Algorithmic Analysis of Polygonal Hybrid Systems

GERARDO SCHNEIDER

VERIMAG

GRENOBLE

Algorithmic Analysis of Polygonal Hybrid Systems - p.1/6

- Hybrid Systems: interaction between discrete and continuous behaviors
- Examples: thermostat, automated highway systems, air traffic management systems, robotic systems, chemical plants, etc.

Model: Hybrid Automata

- A partition of the plane into convex polygonal regions
- A constant differential inclusion for each region

$$\dot{x} \in \angle_{\mathbf{a}}^{\mathbf{b}}$$
 if $\mathbf{x} \in R_i$

- A partition of the plane into convex polygonal regions
- A constant differential inclusion for each region

$$\dot{x} \in \angle_{\mathbf{a}}^{\mathbf{b}}$$
 if $\mathbf{x} \in R_i$

- The "swimmer" is a hybrid system
- Hybrid Automata?

- The "swimmer" is a hybrid system
- Hybrid Automata?

- The "swimmer" is a hybrid system
- Hybrid Automata?

- The "swimmer" is a hybrid system
- Hybrid Automata?

- The "swimmer" is a hybrid system
- Hybrid Automata?

We will use the "geometric" representation instead of the hybrid automata

Overview of the presentation

- Motivation and Contributions
- Algorithm for Reachability Problem (SPDIs)
- Implementation SPeeDI
- Algorithm for Phase Portrait construction (SPDIs)
- Other 2 dim Hybrid Systems
 - Between Decidability and Undecidability
 - Undecidability results
- Summary of Results and Perspectives

Motivation and Contributions

Algorithmic Analysis of Polygonal Hybrid Systems - p.7/6

Motivation and Contributions Challenge

Motivation and Contributions Contributions (Reachability)

Motivation and Contributions Scientific Context (Phase Portrait)

- Phase Portrait for PCDs
- Numerical algorithms for computing Viability Kernels

Motivation and Contributions

Contributions (Phase Portrait)

- Phase Portrait for SPDIs
 - Viability Kernel
 - Controllability Kernel

Reachability Analysis for SPDIs

Algorithmic Analysis of Polygonal Hybrid Systems - p.10/6

The Reachability Problem for SPDIs

The Reachability Problem for SPDIs

Reachability problem: Is there a trajectory from x_0 to x_f ?

Solving the Reachability Problem

1. From trajectories to simplified trajectories

1. Simplification of trajectories

1. Simplification of trajectories

1. Simplification of trajectories

Theorem: If there is an arbitrary trajectory between two points then it always exists a straightened non–crossing trajectory between them

Solving the Reachability Problem

- 1. From trajectories to simplified trajectories
- 2. From simplified trajectories to signatures

2. Abstraction into signatures

 $\sigma = e_1 e_2 e_3 \dots e_5 e_6 e_7 \dots e_{13} e_6 e_7 e_8 e_{15}$

Solving the Reachability Problem

- 1. From trajectories to simplified trajectories
- 2. From simplified trajectories to signatures
- 3. From signatures to *factorized signatures*

For $\sigma = e_1 e_2 e_3 \dots e_5 e_6 e_7 \dots e_{13} e_6 e_7 e_8 e_{15}$

We obtain the representation: $\sigma = e_1 e_2 e_3 (e_4 e_1 e_2 e_3)^2 e_5 e_6 e_7 e_8 (e_9 \cdots e_{13} e_6 e_7 e_8)^2 e_{15}$

5. Canonical Factorization of Signatures

Representation Theorem: Any edge signature $\sigma = e_1, e_2, \ldots, e_n$ can be represented as

$$\sigma = r_1(s_1)^{k_1} r_2(s_2)^{k_2} \dots r_n(s_n)^{k_n} r_{n+1}$$

5. Canonical Factorization of Signatures

Representation Theorem: Any edge signature $\sigma = e_1, e_2, \ldots, e_n$ can be represented as

$$\sigma = r_1(s_1)^{k_1} r_2(s_2)^{k_2} \dots r_n(s_n)^{k_n} r_{n+1}$$

• Properties:

- r_i is a seq. of pairwise different edges;
- s_i is a simple cycle;
- r_i and r_j are disjoint
- s_i and s_j are different

Proof based on topological properties of the plane

Solving the Reachability Problem

- 1. From trajectories to simplified trajectories
- 2. From simplified trajectories to signatures
- 3. From signatures to factorized signatures
- 4. From factorized signatures to types of signatures

Abstraction: Any edge signature

$$\sigma = r_1(s_1)^{k_1} r_2(s_2)^{k_2} \dots r_n(s_n)^{k_n} r_{n+1}$$

belongs to a type

$$type(\sigma) = r_1, s_1, r_2, s_2, \dots, r_n, s_n, r_{n+1}$$

Abstraction: Any edge signature

$$\sigma = r_1(s_1)^{k_1} r_2(s_2)^{k_2} \dots r_n(s_n)^{k_n} r_{n+1}$$

belongs to a type

$$type(\sigma) = r_1, s_1, r_2, s_2, \dots, r_n, s_n, r_{n+1}$$

Abstraction: Any edge signature

$$\sigma = r_1(s_1)^{k_1} r_2(s_2)^{k_2} \dots r_n(s_n)^{k_n} r_{n+1}$$

belongs to a type

$$type(\sigma) = r_1, s_1, r_2, s_2, \dots, r_n, s_n, r_{n+1}$$

In the previous example:

 $type(\sigma) = e_1e_2e_3, e_4e_1e_2e_3, e_5e_6e_7e_8, e_9\cdots e_{13}e_6e_7e_8, e_{15}$

Abstraction: Any edge signature

$$\sigma = r_1(s_1)^{k_1} r_2(s_2)^{k_2} \dots r_n(s_n)^{k_n} r_{n+1}$$

belongs to a type

$$type(\sigma) = r_1, s_1, r_2, s_2, \dots, r_n, s_n, r_{n+1}$$

Prop. The set of types of signatures is finite

Algorithmic Analysis of Polygonal Hybrid Systems - p.20/6

Solving the Reachability Problem

- 1. From trajectories to simplified trajectories
- 2. From simplified trajectories to signatures
- 3. From signatures to factorized signatures
- 4. From factorized signatures to types of signatures
- 5. Analysis of each type of signature (computing successors)

Computing Successors (for σ)

One step ($\sigma = e_1 e_2$)

Several steps ($\sigma = e_1 e_2 e_3$)

Several steps ($\sigma = e_1 e_2 e_3 e_4 e_5$)

Computing Successors (for σ)

One cycle ($\sigma = s = e_1 e_2 \cdots e_8 e_1$)

Computing Successors (for σ)

One cycle ($\sigma = s = e_1 e_2 \cdots e_8 e_1$)

 $I^* = \mathsf{Succ}^*_{\sigma}(x) = [l^*, u^*] \cap e_1$

 e_1

 e_8

T'

 e_{13}

 e_2

 e_3

 e_6

 e_9

 e_{10}

 e_{12}

 e_{11}

Computing Successors

Lemma: Successors have the form

 $\operatorname{Succ}_{\sigma}(l, u) = [a_1l + b_1, a_2u + b_2] \cap J \text{ if } [l, u] \subseteq S$

Lemma: Fixpoint equations

$$[a_1l^* + b_1, a_2u^* + b_2] = [l^*, u^*]$$

can be explicitly solved (without iterating). We have that (I = [l, u]):

$$\mathsf{Succ}^*_\sigma(I) = [l^*, u^*] \cap J$$

Reachability Algorithm

for each type of signature τ do check whether $Reach_{\tau}(x_0, x_f)$

To test whether $Reach_{\tau}(x_0, x_f)$ for

$$\tau = r_1(s_1)^* \cdots (s_n)^* r_{n+1}$$

Compute $Succ_r$ Accelerate $(Succ_s)^*$

Reachability: Main Result

- The capability of computing fixpoints for simple cycles (acceleration)
- The set of types of signatures is finite

