

A Note on Scope and Infinite Behaviour in CCS-like Calculi

GERARDO SCHNEIDER

UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN

Joint work with Pablo Giambiagi and Frank Valencia

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Question: Will action b ever be executed?

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

- Question: Will action b ever be executed?
- Answer: It depends... (!?)
- ⇒ Static vs Dynamic Scoping

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.2/32

Parametric vs. Constant definitions

- **1.** CCS-like calculus, with $A \stackrel{\text{def}}{=} P$
- **2.** CCS-like calculus, with $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P$

- Parametric vs. Constant definitions
 - **1.** CCS-like calculus, with $A \stackrel{\text{def}}{=} P$
 - **2.** CCS-like calculus, with $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P$
 - Can we encode (2) into (1)?

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.3/32

Parametric vs. Constant definitions

- **1.** CCS-like calculus, with $A \stackrel{\text{def}}{=} P$
- **2.** CCS-like calculus, with $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P$
- Can we encode (2) into (1)?
- Do we need relabelling?

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.3/32

Parametric vs. Constant definitions

- **1.** CCS-like calculus, with $A \stackrel{\text{def}}{=} P$
- **2.** CCS-like calculus, with $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P$
- Can we encode (2) into (1)?
- Do we need relabelling?
- What happens with other forms of introducing infinite behaviour? For instance, Replication

Motivation and Contributions

These are important issues when comparing CCS variants

- Static vs Dynamic Scoping?
- Parametric vs. Constant definitions?
- Recursion vs Replication

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.4/32

Motivation and Contributions

These are important issues when comparing CCS variants

- Static vs Dynamic Scoping?
- Parametric vs. Constant definitions?
- Recursion vs Replication
- We will show that these issues affect
 - Expressiveness
 - Analysis of certain properties

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.4/32

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi -p.5/32

Overview of the presentation

• The finite core

- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi -p.5/32

The Finite Core: Syntax

• Given:

- A set of *names*, \mathcal{N} ($a, b, x, y \dots$)
- A set of *co-names*, $\overline{\mathcal{N}} = \{\overline{a} \mid a \in \mathcal{N}\}$
- A set of actions, $Act = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\}$ (α, β)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.6/32

The Finite Core: Syntax

• Given:

- A set of *names*, \mathcal{N} ($a, b, x, y \dots$)
- A set of *co-names*, $\overline{\mathcal{N}} = \{\overline{a} \mid a \in \mathcal{N}\}$
- A set of actions, $Act = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\}$ (α, β)
- Processes specifying finite behaviour:

$$P ::= \sum_{i \in I} \alpha_i . P_i \mid P \setminus a \mid P \parallel P$$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.6/32

The Finite Core: Semantics

$$\mathsf{SUM} \xrightarrow{P_{i \in I} \alpha_{i} \cdot P_{i} \xrightarrow{\alpha_{j}} P_{j}} \text{ if } j \in I \quad \mathsf{RES} \quad \frac{P \xrightarrow{\alpha} P'}{P \setminus a \xrightarrow{\alpha} P' \setminus a} \text{ if } \alpha \notin \{a, \overline{a}\}$$

$$\mathsf{PAR}_1 \xrightarrow{P \xrightarrow{\alpha} P'} P \parallel Q \xrightarrow{\alpha} P' \parallel Q$$

$$\mathsf{PAR}_2 \xrightarrow{Q \xrightarrow{\alpha} Q'} P \parallel Q \xrightarrow{\alpha} P \parallel Q'$$

$$\operatorname{COM} \frac{P \stackrel{l}{\longrightarrow} P' \quad Q \stackrel{\overline{l}}{\longrightarrow} Q'}{P \parallel Q \stackrel{\tau}{\longrightarrow} P' \parallel Q'}$$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.7/32

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi -p.8/32

• Consider $\mu X.P$ with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Scoping: Example

