An heuristic for verifying safety properties of infinite-state systems

GERARDO SCHNEIDER

UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN

Joint work with Michael Baldamus and Richard Mayr

An heuristic for verifying safety properties of infinite-state systems – p.1/31

• How to build correct complex systems?

- How to build correct complex systems?
- Synthesis (from the specification)

- How to build correct complex systems?
- Synthesis (from the specification)
- Build them and then
 - Test
 - Simulate

- How to build correct complex systems?
- Synthesis (from the specification)
- Build them and then
 - Test
 - Simulate
- Alternative: Formal verification

What is Verification?

- Instance:
 - P: Program (Hw circuit, communication protocol, distributed system, C program, Real-time system, etc)
 - ϕ : Specification
- Question:
 - Does P satisfies ϕ ?

- It is a very active field for theoretical research and practical development
- Deductive vs Algorithmic approach

- Model Checking (Algorithmic)
 - By now, a quite well-established theory (80's)
 - Exhaustive exploration of the state-space
 - Fully automatic
 - Practical applications:
 - Hardware controllers
 - Circuit design
 - Many communication protocols

- Limitations of Model Checking:
 - Finite-state systems
 - State explosion problem

- Limitations of Model Checking:
 - Finite-state systems
 - State explosion problem
- Infinite-state systems: More general but more difficult to analyse!

Verification of Infinite-State Systems

- Key aspects to take into account
 - Non-bounded variables and/or data structures (e.g. counters, clocks, queues)
 - Parameterised systems (e.g. nets of unbounded number of id. processes)
 - Mobility
 - Security

Verification of Infinite-State Systems

- Examples of infinite-state systems
 - Timed and hybrid automata
 - Process rewrite systems
 - Push-down automata
 - Communicating FSA (e.g. Lossy channel systems)
 - Petri nets
 - Parameterised systems (mutual exclusion protocols, broadcast protocols, etc)

Verification of Infinite-State Systems

- Techniques:
 - Abstraction
 - Symbolic analysis
 - Well-quasi-ordering (WQO)

• Our Dream: Verify the π -calculus!

An heuristic for verifying safety properties of infinite-state systems – p.6/31

- Our Dream: Verify the π -calculus!
- Not yet there! We start with something simpler: CCS-like Calculus

- Our Dream: Verify the π -calculus!
- Not yet there! We start with something simpler: CCS-like Calculus
- Which kind of properties?
 - Safety properties (Reachability)

- Our Dream: Verify the π -calculus!
- Not yet there! We start with something simpler: CCS-like Calculus
- Which kind of properties?
 - Safety properties (Reachability)
- Problems?
 - Verifying safety properties is undecidable in CCS
 - Termination

Our Solution

Algorithm:

- Give a Petri net semantics to CCS-like Agents
 Agent: A, Petri net: N_A
- Obtain an over-approximation Petri net $W(N_A)$
- Prove that $W(N_A)$ is a Well-Structured System
- Reachability is decidable in $W(N_A)$

Our Solution

- Our algorithm is partial:
 - If it says (NO) YES: the property is (not) satisfied
 - Sometimes it says UNKNOWN

Agenda

- Preliminaries
 - Well-Structured Systems
 - An Agent Language (CCS-like)
 - Petri Nets
- Petri Nets Semantics of the Agent Lang.
- Safety Properties Verification
- Concluding Remarks

Let $\langle S, \rightarrow \rangle$ (where $S = Q \times D$ is a set of states) be a labelled transition system (LTS) and \leq a preorder (reflexive and transitive)

Let $\langle S, \rightarrow \rangle$ (where $S = Q \times D$ is a set of *states*) be a labelled transition system (LTS) and \leq a preorder (reflexive and transitive)

• \leq is a WQO if there is no infinite sequence a_0, a_1, \ldots , so that $a_i \not \leq a_j$ for any $i \leq j$

