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Motivation: Scoping

Consider µX.P with

P = a ‖ (a.b ‖ X)\a
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Motivation: Scoping

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Question: Will action b ever be executed?

Answer: It depends... (!?)

=⇒ Static vs Dynamic Scoping
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Motivation: Infiniteness

Parametric vs. Constant definitions

1. CCS-like calculus, with A
def
= P

2. CCS-like calculus, with A(x1, . . . , xn)
def
= P
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Motivation: Infiniteness

Parametric vs. Constant definitions

1. CCS-like calculus, with A
def
= P

2. CCS-like calculus, with A(x1, . . . , xn)
def
= P

Can we encode (2) into (1)?
Do we need relabelling?

What happens with other forms of
introducing infinite behaviour? For instance,
Replication
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Motivation and Contributions

These are important issues when comparing
CCS variants

Static vs Dynamic Scoping?

Parametric vs. Constant definitions?

Recursion vs Replication
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Motivation and Contributions

These are important issues when comparing
CCS variants

Static vs Dynamic Scoping?

Parametric vs. Constant definitions?

Recursion vs Replication

We will show that these issues affect

Expressiveness

Analysis of certain properties
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Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks
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The Finite Core: Syntax

Given:
A set of names, N (a, b, x, y . . .)

A set of co-names, N = {a | a ∈ N}

A set of actions, Act = N ∪ N ∪ {τ}
(α, β)
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The Finite Core: Syntax

Given:
A set of names, N (a, b, x, y . . .)

A set of co-names, N = {a | a ∈ N}

A set of actions, Act = N ∪ N ∪ {τ}
(α, β)

Processes specifying finite behaviour:

P ::=
∑

i∈I

αi.Pi | P\a | P ‖ P
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The Finite Core: Semantics

SUM ∑
i∈I αi.Pi

αj
−→ Pj

if j ∈ I RES
P

α
−→ P ′

P\a
α

−→ P ′\a
if α 6∈ {a, a}

PAR1
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
PAR2

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′

COM
P

l
−→ P ′ Q

l
−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′
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Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a
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Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Consider the following rule:

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(without name α-conversion)
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Scoping: Example

Consider µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (a.b ‖ µX.P )\a
= a ‖ (a.b ‖ µX.(a ‖ (a.b ‖ X)\a))\a

Then b may be executed!
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Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a
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Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Consider now the following rule:

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(applying name α-conversion when necessary)
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Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a
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Scoping: Example 2

Consider again µX.P with

P = a ‖ (a.b ‖ X)\a

Then, P [µX.P/X]
= a ‖ (c̄.b ‖ µX.P )\c
= a ‖ (c̄.b ‖ µX.(a ‖ (ā.b ‖ X)\a))\c

Then b will never be executed!
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Static vs Dynamic Scoping

Name α-conversion to avoid name capture
=⇒ static scoping

Otherwise, =⇒ dynamic scoping

Dynamic scoping: the occurrence of a name may
get dynamically (i.e. during execution) captured
under the scope of some restriction
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Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks
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Infinite Behaviour

There are at least four manners of introducing
infinite behaviour
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Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: Infinite behavior given by a finite set
of constant (i.e., parameterless) definitions

of the form A
def
= P . The calculus is

essentially CCS (Milner’s book’1989) without
relabelling nor infinite summations.
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Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: Like CCSk but using parametric

definitions of the form A(x1, . . . , xn)
def
= P .

The calculus is the variant in Milner’s book
on the π-calculus
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Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: A(x1, . . . , xn)
def
= P

CCS!: Infinite behavior given by replication of
the form !P . This variant is presented, e.g. in
a paper by Busi, Gabbrielli and Zavattaro.
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Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: A(x1, . . . , xn)
def
= P

CCS!: !P

CCSµ: Infinite behavior given by recursive
expressions of the form µX.P . However, we
adopt static scoping of channel names.
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Infinite Behaviour

There are at least four manners of introducing
infinite behaviour

CCSk: A
def
= P

CCSp: A(x1, . . . , xn)
def
= P

CCS!: !P

CCSµ: µX.P
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Parametric Definitions: CCSp

Syntax:
P ::= . . . | A(y1, . . . , yn)

where A(x1, . . . , xn)
def
= PA, fn(PA) ⊆ {x1, . . . , xn}.
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Parametric Definitions: CCSp

Syntax:
P ::= . . . | A(y1, . . . , yn)

where A(x1, . . . , xn)
def
= PA, fn(PA) ⊆ {x1, . . . , xn}.

Semantics:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α
−→ P ′

A(y1, . . . , yn)
α

−→ P ′
if A(x1, . . . , xn)

def
= PA

(name α-conversion when necessary)
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Constant Definitions: CCSk

Syntax:
P ::= . . . | A

where A
def
= PA
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Constant Definitions: CCSk

Syntax:
P ::= . . . | A

where A
def
= PA

Semantics:

CONS
PA

α
−→ P ′

A
α

−→ P ′
if A

def
= PA
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Constant Definitions: CCSk

Syntax:
P ::= . . . | A

where A
def
= PA

Semantics (alternative):

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(without name α-conversion)
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Recursion Expressions: CCSµ

Syntax:
P ::= . . . | X | µX.P
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Recursion Expressions: CCSµ

Syntax:
P ::= . . . | X | µX.P

Semantics:

REC
P [µX.P/X]

α
−→ P ′

µX.P
α

−→ P ′

(name α-conversion when necessary)
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Replication: CCS!