• Consider
$$\mu X.P$$
 with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Consider the following rule:

$$\mathsf{REC} \xrightarrow{P[\mu X.P/X] \xrightarrow{\alpha} P'}{\mu X.P \xrightarrow{\alpha} P'}$$

(without name α -conversion)

Scoping: Example

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then, $P[\mu X.P/X]$ = $a \parallel (\overline{a}.b \parallel \mu X.P) \setminus a$

Scoping: Example

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then, $P[\mu X.P/X]$ = $a \parallel (\overline{a}.b \parallel \mu X.P) \setminus a$ = $a \parallel (\overline{a}.b \parallel \mu X.(a \parallel (\overline{a}.b \parallel X) \setminus a)) \setminus a$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.9/32

Scoping: Example

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then, $P[\mu X.P/X]$ = $a \parallel (\overline{a}.b \parallel \mu X.P) \setminus a$ = $a \parallel (\overline{a}.b \parallel \mu X.(\underline{a} \parallel (\overline{a}.b \parallel X) \setminus a)) \setminus a$

Scoping: Example

• Consider
$$\mu X.P$$
 with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then,
$$P[\mu X.P/X]$$

= $a \parallel (\overline{a}.b \parallel \mu X.P) \setminus a$
= $a \parallel (\overline{a}.b \parallel \mu X.(a \parallel (\overline{a}.b \parallel X) \setminus a)) \setminus a$

Then *b* may be executed!

• Consider again $\mu X.P$ with

 $P = a \parallel (\overline{a}.b \parallel X) \backslash a$

Scoping: Example 2

• Consider again $\mu X.P$ with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Consider now the following rule:

$$\mathsf{REC} \; \frac{P[\mu X.P/X] \stackrel{\alpha}{\longrightarrow} P'}{\mu X.P \stackrel{\alpha}{\longrightarrow} P'}$$

(applying name α -conversion when necessary)

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

• Consider again $\mu X.P$ with $P = a \parallel (\overline{a}.b \parallel X) \setminus a$

Then, $P[\mu X.P/X]$ = $a \parallel (\bar{a}.b \parallel \mu X.P) \setminus a$

• Consider again $\mu X.P$ with $P = a \parallel (\overline{a}.b \parallel X) \setminus a$

Then, $P[\mu X.P/X]$ = $a \parallel (\bar{a}.b \parallel \mu X.P) \setminus a$

• Consider again $\mu X.P$ with $P = a \parallel (\overline{a}.b \parallel X) \setminus a$

Then, $P[\mu X.P/X]$ = $a \parallel (\bar{c}.b \parallel \mu X.P) \backslash c$

• Consider again $\mu X.P$ with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then, $P[\mu X.P/X]$ = $a \parallel (\bar{c}.b \parallel \mu X.P) \setminus c$ = $a \parallel (\bar{c}.b \parallel \mu X.(a \parallel (\bar{a}.b \parallel X) \setminus a)) \setminus c$

• Consider again $\mu X.P$ with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then, $P[\mu X.P/X]$ = $a \parallel (\bar{c}.b \parallel \mu X.P) \setminus c$ = $a \parallel (\bar{c}.b \parallel \mu X.(a \parallel (\bar{a}.b \parallel X) \setminus a)) \setminus c$

• Consider again $\mu X.P$ with

$$P = a \parallel (\overline{a}.b \parallel X) \backslash a$$

Then,
$$P[\mu X.P/X]$$

= $a \parallel (\bar{c}.b \parallel \mu X.P) \setminus c$
= $a \parallel (\bar{c}.b \parallel \mu X.(a \parallel (\bar{a}.b \parallel X) \setminus a)) \setminus c$

Then *b* will never be executed!

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.10/32

Static vs Dynamic Scoping

- Name α -conversion to avoid name capture \implies static scoping
- Otherwise, \implies dynamic scoping

Dynamic scoping: the occurrence of a name may get *dynamically* (i.e. during execution) captured under the scope of some restriction

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.11/32

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.12/32

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

There are at least four manners of introducing infinite behaviour

• CCS_k: Infinite behavior given by a *finite* set of *constant* (i.e., parameterless) definitions of the form $A \stackrel{\text{def}}{=} P$. The calculus is essentially CCS (Milner's book'1989) without relabelling nor infinite summations.

