
A Note on Scope and Infinite
Behaviour in CCS-like Calculi

GERARDO SCHNEIDER

UPPSALA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA, SWEDEN

Joint work with Pablo Giambiagi and Frank Valencia

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.1/32

Motivation: Scoping

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.2/32

Motivation: Scoping

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Question: Will action b ever be executed?

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.2/32

Motivation: Scoping

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Question: Will action b ever be executed?

Answer: It depends... (!?)

=⇒ Static vs Dynamic Scoping

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.2/32

Motivation: Infiniteness

Parametric vs. Constant definitions

1. CCS-like calculus, with A
def
= P

2. CCS-like calculus, with A(x1, . . . , xn)
def
= P

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.3/32

Motivation: Infiniteness

Parametric vs. Constant definitions

1. CCS-like calculus, with A
def
= P

2. CCS-like calculus, with A(x1, . . . , xn)
def
= P

Can we encode (2) into (1)?

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.3/32

Motivation: Infiniteness

Parametric vs. Constant definitions

1. CCS-like calculus, with A
def
= P

2. CCS-like calculus, with A(x1, . . . , xn)
def
= P

Can we encode (2) into (1)?
Do we need relabelling?

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.3/32

Motivation: Infiniteness

Parametric vs. Constant definitions

1. CCS-like calculus, with A
def
= P

2. CCS-like calculus, with A(x1, . . . , xn)
def
= P

Can we encode (2) into (1)?
Do we need relabelling?

What happens with other forms of
introducing infinite behaviour? For instance,
Replication

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.3/32

Motivation and Contributions

These are important issues when comparing
CCS variants

Static vs Dynamic Scoping?

Parametric vs. Constant definitions?

Recursion vs Replication

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.4/32

Motivation and Contributions

These are important issues when comparing
CCS variants

Static vs Dynamic Scoping?

Parametric vs. Constant definitions?

Recursion vs Replication

We will show that these issues affect

Expressiveness

Analysis of certain properties

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.4/32

Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.5/32

Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.5/32

The Finite Core: Syntax

Given:
A set of names, N (a, b, x, y . . .)

A set of co-names, N = {a | a ∈ N}

A set of actions, Act = N ∪ N ∪ {τ}
(α, β)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.6/32

The Finite Core: Syntax

Given:
A set of names, N (a, b, x, y . . .)

A set of co-names, N = {a | a ∈ N}

A set of actions, Act = N ∪ N ∪ {τ}
(α, β)

Processes specifying finite behaviour:

P ::=
∑

i∈I

αi.Pi | P\a | P ‖ P

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.6/32

The Finite Core: Semantics

SUM ∑
i∈I αi.Pi

αj
−→ Pj

if j ∈ I RES
P

α
−→ P ′

P\a
α

−→ P ′\a
if α 6∈ {a, a}

PAR1
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
PAR2

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′

COM
P

l
−→ P ′ Q

l
−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.7/32

Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.8/32

Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.9/32

Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Consider the following rule:

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(without name α-conversion)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.9/32

Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (a.b ‖ µX.P)\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.9/32

Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (a.b ‖ µX.P)\a
= a ‖ (a.b ‖ µX.(a ‖ (a.b ‖ X)\a))\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.9/32

Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (a.b ‖ µX.P)\a
= a ‖ (a.b ‖ µX.(a ‖ (a.b ‖ X)\a))\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.9/32

Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (a.b ‖ µX.P)\a
= a ‖ (a.b ‖ µX.(a ‖ (a.b ‖ X)\a))\a

Then b may be executed!

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.9/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Consider now the following rule:

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(applying name α-conversion when necessary)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (ā.b ‖ µX.P)\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (ā.b ‖ µX.P)\a

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (c̄.b ‖ µX.P)\c

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (c̄.b ‖ µX.P)\c
= a ‖ (c̄.b ‖ µX.(a ‖ (ā.b ‖ X)\a))\c

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (c̄.b ‖ µX.P)\c
= a ‖ (c̄.b ‖ µX.(a ‖ (ā.b ‖ X)\a))\c

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (c̄.b ‖ µX.P)\c
= a ‖ (c̄.b ‖ µX.(a ‖ (ā.b ‖ X)\a))\c

Then b will never be executed!

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Static vs Dynamic Scoping

Name α-conversion to avoid name capture
=⇒ static scoping

Otherwise, =⇒ dynamic scoping

Dynamic scoping: the occurrence of a name may
get dynamically (i.e. during execution) captured
under the scope of some restriction

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.11/32

Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.12/32

Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: Infinite behavior given by a finite set
of constant (i.e., parameterless) definitions

of the form A
def
= P . The calculus is

essentially CCS (Milner’s book’1989) without
relabelling nor infinite summations.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: Like CCSk but using parametric

definitions of the form A(x1, . . . , xn)
def
= P .

