about payment in case of increasing Internet traffic

“It is always the case that
whenever Internet traffic is high, if
the client delays payment and
notifies, and afterward lowers the
Internet traffic, then the client is
forbidden to increase Internet
traffic until he pays twice”

It fails!
Counter-example: From s4 (φ
holds), after d&n · l , it is
possible to increase Internet
traffic in state s7, so neither
F (h) nor donep&p hold
Add to the original contract the
clause above!

φ

s
¬

Ffi

Ol
OpOsfD ,

l
−

Od On,

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

s2

p

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 85 / 88

university-logo

Case Study
Verifying a property about payment in case of increasing Internet traffic

“It is always the case that
whenever Internet traffic is high, if
the client delays payment and
notifies, and afterward lowers the
Internet traffic, then the client is
forbidden to increase Internet
traffic until he pays twice”

It fails!

Counter-example: From s4 (φ
holds), after d&n · l , it is
possible to increase Internet
traffic in state s7, so neither
F (h) nor donep&p hold
Add to the original contract the
clause above!

φ

s
¬

Ffi

Ol
OpOsfD ,

l
−

Od On,

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

s2

p

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 85 / 88

university-logo

Case Study
Verifying a property about payment in case of increasing Internet traffic

“It is always the case that
whenever Internet traffic is high, if
the client delays payment and
notifies, and afterward lowers the
Internet traffic, then the client is
forbidden to increase Internet
traffic until he pays twice”

It fails!
Counter-example: From s4 (φ
holds), after d&n · l , it is
possible to increase Internet
traffic in state s7, so neither
F (h) nor donep&p hold

Add to the original contract the
clause above!

φ

s
¬

Ffi

l
−

Od On,

OpOsfD ,Ol

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7
s6

s8

s1

s2

p

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 85 / 88

university-logo

Case Study
Verifying a property about payment in case of increasing Internet traffic

“It is always the case that
whenever Internet traffic is high, if
the client delays payment and
notifies, and afterward lowers the
Internet traffic, then the client is
forbidden to increase Internet
traffic until he pays twice”

It fails!
Counter-example: From s4 (φ
holds), after d&n · l , it is
possible to increase Internet
traffic in state s7, so neither
F (h) nor donep&p hold
Add to the original contract the
clause above!

{p,p}

s
¬

Ffi

Ol
OpOsfD ,

l
−

Od On,

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

s3

s4s5

s7
s6

s8

s1

s2

p

φ

{p,p,p}

F

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 85 / 88

university-logo

Links and Papers

COSoDIS: “Contract-Oriented Software Development for Internet
Services” –A Nordunet3 project (http://www.ifi.uio.no/cosodis)

FLACOS’07 – 1st Workshop on Formal Languages and Analysis of
Contract-Oriented Software (http://www.ifi.uio.no/flacos07/)

Oslo, 9-10 October 2007

C. Prisacariu and G. Schneider. A formal language for electronic
contracts. In FMOODS’07, vol. 4468 of LNCS, pages 174-189,
Cyprus. June 2007
G. Pace, C. Prisacariu, and G. Schneider. Model checking contracts
-a case study. In ATVA’07, vol. 4762 of LNCS, pages 82-97, Tokyo,
Japan. October 2007.

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 86 / 88

http://www.ifi.uio.no/cosodis
http://www.ifi.uio.no/flacos07/

university-logo

Research Topics

Improve the language/logic CL for contracts
Develop a proof system for CL
Develop a theory of contracts
Case studies
Find other application domains to use contracts (e.g., financial)
Implement algorithms for model checking
Implement web services/components including contracts as presented
in this tutorial

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 87 / 88

university-logo

Thank you!

Gerardo Schneider (UiO) Specification and Analysis of Contracts November 2007 88 / 88

	Lesson 1: Introduction
	Formal Methods
	Contracts `and' Informatics

	Lesson 2: Components, Services and Contracts
	Components
	Service-Oriented Computing

	Lesson 3: Deontic Logic
	Deontic Logic
	Paradoxes in Deontic Logic

	Lesson 4: Specification and Analysis of Contracts
	The Contract Language CL
	Properties of the Language
	Verification of Contracts