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.13/32

There are at least four manners of introducing infinite behaviour

•
$$\mathsf{CCS}_k$$
: $A \stackrel{\text{def}}{=} P$

• CCS_p: Like CCS_k but using *parametric definitions* of the form $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P$. The calculus is the variant in Milner's book on the π -calculus

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

There are at least four manners of introducing infinite behaviour

- CCS_k : $A \stackrel{\text{def}}{=} P$
- $\mathsf{CCS}_{\mathsf{p}}: A(x_1, \ldots, x_n) \stackrel{\mathrm{def}}{=} P$
- CCS₁: Infinite behavior given by *replication* of the form !*P*. This variant is presented, e.g. in a paper by Busi, Gabbrielli and Zavattaro.

There are at least four manners of introducing infinite behaviour

- CCS_k : $A \stackrel{\text{def}}{=} P$
- CCS_p: $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P$
- CCS_{μ}: Infinite behavior given by *recursive expressions* of the form $\mu X.P$. However, we adopt *static scoping* of channel names.

There are at least four manners of introducing infinite behaviour

•
$$CCS_k$$
: $A \stackrel{\text{def}}{=} P$

•
$$\mathsf{CCS}_{\mathsf{p}}: A(x_1, \ldots, x_n) \stackrel{\mathrm{def}}{=} P$$

- CCS_!: !P
- CCS_{μ} : $\mu X.P$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.13/32

Parametric Definitions: CCS_p

Syntax:

$$P ::= \ldots \mid A(y_1, \ldots, y_n)$$

where $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P_A$, $fn(P_A) \subseteq \{x_1, \ldots, x_n\}$.

Parametric Definitions: CCS_p

Syntax:

$$P ::= \ldots \mid A(y_1, \ldots, y_n)$$

where $A(x_1, \ldots, x_n) \stackrel{\text{def}}{=} P_A$, $fn(P_A) \subseteq \{x_1, \ldots, x_n\}$.

Semantics:

$$\mathsf{CALL} \frac{P_A[y_1, \dots, y_n/x_1, \dots, x_n] \xrightarrow{\alpha} P'}{A(y_1, \dots, y_n) \xrightarrow{\alpha} P'} \text{ if } A(x_1, \dots, x_n) \stackrel{\text{def}}{=} P_A$$

(name α -conversion when necessary)

Constant Definitions: CCS_k

Syntax:

$$P ::= \dots \mid A$$

where $A \stackrel{\text{def}}{=} P_A$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.15/32

Constant Definitions: CCS_k

Syntax:

$$P ::= \dots \mid A$$

where $A \stackrel{\text{def}}{=} P_A$

Semantics:

$$\operatorname{CONS} \frac{P_A \xrightarrow{\alpha} P'}{A \xrightarrow{\alpha} P'} \text{ if } A \stackrel{\operatorname{def}}{=} P_A$$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.15/32

Constant Definitions: CCS_k

Syntax:

$$P ::= \dots \mid A$$

where $A \stackrel{\text{def}}{=} P_A$

Semantics (alternative):

$$\operatorname{REC} \frac{P[\mu X.P/X] \xrightarrow{\alpha} P'}{\mu X.P \xrightarrow{\alpha} P'}$$

(without name α -conversion)

A Note on Scope and Infinite Behaviour in CCS-like Calculi -p.15/32

Recursion Expressions: CCS_{μ}

Syntax:

 $P ::= \dots \mid X \mid \mu X.P$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.16/32

Recursion Expressions: CCS_{μ}

Syntax:

$$P ::= \dots \mid X \mid \mu X.P$$

Semantics:

$$\mathsf{REC} \; \frac{P[\mu X.P/X] \stackrel{\alpha}{\longrightarrow} P'}{\mu X.P \stackrel{\alpha}{\longrightarrow} P'}$$