Reachability is decidable for SPDI

SPeeDI: a Tool for SPDIs

Algorithmic Analysis of Polygonal Hybrid Systems - p.26/60

- We have implemented the reachability algorithm for SPDIs: SPeeDI (joint work with Gordon Pace)
- Language: Haskell

- We have implemented the reachability algorithm for SPDIs: SPeeDI (joint work with Gordon Pace)
- Language: Haskell

*	1		•	-	-	-	-4	1
,	1	*	•	4	₹-	•	1	Ļ
,	1	ł	4	3-		t	×	×
,	1	ł	ł	/	¥	۲	ł	ł
*	1	ł	`	-	1	¥	4	*
*	1	1	-	-	*	X	*	1
,	1	1	1	1	1	1	1	1

*	1		•	-*	-#	-*	-*	`
1	1	*	*	4	*	•	1	ł
1	1	ţ	4	3-		t	*	¥
1	1	ţ	ł	X	ť	۲	ł	ł
1	1	ł	`	-	1	¥	*	*
*	1	`	-	-	*	X	¥	1
1	1	1	1	1	1	1	1	1

Animate

Animate

Animate

Phase Portrait of SPDIs

Algorithmic Analysis of Polygonal Hybrid Systems - p.29/60

Phase Portrait: a picture of important objects of a dynamical system

Algorithmic Analysis of Polygonal Hybrid Systems - p.30/6

Phase Portrait: a picture of important objects of a dynamical system

Phase Portrait: a picture of important objects of a dynamical system

Phase Portrait: a picture of important objects of a dynamical system

Phase Portrait

Phase Portrait: a picture of important objects of a dynamical system

Viab(σ): Is the greatest set of initial points of trajectories which can cycle forever in σ

Viab(σ): Is the greatest set of initial points of trajectories which can cycle forever in σ

Example: $\sigma = e_1 e_2 \dots e_8 e_1$

Viab (σ) : Is the greatest set of initial points of trajectories which can cycle forever in σ

Example: $\sigma = e_1 e_2 \dots e_8 e_1$

Theorem: $Viab(\sigma) = \overline{Pre}_{\sigma}(Dom(Succ_{\sigma}))$

Controllability Kernel

 $Cntr(\sigma)$: Is the greatest set of mutually reachable points via trajectories that remain in the cycle

Controllability Kernel

 $Cntr(\sigma)$: Is the greatest set of mutually reachable points via trajectories that remain in the cycle

Example: $\sigma = e_1 e_2 \dots e_8 e_1$

Controllability Kernel

 $Cntr(\sigma)$: Is the greatest set of mutually reachable points via trajectories that remain in the cycle

Example: $\sigma = e_1 e_2 \dots e_8 e_1$

Theorem: $Cntr(\sigma) = (\overline{Succ}_{\sigma} \cap \overline{Pre}_{\sigma})(\mathcal{C}_{\mathcal{D}}(\sigma))$

Algorithm: phase portrait for SPDIs

for each simple cycle σ do Compute Viab (σ) (viability kernel) Compute Cntr (σ) (controllability kernel)

Algorithm: phase portrait for SPDIs

for each simple cycle σ **do** Compute Viab (σ) (*viability kernel*) Compute Cntr (σ) (*controllability kernel*)

Both kernels are exactly computed by non-iterative algorithms!

Properties of the Kernels

Theorem: Any viable trajectory in σ converges to $Cntr(K_{\sigma})$

- Controllability Kernel: 'Weak' analog of limit cycle
- Viability Kernel: Its 'local" attraction basin

Convergence Properties

Every trajectory with infinite signature without self-crossings converges to the controllability kernel of some simple edge-cycle

Between Decidable and Undecidable

Algorithmic Analysis of Polygonal Hybrid Systems - p.36/66

More complex 2-dim systems

What happens if ...