Let $\langle S, \rightarrow \rangle$ (where $S = Q \times D$ is a set of *states*) be a labelled transition system (LTS) and \leq a preorder (reflexive and transitive)

• Let *D* be a set. A subset $U \subseteq D$ is upward closed if whenever $a \in U, b \in D$ and $a \preceq b$, then $b \in U$. The upward closure of a set

 $A\subseteq D \text{ is }$

$\mathcal{C}(A) := \{ b \in D \mid \exists a \in A. a \preceq b \}$

Let $\langle S, \rightarrow \rangle$ (where $S = Q \times D$ is a set of *states*) be a labelled transition system (LTS) and \leq a preorder (reflexive and transitive)

• A LTS $\langle S, \rightarrow \rangle$ is monotonic if, whenever $s \leq t$ and $s \stackrel{\alpha}{\rightarrow} s'$, then $t \stackrel{\alpha}{\rightarrow} t'$ for some t' so that $s' \leq t'$

Well-Structured Systems: Definition

A trans. system $\mathcal{L} = \langle S, \rightarrow \rangle$ (with \leq on data values) is well-structured if

- \leq is a well–quasi–ordering, and
- $< S, \rightarrow >$ is monotonic with respect to \leq , and
- for all $s \in S$ and $\alpha \in L$, the set $\min(\operatorname{pre}_{\alpha}(\mathcal{C}(\{s\})))$ is computable

WSS: Some Nice Properties

Theorem:

- Let < S, →> be a WSS, < q, d > a state and U an upward–closed subset of the set of data values
- Then it is decidable whether it is possible to reach, from < q, d>, any state < q', d'> with $d' \in U$

An Agent Language (CCS-like)

- Given:
 - A set of names, \mathcal{N} ($a, b, x, y \dots$)
 - A set of co-names, $\overline{\mathcal{N}} = \{\overline{a} \mid a \in \mathcal{N}\}$. The set of visible actions: $Act = \mathcal{N} \cup \overline{\mathcal{N}}$
 - We denote by $Act_{\tau} = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\}$ (α)

An Agent Language (CCS-like)

- Given:
 - A set of names, \mathcal{N} ($a, b, x, y \dots$)
 - A set of co-names, $\overline{\mathcal{N}} = \{\overline{a} \mid a \in \mathcal{N}\}$. The set of visible actions: $Act = \mathcal{N} \cup \overline{\mathcal{N}}$
 - We denote by $Act_{\tau} = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\}$ (α)
- The syntax is given by:

 $P ::= \mathbf{0} \mid \alpha . P \mid P + Q \mid P \setminus c \mid P \parallel P \mid A$

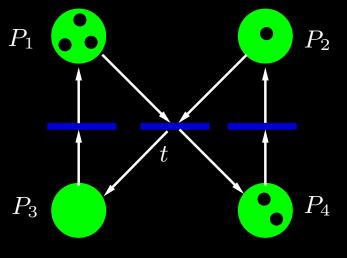
Where $A \stackrel{\text{def}}{=} P$

Petri Nets

- A Petri net is a tuple $N = (P, A, T, M_0)$:
 - *P* is a finite set of *places*
 - A is a finite set of actions (or labels)
 - $T \subseteq \mathcal{M}(P) \times A \times \mathcal{M}(P)$ is a finite set of *transitions*
 - M_0 is the *initial marking*

where $\mathcal{M}(P)$ is a collection of multisets (bags) over P

Petri Nets: Graphical representation



Marking

M: is a mapping from places to the set of natural numbers

$$M(P_1) = 3$$
 $M(P_2) = 1$
 $M(P_3) = 0$ $M(P_4) = 2$

An heuristic for verifying safety properties of infinite-state systems – p.14/31

Agenda

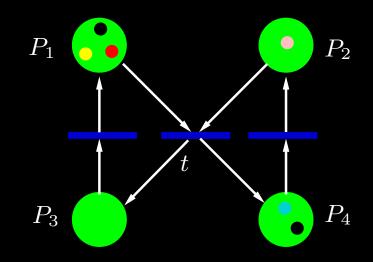
- Preliminaries
 - Well-Structured Systems
 - An Agent Language (CCS-like)
 - Petri Nets
- Petri Nets Semantics of the Agent Lang.
- Safety Properties Verification
- Concluding Remarks

Petri Nets Semantics of the Agent Lang.