The calculus is the variant in Milner’s book
on the π-calculus

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: A(x1, . . . , xn)
def
= P

CCS!: Infinite behavior given by replication of
the form !P . This variant is presented, e.g. in
a paper by Busi, Gabbrielli and Zavattaro.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: A(x1, . . . , xn)
def
= P

CCS!: !P

CCSµ: Infinite behavior given by recursive
expressions of the form µX.P . However, we
adopt static scoping of channel names.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: A(x1, . . . , xn)
def
= P

CCS!: !P

CCSµ: µX.P

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Parametric Definitions: CCSp

Syntax:
P ::= . . . | A(y1, . . . , yn)

where A(x1, . . . , xn)
def
= PA, fn(PA) ⊆ {x1, . . . , xn}.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.14/32

Parametric Definitions: CCSp

Syntax:
P ::= . . . | A(y1, . . . , yn)

where A(x1, . . . , xn)
def
= PA, fn(PA) ⊆ {x1, . . . , xn}.

Semantics:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α
−→ P ′

A(y1, . . . , yn)
α

−→ P ′
if A(x1, . . . , xn)

def
= PA

(name α-conversion when necessary)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.14/32

Constant Definitions: CCSk

Syntax:
P ::= . . . | A

where A
def
= PA

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.15/32

Constant Definitions: CCSk

Syntax:
P ::= . . . | A

where A
def
= PA

Semantics:

CONS
PA

α
−→ P ′

A
α

−→ P ′
if A

def
= PA

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.15/32

Constant Definitions: CCSk

Syntax:
P ::= . . . | A

where A
def
= PA

Semantics (alternative):

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(without name α-conversion)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.15/32

Recursion Expressions: CCSµ

Syntax:
P ::= . . . | X | µX.P

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.16/32

Recursion Expressions: CCSµ

Syntax:
P ::= . . . | X | µX.P

Semantics:

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(name α-conversion when necessary)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.16/32

Replication: CCS!

Syntax:
P ::= . . . | !P

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.17/32

Replication: CCS!

Syntax:
P ::= . . . | !P

Semantics:

REP
P ‖ !P

α
−→ P ′

!P
α

−→ P ′

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.17/32

Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.18/32

Expressiveness and Classification Criteria

Bisimilarity →

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q

Divergence

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q

Divergence
P is divergent iff P (

τ
−→)ω, i.e., there exists

an infinite sequence P = P0

τ
−→ P1

τ
−→

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q

Divergence

We will study:

1. The relative expressiveness w.r.t. weak
bisimilarity

2. The decidability of divergence
A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings [[·]] : Procσ → Procσ′

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.20/32

Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings [[·]] : Procσ → Procσ′

Encoding CCSp into CCSk

Encoding CCSk into CCSp

Encoding CCSµ into CCS!

Encoding CCS! into CCSµ

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.20/32

Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings [[·]] : Procσ → Procσ′

Encoding CCSp into CCSk

Encoding CCSk into CCSp

Encoding CCSµ into CCS!

Encoding CCS! into CCSµ

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.20/32

Encoding CCSp into CCSk

[[·]] : Procp → Prock

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32

Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

Assume a definition of the form A(x)
def
= PA

Generate as many constants Ay as
occurrences of A(y) in PA

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32

Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

Assume a definition of the form A(x)
def
= PA

Generate as many constants Ay as
occurrences of A(y) in PA

Problem: Potentially infinitely many definitions!

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32

Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

Assume a definition of the form A(x)
def
= PA

Generate as many constants Ay as
occurrences of A(y) in PA

Problem: Potentially infinitely many definitions!

- Due to name α-conversion a possible infinite
number of fresh names can be generated

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z.z.0 ‖ z.0 ‖ Az)\z

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z.z.0 ‖ z.0 ‖ Az)\z

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z1.z.0 ‖ z.0 ‖ Az1

)\z1

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z1.z.0 ‖ z.0 ‖ Az1

)\z1

3. Az1

def
= (z.z1.0 ‖ z1.0 ‖ Az)\z

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z1.z.0 ‖ z.0 ‖ Az1

)\z1

3. Az1

def
= (z.z1.0 ‖ z1.0 ‖ Az)\z

Remark: The generation of fresh names could
continue forever!

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Encoding CCSp into CCSk

Theorem: For any P ∈ CCSp with a finite set of
definitions, one can effectively construct the
associated set of definitions of [[P]].

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.23/32

Encoding CCSp into CCSk

Theorem: For any P ∈ CCSp with a finite set of
definitions, one can effectively construct the
associated set of definitions of [[P]].

Theorem: Given a process P ∈ CCSp, P ∼ [[P]].

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.23/32

Encoding CCSp into CCSk

Theorem: For any P ∈ CCSp with a finite set of
definitions, one can effectively construct the
associated set of definitions of [[P]].