(name α -conversion when necessary)

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.16/32

Replication: CCS

Syntax:

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.17/32

Replication: CCS

Syntax:

$$P ::= \dots \mid !P$$

Semantics:

$$\mathsf{REP} \xrightarrow{P} \| \stackrel{!P \xrightarrow{\alpha} P'}{!P \xrightarrow{\alpha} P'}$$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.17/32

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.18/32

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.19/32

Bisimilarity

• CCS_{σ} is as expressive as $CCS_{\sigma'}$ iff for every $P \in Proc_{\sigma}$, there exists $Q \in Proc_{\sigma'}$ such that $P \approx Q$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Bisimilarity

- CCS_{σ} is as expressive as $CCS_{\sigma'}$ iff for every $P \in Proc_{\sigma}$, there exists $Q \in Proc_{\sigma'}$ such that $P \approx Q$
- Divergence

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.19/32

Bisimilarity

- CCS_{σ} is as expressive as $CCS_{\sigma'}$ iff for every $P \in Proc_{\sigma}$, there exists $Q \in Proc_{\sigma'}$ such that $P \approx Q$
- Divergence

P is *divergent* iff $P(\stackrel{\tau}{\longrightarrow})^{\omega}$, i.e., there exists an infinite sequence $P = P_0 \stackrel{\tau}{\longrightarrow} P_1 \stackrel{\tau}{\longrightarrow} \dots$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.19/32

Bisimilarity

- CCS_{σ} is as expressive as $CCS_{\sigma'}$ iff for every $P \in Proc_{\sigma}$, there exists $Q \in Proc_{\sigma'}$ such that $P \approx Q$
- Divergence

We will study:

- 1. The relative expressiveness w.r.t. weak bisimilarity
- 2. The decidability of divergence

Expressiveness Results

Encodings: (weak) bisimulation preserving mappings $\llbracket \cdot \rrbracket$: $Proc_{\sigma} \rightarrow Proc_{\sigma'}$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.20/32

Expressiveness Results

Encodings: (weak) bisimulation preserving mappings $\llbracket \cdot \rrbracket$: $Proc_{\sigma} \rightarrow Proc_{\sigma'}$

- Encoding CCS_p into CCS_k
- \blacksquare Encoding CCS $_{\rm k}$ into CCS $_{\rm p}$
- Encoding CCS_{μ} into $CCS_{!}$
- Encoding CCS_1 into CCS_μ

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.20/32

Expressiveness Results

Encodings: (weak) bisimulation preserving mappings $\llbracket \cdot \rrbracket$: $Proc_{\sigma} \rightarrow Proc_{\sigma'}$

- Encoding CCS_p into CCS_k
- \blacksquare Encoding CCS $_{\rm k}$ into CCS $_{\rm p}$
- Encoding CCS_{μ} into $CCS_{!}$
- Encoding CCS_1 into CCS_μ

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.20/32

 $\llbracket \cdot \rrbracket : Proc_p \to Proc_k$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32

$$\llbracket \cdot \rrbracket : Proc_p \to Proc_k$$

Idea:

- Assume a definition of the form $A(x) \stackrel{\text{def}}{=} P_A$
- Generate as many constants A_y as occurrences of A(y) in P_A

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32

$$\llbracket \cdot \rrbracket : Proc_p \to Proc_k$$

Idea:

- Assume a definition of the form $A(x) \stackrel{\text{def}}{=} P_A$
- Generate as many constants A_y as occurrences of A(y) in P_A
- **Problem:** Potentially infinitely many definitions!

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.21/32

$$\llbracket \cdot \rrbracket : Proc_p \to Proc_k$$

Idea:

- Assume a definition of the form $A(x) \stackrel{\text{def}}{=} P_A$
- Generate as many constants A_y as occurrences of A(y) in P_A

Problem: Potentially infinitely many definitions!