We will use Coloured Petri Nets

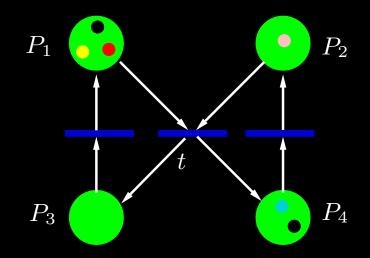
Petri Nets Semantics of the Agent Lang.

We will use Coloured Petri Nets



Petri Nets Semantics of the Agent Lang.

We will use Coloured Petri Nets



• In particular, we will use *strings* as colours

Petri Nets Semantics of the Agent Lang.: Formal Definition

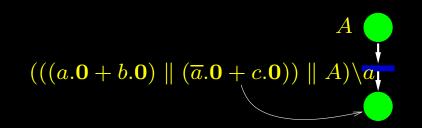
 Places : all agent constants together with all agents and sub-agents that occur on the right-hand side of any defining equation within the environment

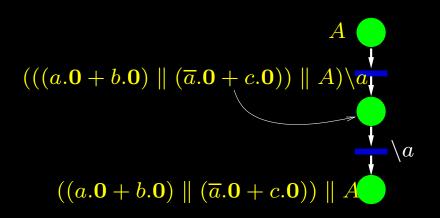
Petri Nets Semantics of the Agent Lang.: Formal Definition

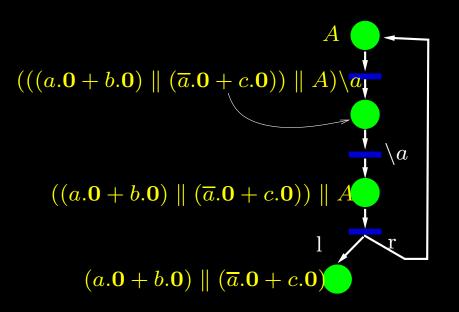
- Places
- Transitions :

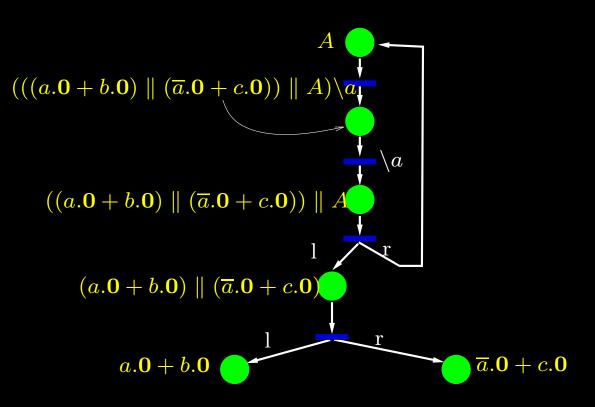
 $\begin{aligned} \operatorname{Trans}(\alpha.P) &= \left\{ \left\langle \{\alpha.P\}, \{P\} \right\rangle \mapsto \alpha \right\} \\ \operatorname{Trans}(P+Q) &= \left\{ \left\langle \{P+Q\}, \{P\} \right\rangle, \left\langle \{P+Q\}, \{Q\} \right\rangle \right\} \\ \operatorname{Trans}(P|Q) &= \left\{ \left\langle \{P|Q\}, \{P\mapsto 1, Q\mapsto r\} \right\rangle \right\} \\ \operatorname{Trans}(P\setminus c) &= \left\{ \left\langle \{P\setminus c\}, \{P\} \right\rangle \mapsto \setminus c \right\} \\ \operatorname{Trans}(A) &= \left\{ \left\langle \{A\}, \{P\} \right\rangle \right\}, \text{ given that } A \stackrel{\Delta}{=} P \end{aligned}$

