Introduction to Hybrid Systems

GERARDO SCHNEIDER

gerardo@irisa.fr

IRISA/INRIA Équipe Lande Rennes - France

Motivation

- Computers are everywhere
 - Electronic commerce
 - Education
 - Thermostat
 - Automated highway systems
 - Air traffic management systems
 - Automotive industry (robots)
 - Chemical plants

- Computers are everywhere
- Many of these systems have a "hybrid" nature. Systems exhibiting both:
 - Continuous evolutions
 - Discrete transitions

- Computers are everywhere
- Many of these systems have a "hybrid" nature. Systems exhibiting both:
 - Continuous evolutions
 - Discrete transitions
- Some examples:
 - Thermostat: Temperature + switch On/Off
 - Robotic systems: Distance, speed, etc + switch direction
 - Chemical plants: Chemical reactions + closing/opening valves

Hybrid Systems: Why a new theory?

• Two main reasons: Academic and practical

- Two main reasons: Academic and practical Academic reason: People competent in specific domains of knowledge
 - Control theoreticians
 - Computer scientists
 - Mathematicians

- Two main reasons: Academic and practical Academic reason: People competent in specific domains of knowledge
 - Control theoreticians
 - Computer scientists
 - Mathematicians

Practical reason: Finding suitable abstract models and analysis techniques for natural phenomena

- Two main reasons: Academic and practical Academic reason: People competent in specific domains of knowledge
 - Control theoreticians
 - Computer scientists
 - Mathematicians

Practical reason: Finding suitable abstract models and analysis techniques for natural phenomena

 Hybrid models offer clean modelling solutions for phenomena for which classical models are inadequate

Overview of the presentation

- Continuous models
- Discrete systems
- Hybrid automata
- Verification
- Discussion

 Initially: Conceived for predicting the behaviour of uncontrolled systems (e.g. solar system)

- Initially: Conceived for predicting the behaviour of *uncontrolled* systems (e.g. solar system)
- Later: Adapted for systems with *inputs controlled* systems (e.g. robots)
 - In the presence of disturbance or control signals: Need for *input* (or *control*) variables

- Initially: Conceived for predicting the behaviour of *uncontrolled* systems (e.g. solar system)
- Later: Adapted for systems with *inputs controlled* systems (e.g. robots)
 - In the presence of disturbance or control signals: Need for *input* (or *control*) variables
- Such systems are specified by differential or difference equations, describing the evolution of the state-variable

Continuous Models: Limitations

- The dynamics of many physical components of plants cannot be modelled using purelycontinuous models
 - Behaviour of valves and switches are best modelled as discrete systems
 - Continuous sensors and actuators are saturated beyond certain values

- The dynamics of many physical components of plants cannot be modelled using purelycontinuous models
- Some "intelligent" control might not be expressed in terms of continuous trajectories
 - Movement in physical space may contain "objects" and "places": Inherently discrete involving phenomena like collision

- The dynamics of many physical components of plants cannot be modelled using purelycontinuous models
- Some "intelligent" control might not be expressed in terms of continuous trajectories
- Even in the presence of continuous models, the dynamics could be highly *non-linear*
 - Many models based on a linear approximation are valid only in a certain region. When leaving such region a new linear model should be used

- The dynamics of many physical components of plants cannot be modelled using purelycontinuous models
- Some "intelligent" control might not be expressed in terms of continuous trajectories
- Even in the presence of continuous models, the dynamics could be highly *non-linear*
- Many control systems need interaction with entities other than continuous sensors: e.g. with computers or human operators
 - Such entities may activate or suspend the controller execution or force it to switch to another mode of operation

 Control Engineers know how to solve many of the above problems:

- Control Engineers know how to solve many of the above problems:
 - A continuous model is given for each "mode" of operation
 - Control laws are synthesised for each of these modes and then "glue" together

- Control Engineers know how to solve many of the above problems:
 - A continuous model is given for each "mode" of operation
 - Control laws are synthesised for each of these modes and then "glue" together
- However, the transition between them is not a part of the "official" dynamics of the system

- Control Engineers know how to solve many of the above problems:
 - A continuous model is given for each "mode" of operation
 - Control laws are synthesised for each of these modes and then "glue" together
- However, the transition between them is not a part of the "official" dynamics of the system
 - The formal notion of dynamical system is reserved only for the continuous modes; other phenomena are treated as "extra-modelic"

Overview of the presentation

- Continuous models
- Discrete systems
- Hybrid automata
- Verification
- Discussion