- ... we allow jumps?
- ... the PCD is on a 2-dim surface/manifold?
- ...?

More complex 2-dim systems

What happens if ...

- ... we allow jumps?
- ... the PCD is on a 2-dim surface/manifold?
- ...?

Answer: Reachability is equivalent to a well known open problem

1-dim Piecewise Affine Maps (PAMs): $f : \mathbb{R} \to \mathbb{R}, f(x) = a_i x + b_i \text{ for } x \in I_i$

Algorithmic Analysis of Polygonal Hybrid Systems - p.38/66

Example: Torus

Example: Torus

Example: Torus

Example: Torus

Example: Torus

Example: Torus

Example: Torus

Reachability?

Theorem: $PCD_{2m} \equiv PAM$

Hierarchical PCDs (HPCD)

Hierarchical PCDs (HPCD)

Reachability?

Theorem: HPCD \equiv PAM

Undecidable 2-dim Systems

Algorithmic Analysis of Polygonal Hybrid Systems - p.41/6

Undecidability Results

- HPCDs with One Counter (HPCD $_{1c}$)
- HPCDs with Infinite Partition ($HPCD_{\infty}$)
- Origin-dependent rate HPCDs (HPCD_x)

Undecidability Results

- HPCDs with One Counter (HPCD $_{1c}$)
- HPCDs with Infinite Partition ($HPCD_{\infty}$)
- Origin-dependent rate HPCDs (HPCD_x)

Undecidability Results

- HPCDs with One Counter (HPCD $_{1c}$)
- HPCDs with Infinite Partition ($HPCD_{\infty}$)
- Origin-dependent rate HPCDs (HPCD_x)

Reachability? UNDECIDABLE!

Theorem:

 $HPCD_{1c}, HPCD_{\infty} \text{ and } HPCD_{x}$ simulate Turing machines

Summary of Results

Algorithmic Analysis of Polygonal Hybrid Systems - p.43/66

Summary of Results

PCD ---- **SPDI**

A - - - - B "A is a particular case of B"

Algorithmic Analysis of Polygonal Hybrid Systems - p.44/66

A - - - - B "A is a particular case of B"

Algorithmic Analysis of Polygonal Hybrid Systems - p.44/60

$$A - - - - B$$
 "A is a particular case of B"

Algorithmic Analysis of Polygonal Hybrid Systems - p.44/60

A - - - - B "A is a particular case of B"

A \longrightarrow B "A is simulated by B"

A - - - - B "A is a particular case of B"

A \longrightarrow B "A is simulated by B"

A - - - - B "A is a particular case of B"

 $A \longrightarrow B$ "A is simulated by B"

Perspectives

- SPDI to approximate non-linear differential equations
- Conditions for decidability of PCDs on 2-dim manifolds
- Application of the *geometric* method to higher dimensions
- Extension of SPeeDI: algorithm for viability and controllability kernels
- SPeeDI: "Topological" optimizations

Merci! Gracias! Obrigado! (Brasil Penta-Campeão!) Thank you!

Algorithmic Analysis of Polygonal Hybrid Systems - p.46/6

Theorem de Poincaré-Bendixson

A non-empty compact limit set of C^1 planar dynamical system that contains no equilibrium points is a close orbit.