 $A \stackrel{\text{def}}{=} \left(\left(\left(a.\overline{\mathbf{0} + b.\mathbf{0}} \right) \parallel \left(\overline{a}.\mathbf{0} + c.\overline{\mathbf{0}} \right) \right) \parallel A \right) \setminus a$

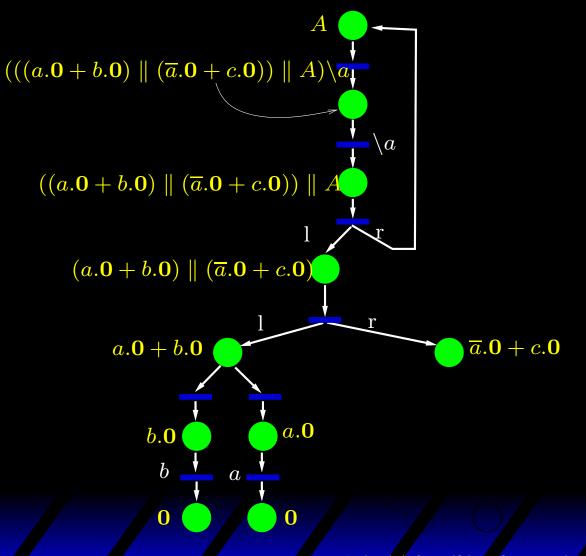


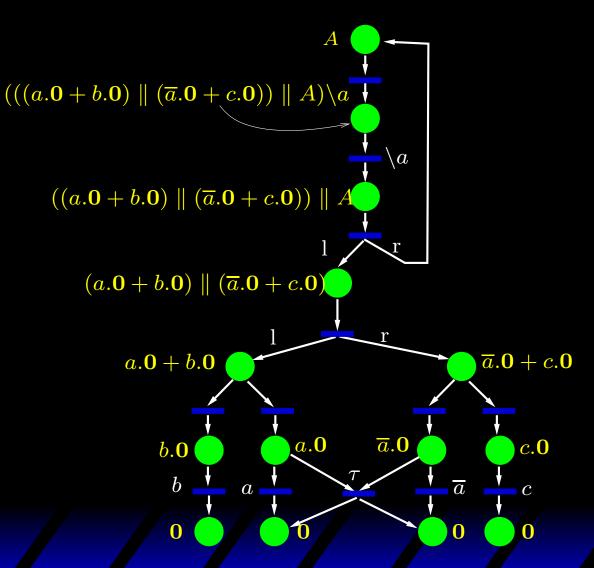






Ni**(**\$) () \$\1





Petri Nets Semantics of the Agent Lang.: Formal Definition

- Tokens : $(Act \cup \{l, r\})^*$; Empty token: ϵ . They carry history information about:
 - Concurrent threads, and
 - In which scope w.r.t. restriction they are

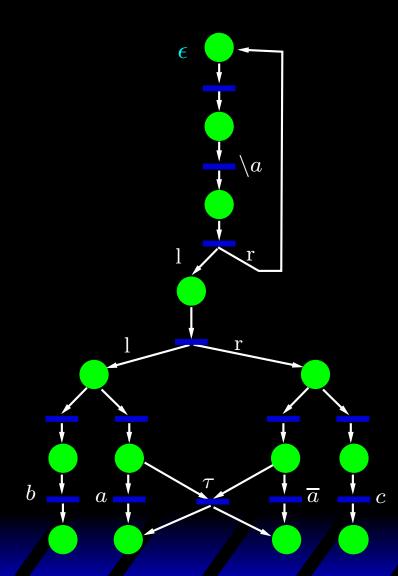
Petri Nets Semantics of the Agent Lang.: Formal Definition