- The design of reactive systems in Computer Science has similar goals to Control Theory
 - To design systems that interact with an external environment

- The design of reactive systems in Computer Science has similar goals to Control Theory
 - To design systems that interact with an external environment
- Example: A mechanism which controls the access of clients to some shared resources

- Main difference between Control Theory and Computer Science
 - Control Theory:
 - State variables are physical magnitudes (e.g. temperature)
 - Interaction is done through measurements of physical magnitudes
 - Computer Science:
 - State variables are non-numerical values (e.g. "ready", "waiting")
 - Interaction via *messages* and *events* such as "request" or "release"

• State-transition dynamics: For each state and input event, it defines what is the *next* state

- State-transition dynamics: For each state and input event, it defines what is the *next* state
- Small state-space: It can be explicitly written in a table
- Larger systems are described using two methods:
 - Composition, where interacting sub-systems are described separately
 - *Implicit* (symbolic) description (e.g. using programming formalisms)

• Are Discrete systems easier to analyse than Continuous systems?

• Are Discrete systems easier to analyse than Continuous systems?

Not Always!

- D.S. are defined on impoverish mathematical domains: Analysis and synthesis are more difficult
- Examples:
 - Ax = b defined over the reals: Simple solution using division and subtraction
 - Finding whether there is a Boolean vector satisfying a formula in propositional logic, is an NP-hard problem: We need to explore all possible vectors!

- D.S. are defined on impoverish mathematical domains: Analysis and synthesis are more difficult
- Examples:
 - In C.S. $\dot{\mathbf{x}} = A\mathbf{x}$: Knowledge about the trajectories by inspecting A
 - In D.S.: No "holistic" way to capture the global behaviour of the systems. Sometimes, need to explore all the possible trajectories.

Overview of the presentation

- Continuous models
- Discrete systems
- Hybrid automata
- Verification
- Discussion

- Hybrid automata are a good formalism for modelling
 - The continuous "modes" of operation, and
 - The discrete switches between such modes
- They are a generalisation of a well-established formalism: Timed Automata

 Frictionless movement of a particle in a bounded interval [-a, a] ∈ R subject to elastic collisions at the endpoints of the interval

 Frictionless movement of a particle in a bounded interval [-a, a] ∈ R subject to elastic collisions at the endpoints of the interval

• A heating system with external On/Off commands

• A heating system with a thermostat

• A heating system with a thermostat

Overview of the presentation

- Continuous models
- Discrete systems
- Hybrid automata
- Verification
- Discussion

• How to build **correct** complex systems?

- How to build **correct** complex systems?
- Synthesis (from the specification)

- How to build **correct** complex systems?
- Synthesis (from the specification)
- Build them and then
 - Test
 - Simulate

- How to build **correct** complex systems?
- Synthesis (from the specification)
- Build them and then
 - Test
 - Simulate
- Alternative: Formal verification

What is Verification?

Instance:

- *P*: Program (e.g. Hw circuit, communication protocol, distributed system, C program, Real-time system, hybrid automata)
- ϕ : Specification
- Question:
 - Does *P* satisfies ϕ ?

What is Verification?

Instance:

- *P*: Program (e.g. Hw circuit, communication protocol, distributed system, C program, Real-time system, hybrid automata)
- ϕ : Specification
- Question:
 - Does *P* satisfies ϕ ?

• Example:

- P: Thermostat
- ϕ : The temperature remains always between m and M

• Modelling formalisms: Based on interacting automata and other variants of transition systems

Verification of Discrete Systems: Methodology

- Modelling formalisms: Based on interacting automata and other variants of transition systems
- Formalisms for specifying systems requirements: Automata, regular expressions or formulae in temporal logic

Verification of Discrete Systems: Methodology

- Modelling formalisms: Based on interacting automata and other variants of transition systems
- Formalisms for specifying systems requirements: Automata, regular expressions or formulae in temporal logic
- Methods to verify that a controller, composed with its environment, generates only acceptable behaviours
 - Algorithmic: Explore the paths in the transition graph
 - Deductive: Try to prove some claims about all system behaviours

Overview of the presentation

- Continuous models
- Discrete systems
- Hybrid automata
- Verification
- Discussion

- Many natural phenomena and industrial applications are hybrid by nature (continuous + discrete behaviours)
- Hybrid systems are studied by mathematicians, computer scientists and control theoreticians
- Hybrid automata are a good formalism for modelling hybrid systems
- A lot of work is still to be done for verifying and synthesising hybrid systems!

MUITO OBRIGADO!