Comparison with HyTech

Example:

Comparison with HyTech

Final Point	HyTech	SPeeDI	Reachable
199	overflow	0.05 sec	Yes
200	overflow	0.05 sec	No
201	overflow	0.01 sec	No
210	overflow	0.05 sec	No
5	0.04 sec	0.05 sec	No
20	0.07 sec	0.05 sec	No
$\frac{200}{9}$	0.10 sec	0.05 sec	Yes
$\frac{201}{9}$	overflow	0.03 sec	Yes
$\frac{199}{9}$	0.07 sec	0.04 _{Algorithmic Anal}	ysis of Polygonal Hybrid Syste

K_{σ}

Algorithmic Analysis of Polygonal Hybrid Systems – p.49/6

Composition of TAMFs

TAMFs are closed under composition: For

$$\mathcal{F}_1(x) = F_1(\{x\} \cap S_1) \cap J_1$$

and

$$\mathcal{F}_2(x) = F_2(\{x\} \cap S_2) \cap J_2$$

we have that

$$\mathcal{F}_2 \circ \mathcal{F}_1(x) = \mathcal{F}_{F',S',J'}(x)$$

with $F' = F_2 \circ F_1,$ $J' = J_2 \cap F_2(J_1 \cap S_2)$ and $S' = S_1 \cap F_1^{-1}(J_1 \cap S_2)$

Reachability Algorithm (Example)

- Type of signature: $\sigma = (e_1 \cdots e_8)^*$
- Successor for the loop $s = e_1 \dots e_8$:

$$\begin{aligned} \mathsf{Succ}_s(l, u) &= \left[\frac{l}{2} - \frac{1}{20}, \frac{u}{2} + \frac{23}{60}\right] \cap \left(\frac{1}{5}, 1\right) \\ & \text{if } \left[l, u\right] \subseteq (0, 1) \end{aligned}$$

Reachability Algorithm (Example)

- Fixpoint equation: $Succ_{e_1...e_8}(I^*) = I^*$
- Solution: $I^* = [l^*, u^*] = [\frac{1}{5}, \frac{23}{30}]$
- Hence: $\operatorname{Succ}_{e_1...e_8}(x_0) \subseteq \left[\frac{1}{5}, \frac{23}{30}\right]$

 $\mathsf{Viab}(K) = A \cup B$

- *M* is a *viability domain* if $\forall x \in M, \exists$ at least one trajectory ξ , starting in x and remaining in *M*
- Viab(K): *Viability kernel* of K is the largest viability domain M contained in K

Viability Kernel for SPDIs

• We can easily compute the Viability Kernel for one cycle, which is a polygon

Viability Kernel for SPDIs

• We can easily compute the Viability Kernel for one cycle, which is a polygon

Viability Kernel for SPDIs

• We can easily compute the Viability Kernel for one cycle, which is a polygon

• **Theorem:** $Viab(K_{\sigma}) = \overline{Pre}_{\sigma}(Dom(Succ_{\sigma}))$

Algorithmic Analysis of Polygonal Hybrid Systems - p.55/66

 $\operatorname{Cntr}(K) = A$

• *M* is *controllable* if $\forall x, y \in M$, \exists a trajectory segment ξ starting in x that reaches an arbitrarily small neighborhood of y without leaving *M*

• Controllability kernel of K, denoted Cntr(K), is the largest controllable subset of K

Controllability Kernel for SPDIs

Controllability Kernel for SPDIs

Theorem: Cntr(K_σ) = (Succ_σ ∩ Pre_σ)(C_D(σ))
(We know how to compute the special interval
C_D(σ) = [l, u])

PAM simulate HPCD

HPCD simulate PAM

RA_{1cl1mc} equivalent to PAM

RA_{2cl} equivalent to PAM

RA_{1sk1sl} equivalent to PAM

Algorithmic Analysis of Polygonal Hybrid Systems - p.61/66

(b)

From RA_{1sk1sl} to LA_{st}

where $b_i = C_i + B_i a_i$ and $b_j = C_j + B_j a_j$

PCD_{2m} simulate PAM_{inj}

Algorithmic Analysis of Polygonal Hybrid Systems - p.63/60
$HPCD_{1c}$ simulate TM

 PCD_i

 $PCD'_i; PCD''_i$

$\mathrm{HPCD}_{\mathrm{1c}}$ simulate TM

TM-state q_i :