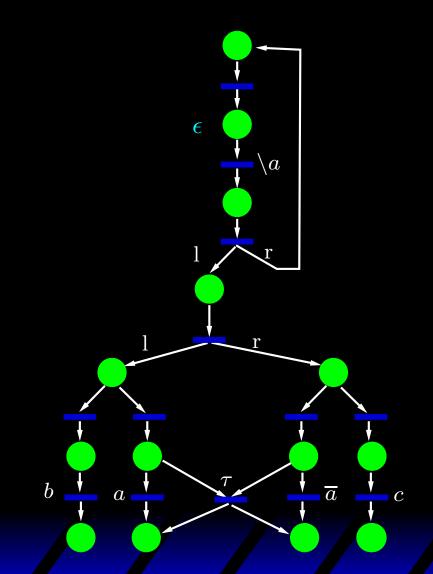
- Tokens
- Firing (Enabling of Transitions):
 - For transition t with one input place and a token θ, t is enabled if some of the following hold
 - t is not labelled with a visible action
 - t is labelled with a visible action a and θ doesn't contain a

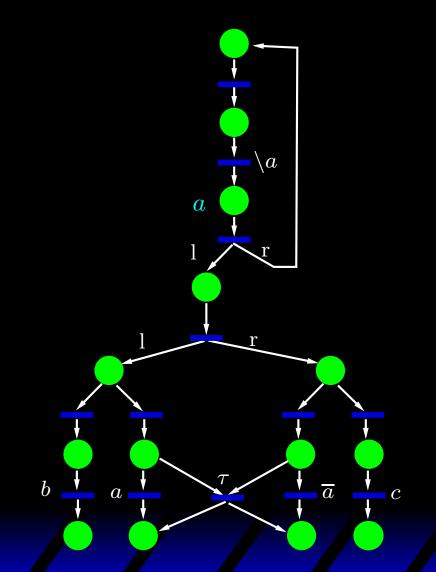
Petri Nets Semantics of the Agent Lang.: Formal Definition

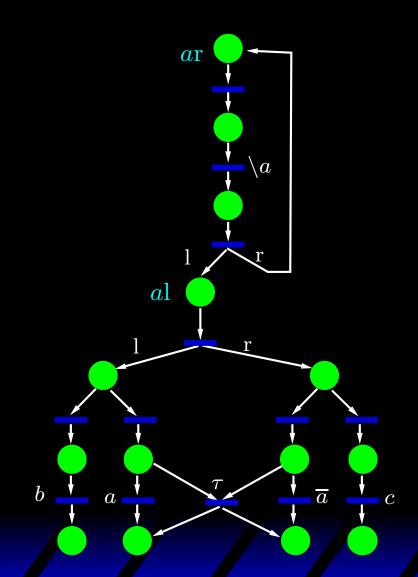
- Tokens
- Firing (Enabling of Transitions):
 - For transition t with two input places p_1 and p_2 and tokens θ_1 and θ_2 , t is enabled if *both* of the following hold
 - $pc(pre_i(t)) \setminus Act \neq \epsilon, i = 1, 2$, while $pc(pre_1(t)) \setminus Act \neq pc(pre_2(t)) \setminus Act$
 - $\begin{array}{ll} \bullet \ \texttt{maxpref}_a(\texttt{pc}(pre_1(t))) = \\ \texttt{maxpref}_a(\texttt{pc}(pre_2(t))) \end{array}$

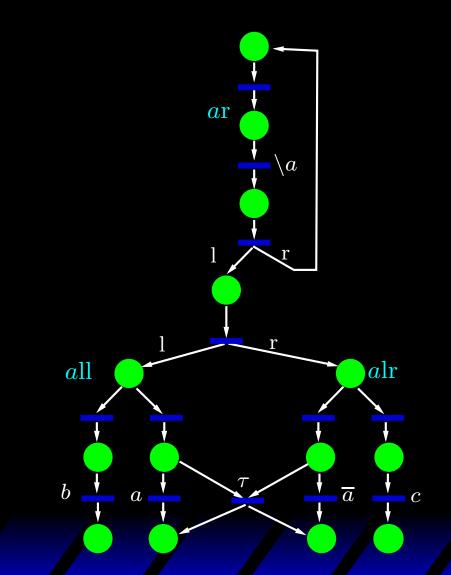
 $A \stackrel{\text{def}}{=} \left(\left(\left(a.\overline{\mathbf{0} + b.\mathbf{0}} \right) \parallel \left(\overline{a}.\mathbf{0} + c.\overline{\mathbf{0}} \right) \right) \parallel A \right) \setminus a$