Theorem: Given a process P ∈ CCSp, P ∼ [[P]].

Corollary: Injective relabellings are redundant in
CCS.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.23/32

Encoding CCSµ into CCS!

[[·]] : Procµ → Proc !

Idea:

[[Xi]] = xi.0

[[µXi.P]] = (!xi.[[P]] ‖ xi.0)\xi

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.24/32

Encoding CCSµ into CCS!: Example

Let be the following CCSµ process:

P = µX.(a.X)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.25/32

Encoding CCSµ into CCS!: Example

Let be the following CCSµ process:

P = µX.(a.X)

Then the corresponding encoding is:

[[P]] = (!x.a.x̄ ‖ x̄)\x

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.25/32

Encoding CCSµ into CCS!: Example

Let be the following CCSµ process:

P = µX.(a.X)

Then the corresponding encoding is:

[[P]] = (!x.a.x̄ ‖ x̄)\x

They are clearly not strongly bisimilar:

µX.a.X
a
→µ µX.a.X

a
→µ µX.a.X . . .

(!x.a.x̄ ‖ x̄)\x
τ
→! (!x.a.x̄ ‖ a.x̄)\x

a
→! (!x.a.x̄ ‖ x̄)\x . . .

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.25/32

Encoding CCSµ into CCS!

Theorem: For P ∈ Procµ, P ≈ [[P]]. Moreover, P
diverges iff [[P]] diverges.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.26/32

Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.27/32

Conclusions

CCSp ∼ CCSk CCSµ ≈ CCS!

Divergence: Undecidable Divergence: Decidable

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.28/32

Conclusions

CCSp ∼ CCSk CCSµ ≈ CCS!

Divergence: Undecidable Divergence: Decidable

Injective relabellings are redundant in CCS

Interpretation of Rule REC leads to
important differences

CCS exhibits dynamic name scope and it
does not preserve α-conversion

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.28/32

Related Work

The CCS variant in Milner’s book π-calculus
uses parametric definitions with static scope

Edinburgh Concurrency Workbench tool
(CWB) uses dynamic scoping for parametric
definitions

ECCS advocates the static scoping of names

CHOCS uses dynamic name scoping in the
context of higher-order CCS

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.29/32

Auxiliary Slides

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.30/32

Bisimilarity

A relation S ⊆ Proc × Proc is a (strong)
simulation if for all (P,Q) ∈ S:

P
α

−→ P ′

S

Q

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.31/32

Bisimilarity

A relation S ⊆ Proc × Proc is a (strong)
simulation if for all (P,Q) ∈ S:

P
α

−→ P ′

S S

Q
α

−→ Q′

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.31/32

Bisimilarity

A relation S ⊆ Proc × Proc is a (strong)
simulation if for all (P,Q) ∈ S:

P
α

−→ P ′

S S

Q
α

−→ Q′

S is a (strong) bisimulation if both S and its
converse are (strong) simulations: P ∼ Q.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.31/32

Bisimilarity

A relation S ⊆ Proc × Proc is a weak simulation if
for all (P,Q) ∈ S:

P
s

=⇒ P ′

S S

Q
s

=⇒ Q′

S is a weak bisimulation if both S and its
converse are weak simulations: P ≈Q.
- “ s

=⇒” (where s = α1.α2. . . .) is (
τ
−→)∗

α1
−→ (

τ
−→)∗ . . . (

τ
−→)∗

αn

−→ (
τ
−→)∗

←

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.31/32

Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

For each P ∈ CCSp, let P̂ ∈ CCSk replacing
in P each occurrence of B(y) with By

For each definition A(x)
def
= PA, generate a

constant definition Ax
def
= P̂A

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.32/32

	Motivation: Scoping
	Motivation: Infiniteness
	Motivation and Contributions
	Overview of the presentation
	The Finite Core: Syntax
	The Finite Core: Semantics
	Overview of the presentation
	Scoping: Example
	Scoping: Example 2
	Static vs Dynamic Scoping
	Overview of the presentation
	Infinite Behaviour
	Parametric Definitions: $ccsp $
	Constant Definitions: $ccsd $
	Recursion Expressions: $ccss $
	Replication: $ccsr $
	Overview of the presentation
	{large Expressiveness and Classification Criteria}
	Expressiveness Results
	Encoding $ccsp $ into $ccsd $
	Encoding $ccsp $ into $ccsd $: {large Example}
	Encoding $ccsp $ into $ccsd $
	Encoding $ccss $ into $ccsr $
	Encoding $ccss $ into $ccsr $: {large Example}
	Encoding $ccss $ into $ccsr $
	Overview of the presentation
	Conclusions
	Related Work
		extcolor {RoyalBlue}{Auxiliary Slides}
	Bisimilarity
	Encoding $ccsp $ into $ccsd $