- Due to name α -conversion a possible infinite number of fresh names can be generated

Let $A(x) \stackrel{\text{def}}{=} (z.x.\mathbf{0} \parallel \overline{x}.\mathbf{0} \parallel A(z)) \backslash z$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.22/32

Let
$$A(x) \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A(z)) \backslash z$$

1.
$$A_x \stackrel{\text{def}}{=} (z.x.\mathbf{0} \parallel \overline{x}.\mathbf{0} \parallel A_z) \backslash z$$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Let
$$A(x) \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A(z)) \backslash z$$

1.
$$A_x \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A_z) \backslash z$$

2. $A_z \stackrel{\text{def}}{=} (z.z.0 \parallel \overline{z}.0 \parallel A_z) \backslash z$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.22/32

Let
$$A(x) \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A(z)) \backslash z$$

1.
$$A_x \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A_z) \backslash z$$

2. $A_z \stackrel{\text{def}}{=} (z.z.0 \parallel \overline{z}.0 \parallel A_z) \backslash z$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.22/32

Let
$$A(x) \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A(z)) \backslash z$$

1.
$$A_x \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A_z) \backslash z$$

2. $A_z \stackrel{\text{def}}{=} (z_1.z.0 \parallel \overline{z}.0 \parallel A_{z_1}) \backslash z_1$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Let
$$A(x) \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A(z)) \backslash z$$

1.
$$A_x \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A_z) \backslash z$$

2. $A_z \stackrel{\text{def}}{=} (z_1.z.0 \parallel \overline{z}.0 \parallel A_{z_1}) \backslash z_1$

3. $A_{z_1} \stackrel{\text{def}}{=} (z.z_1.0 \parallel \overline{z_1}.0 \parallel A_z) \backslash z$

A Note on Scope and Infinite Behaviour in CCS-like Calculi -p.22/32

Let
$$A(x) \stackrel{\text{def}}{=} (z.x.0 \parallel \overline{x}.0 \parallel A(z)) \backslash z$$

1.
$$A_x \stackrel{\text{def}}{=} (z.x.\mathbf{0} \parallel \overline{x}.\mathbf{0} \parallel A_z) \backslash z$$

2.
$$A_z \stackrel{\text{def}}{=} (z_1.z.0 \parallel \overline{z}.0 \parallel A_{z_1}) \backslash z_1$$

3.
$$A_{z_1} \stackrel{\text{def}}{=} (z.z_1.0 \parallel \overline{z_1}.0 \parallel A_z) \backslash z$$

Remark: The generation of fresh names could continue forever!

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.22/32

Theorem: For any $P \in CCS_p$ with a finite set of definitions, one can effectively construct the associated set of definitions of $\llbracket P \rrbracket$.

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.23/32

Theorem: For any $P \in CCS_p$ with a finite set of definitions, one can effectively construct the associated set of definitions of $\llbracket P \rrbracket$.

Theorem: Given a process $P \in CCS_p$, $P \sim \llbracket P \rrbracket$.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.23/32

Theorem: For any $P \in CCS_p$ with a finite set of definitions, one can effectively construct the associated set of definitions of $\llbracket P \rrbracket$.

Theorem: Given a process $P \in CCS_p$, $P \sim \llbracket P \rrbracket$.

Corollary: Injective relabellings are redundant in CCS.

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.23/32

$$\llbracket \cdot \rrbracket : Proc_{\mu} \to Proc_!$$

Idea:

$\begin{bmatrix} X_i \end{bmatrix} = \overline{x_i} \cdot \mathbf{0}$ $\begin{bmatrix} \mu X_i \cdot P \end{bmatrix} = (!x_i \cdot \llbracket P \rrbracket \parallel \overline{x_i} \cdot \mathbf{0}) \setminus x_i$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.24/32

Encoding CCS_{μ} into CCS_!: Example</sub>

Let be the following CCS_{μ} process:

 $P = \mu X.(a.X)$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.25/32

Encoding CCS_{μ} into CCS_!: Example</sub>

Let be the following CCS_{μ} process:

$$P = \mu X.(a.X)$$

Then the corresponding encoding is:

$$\llbracket P \rrbracket = (!x.a.\bar{x} \parallel \bar{x}) \backslash x$$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.25/32

Encoding CCS_{μ} into CCS_!: Example</sub>

Let be the following CCS_{μ} process:

$$P = \mu X.(a.X)$$

Then the corresponding encoding is:

$$\llbracket P \rrbracket = (!x.a.\bar{x} \parallel \bar{x}) \backslash x$$

They are clearly not strongly bisimilar:

$$\mu X.a.X \xrightarrow{a}_{\mu} \mu X.a.X \xrightarrow{a}_{\mu} \mu X.a.X \dots$$

 $(!x.a.\bar{x} \parallel \bar{x}) \setminus x \xrightarrow{\tau} (!x.a.\bar{x} \parallel a.\bar{x}) \setminus x \xrightarrow{a} (!x.a.\bar{x} \parallel \bar{x}) \setminus x...$

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.25/32

UPPSALA UNIVERSITET

Encoding CCS_{μ} into CCS_!

Theorem: For $P \in Proc_{\mu}$, $P \approx \llbracket P \rrbracket$. Moreover, P diverges iff $\llbracket P \rrbracket$ diverges.

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.26/32

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.27/32

Conclusions

$\label{eq:ccsp} CCS_{\rm p} \sim CCS_{\rm k}$ Divergence: Undecidable

 $\label{eq:ccs} \textbf{CCS}_{\mu} \approx \textbf{CCS}_{!}$ Divergence: Decidable

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.28/32

Conclusions

- Injective relabellings are redundant in CCS
- Interpretation of Rule REC leads to important differences
- CCS exhibits dynamic name scope and it does not preserve α -conversion

- The CCS variant in Milner's book π -calculus uses parametric definitions with static scope
- Edinburgh Concurrency Workbench tool (CWB) uses dynamic scoping for parametric definitions
- ECCS advocates the static scoping of names
- CHOCS uses dynamic name scoping in the context of higher-order CCS

Auxiliary Slides

A Note on Scope and Infinite Behaviour in CCS-like Calculi - p.30/32

A relation $S \subseteq Proc \times Proc$ is a (strong) simulation if for all $(P, Q) \in S$:

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.31/32

A relation $S \subseteq Proc \times Proc$ is a (strong) simulation if for all $(P, Q) \in S$:

P	$\xrightarrow{\alpha}$	P'
S		${\mathcal S}$
Q	$\xrightarrow{\alpha}$	Q'

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.31/32

A relation $S \subseteq Proc \times Proc$ is a (strong) simulation if for all $(P, Q) \in S$:

S is a *(strong) bisimulation* if both S and its converse are (strong) simulations: $P \sim Q$.

A relation $S \subseteq Proc \times Proc$ is a weak simulation if for all $(P, Q) \in S$:

S is a *weak bisimulation* if both S and its converse are weak simulations: $P \approx Q$.

 $\overset{\text{``}}{\Longrightarrow} \overset{\text{``}}{\Longrightarrow} \text{``where } s = \alpha_1.\alpha_2....) \text{ is } (\overset{\tau}{\longrightarrow})^* \overset{\alpha_1}{\longrightarrow} (\overset{\tau}{\longrightarrow})^* \ldots (\overset{\tau}{\longrightarrow})^* \overset{\alpha_n}{\longrightarrow} (\overset{\tau}{\longrightarrow})^*$

Encoding CCS_p into CCS_k

$$\llbracket \cdot \rrbracket : Proc_p \to Proc_k$$

Idea:

- For each $P \in CCS_p$, let $\widehat{P} \in CCS_k$ replacing in P each occurrence of B(y) with B_y
- For each definition $A(x) \stackrel{\text{def}}{=} P_A$, generate a constant definition $A_x \stackrel{\text{def}}{=} \widehat{P_A}$

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.32/32