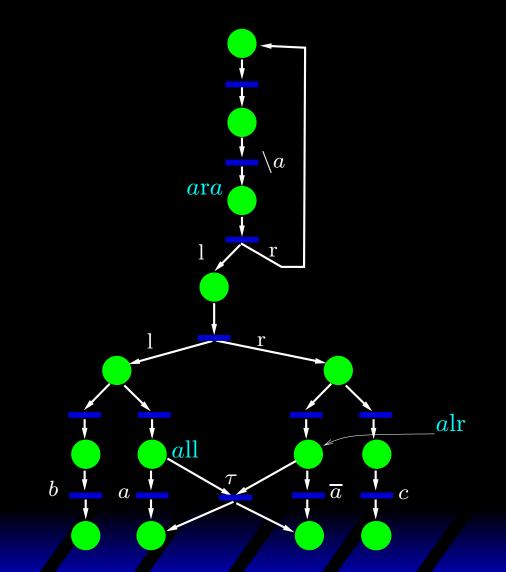


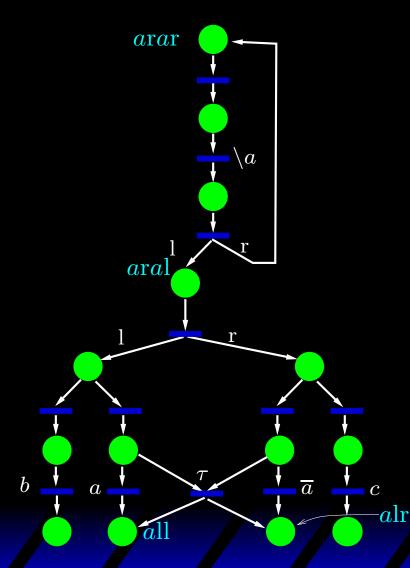


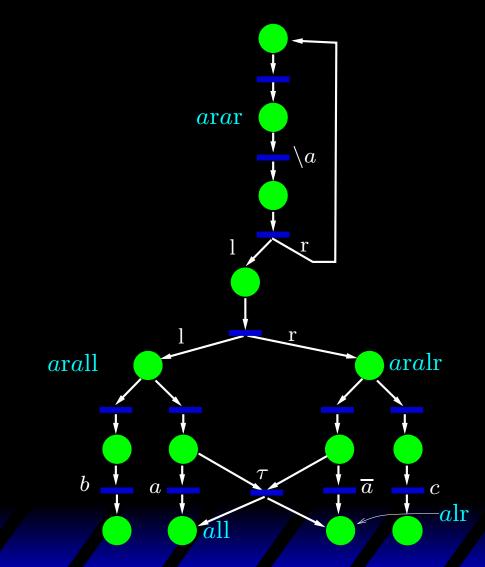


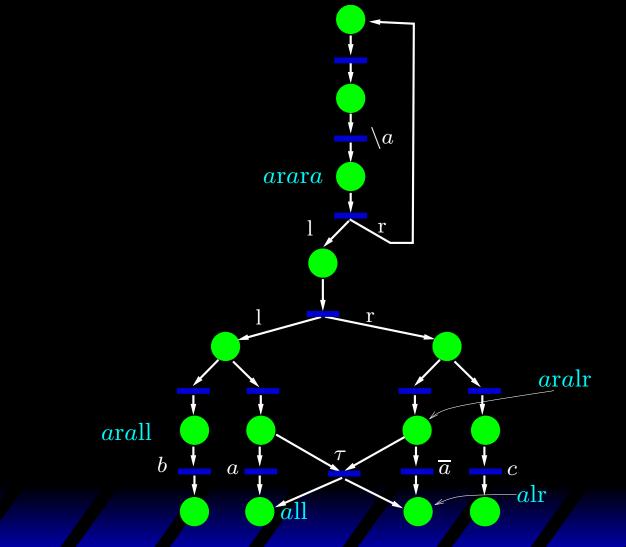












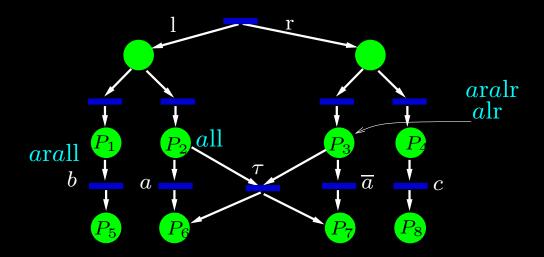
• We define a preorder between tokens:

 $\eta \preceq \theta$ if η is a (not necessarily contiguous) substring of θ

Example:

 $all \preceq ararall$

We define an ordering between markings:
 m₁ ⊑ m₂
 Example: m₁



$$m_{1} = \{\dots, (P_{1}, \{arall\}), (P_{2}, \{all\}), (P_{3}, \{alr, aralr\}), \\ (P_{4}, \{\}), (P_{5}, \{\}), (P_{6}, \{\}), (P_{7}, \{\}), (P_{8}, \{\})\} \\ m_{2} = \{\dots, (P_{1}, \{arall\}), (P_{2}, \{ararall\}), (P_{3}, \{alr, aralr\}), \\ (P_{4}, \{araralr\}), (P_{5}, \{all\}), (P_{6}, \{\}), (P_{7}, \{\}), (P_{8}, \{\})\}$$

• We define an ordering between markings: $m_1 \sqsubseteq m_2$

Intuition: $m \sqsubseteq m'$ if m' represents a (not necessarily strictly) longer firing history than m

- We define an ordering between markings: $m_1 \sqsubseteq m_2$
- Markings represent upward closed sets
 Example:

 $m_1 = \{\dots, (P_1, \{arall\}), (P_2, \{all\}), (P_3, \{alr, aralr\}), (P_4, \{\}), (P_5, \{\}), (P_6, \{\}), (P_7, \{\}), (P_8, \{\})\}$

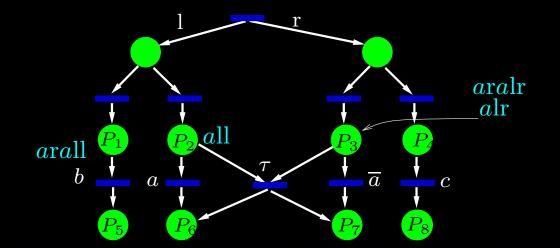
Very nice, but...

Very nice, but...

• Our Petri nets are not monotonic!

Counter-example: Let

 $m_1 = \{\dots, (P_1, \{arall\}), (P_2, \{all\}), (P_3, \{alr, aralr\}), (P_4, \{\}), (P_5, \{\}), (P_6, \{\}), (P_7, \{\}), (P_8, \{\})\}$



Counter-example: Let

 $m_1 = \{\dots, (P_1, \{arall\}), (P_2, \{all\}), (P_3, \{alr, aralr\}), \\ (P_4, \{\}), (P_5, \{\}), (P_6, \{\}), (P_7, \{\}), (P_8, \{\})\}$

 $m_2 = \{\dots, (P_1, \{arall\}), (P_2, \{ararall\}), (P_3, \{alr, aralr\}), (P_4, \{araralr\}), (P_5, \{all\}), (P_6, \{\}), (P_7, \{\}), (P_8, \{\})\}$

• Notice that $m_1 \sqsubseteq m_2$

Counter-example: Let

 $m_1 = \{\dots, (P_1, \{arall\}), (P_2, \{all\}), (P_3, \{alr, aralr\}), (P_4, \{\}), (P_5, \{\}), (P_6, \{\}), (P_7, \{\}), (P_8, \{\})\}$

• Moreover, $m_1 \rightarrow m_1'$, where

 $m'_{1} = \{ \dots, (P_{1}, \{arall\}), (P_{2}, \{\}), (P_{3}, \{aralr\}) \\ (P_{4}, \{\}), (P_{5}, \{\}), (P_{6}, \{all\}), (P_{7}, \{alr\}), (P_{8}, \{\}) \}$

Counter-example: Let

 $m_1 = \{\dots, (P_1, \{arall\}), (P_2, \{all\}), (P_3, \{alr, aralr\}), (P_4, \{\}), (P_5, \{\}), (P_6, \{\}), (P_7, \{\}), (P_8, \{\})\}$

But, there is no m_2' such that $m_1' \sqsubseteq m_2'$ and $m_2 \rightarrow m_2'$

→ It is not monotonic!

Petri Nets as WSS

We make an over-approximation of the Petri net

 We change the synchronisation policy: A transition may be fired even if the tokens don't synchronise (Weak Firings)

Petri Nets as WSS

We make an over-approximation of the Petri net

 We change the synchronisation policy: A transition may be fired even if the tokens don't synchronise (Weak Firings)

Lemma: P-nets with *weak firings* are wellstructured systems

Petri Nets as WSS

We make an over-approximation of the Petri net

 We change the synchronisation policy: A transition may be fired even if the tokens don't synchronise (Weak Firings)

Lemma: P-nets with *weak firings* are wellstructured systems

Corollary: The control state reachability problem is decidable for p-nets with weak firings

Agenda

- Preliminaries
 - Well-Structured Systems
 - An Agent Language (CCS-like)
 - Petri Nets
- Petri Nets Semantics of the Agent Lang.
- Safety Properties Verification
- Concluding Remarks

Verification of Safety Properties: The Problem

Instance: An agent A with initial state ini and an atomic action a

Question: Can agent A ever execute action a?

Verification of Safety Properties: The Algorithm

Preparatory phase:

[1] Build the p-net N associated with A

[2] For every transition t labelled with a there is a minimal marking m_t that enables t. It is given by an ϵ -token on all places in pre(t). Then $M^a = \{m_t \mid t \text{ labelled by } a\}.$

Verification of Safety Properties: The Algorithm

Preparatory phase:

[1] Build the p-net N associated with A

[2] For every transition t labelled with a there is a minimal marking m_t that enables t. It is given by an ϵ -token on all places in pre(t). Then $M^a = \{m_t \mid t \text{ labelled by } a\}.$

Remark: m_t is an upward closed set: "At least one token in pre(t)"

Verification of Safety Properties: The Algorithm

Algorithm:

function $Reachability(N, M^a, ini)$: $(OB, s) := Search_{backward}(M^a, ini)$ if $ini \notin OB$ then $\leftarrow NO$ else $\leftarrow Search_{forward}(ini, M^a, OB, b(s))$

Agenda

- Preliminaries
 - Well-Structured Systems
 - An Agent Language (CCS-like)
 - Petri Nets
- Petri Nets Semantics of the Agent Lang.
- Safety Properties Verification
- Concluding Remarks

Concluding Remarks

- We have given a (finite-control) Petri net semantics to a CCS-like calculus
- We have presented a general technique for reachability analysis of non-WSS
 - It combines backward and forward reachability analysis
 - It produces answers: YES, NO, UNKNOWN (YES and NO always correct)
- We have applied it to partially decide the reachability problem for a CCS-like calculus

Future Work (Research Topics)

- Use this methodology for verifying safety properties of
 - π -calculus
 - Concurrent Constraint Programming
 - Others?
- Implementation of the Algorithm

MUITO OBRIGADO!