Syntax:
P ::= . . . | !P
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Replication: CCS!

Syntax:
P ::= . . . | !P

Semantics:

REP
P ‖ !P

α
−→ P ′

!P
α

−→ P ′
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Overview of the presentation

The finite core

Static vs Dynamic scoping

Infinite behaviour

Expressiveness

Concluding Remarks
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Expressiveness and Classification Criteria

Bisimilarity →
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Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q
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Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q

Divergence
P is divergent iff P (

τ
−→)ω, i.e., there exists

an infinite sequence P = P0

τ
−→ P1

τ
−→ . . ..
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Expressiveness and Classification Criteria

Bisimilarity

CCSσ is as expressive as CCSσ′ iff for every
P ∈ Procσ, there exists Q ∈ Procσ′ such that
P ≈ Q

Divergence

We will study:

1. The relative expressiveness w.r.t. weak
bisimilarity

2. The decidability of divergence
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Expressiveness Results

Encodings: (weak) bisimulation preserving
mappings [[·]] : Procσ → Procσ′
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Encoding CCSp into CCSk

[[·]] : Procp → Prock
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Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

Assume a definition of the form A(x)
def
= PA

Generate as many constants Ay as
occurrences of A(y) in PA
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Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

Assume a definition of the form A(x)
def
= PA

Generate as many constants Ay as
occurrences of A(y) in PA

Problem: Potentially infinitely many definitions!
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Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

Assume a definition of the form A(x)
def
= PA

Generate as many constants Ay as
occurrences of A(y) in PA

Problem: Potentially infinitely many definitions!

- Due to name α-conversion a possible infinite
number of fresh names can be generated

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.21/32



Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z
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Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z1.z.0 ‖ z.0 ‖ Az1

)\z1
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Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z1.z.0 ‖ z.0 ‖ Az1

)\z1

3. Az1

def
= (z.z1.0 ‖ z1.0 ‖ Az)\z
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Encoding CCSp into CCSk: Example

Let A(x)
def
= (z.x.0 ‖ x.0 ‖ A(z))\z

1. Ax
def
= (z.x.0 ‖ x.0 ‖ Az)\z

2. Az
def
= (z1.z.0 ‖ z.0 ‖ Az1

)\z1

3. Az1

def
= (z.z1.0 ‖ z1.0 ‖ Az)\z

Remark: The generation of fresh names could
continue forever!
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Encoding CCSp into CCSk

Theorem: For any P ∈ CCSp with a finite set of
definitions, one can effectively construct the
associated set of definitions of [[P ]].
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Encoding CCSp into CCSk

Theorem: For any P ∈ CCSp with a finite set of
definitions, one can effectively construct the
associated set of definitions of [[P ]].

Theorem: Given a process P ∈ CCSp, P ∼ [[P ]].
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Encoding CCSp into CCSk

Theorem: For any P ∈ CCSp with a finite set of
definitions, one can effectively construct the
associated set of definitions of [[P ]].

Theorem: Given a process P ∈ CCSp, P ∼ [[P ]].

Corollary: Injective relabellings are redundant in
CCS.
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Encoding CCSµ into CCS!

[[·]] : Procµ → Proc !

Idea:

[[Xi]] = xi.0

[[µXi.P ]] = (!xi.[[P ]] ‖ xi.0)\xi
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Encoding CCSµ into CCS!: Example

Let be the following CCSµ process:

P = µX.(a.X)
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Encoding CCSµ into CCS!: Example

Let be the following CCSµ process:

P = µX.(a.X)

Then the corresponding encoding is:

[[P ]] = (!x.a.x̄ ‖ x̄)\x
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Encoding CCSµ into CCS!: Example

Let be the following CCSµ process:

P = µX.(a.X)

Then the corresponding encoding is:

[[P ]] = (!x.a.x̄ ‖ x̄)\x

They are clearly not strongly bisimilar:

µX.a.X
a
→µ µX.a.X

a
→µ µX.a.X . . .

(!x.a.x̄ ‖ x̄)\x
τ
→! (!x.a.x̄ ‖ a.x̄)\x

a
→! (!x.a.x̄ ‖ x̄)\x . . .
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Encoding CCSµ into CCS!

Theorem: For P ∈ Procµ, P ≈ [[P ]]. Moreover, P
diverges iff [[P ]] diverges.
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Overview of the presentation

The finite core
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Conclusions

CCSp ∼ CCSk CCSµ ≈ CCS!

Divergence: Undecidable Divergence: Decidable
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Conclusions

CCSp ∼ CCSk CCSµ ≈ CCS!

Divergence: Undecidable Divergence: Decidable

Injective relabellings are redundant in CCS

Interpretation of Rule REC leads to
important differences

CCS exhibits dynamic name scope and it
does not preserve α-conversion

A Note on Scope and Infinite Behaviour in CCS-like Calculi – p.28/32



Related Work

The CCS variant in Milner’s book π-calculus
uses parametric definitions with static scope

Edinburgh Concurrency Workbench tool
(CWB) uses dynamic scoping for parametric
definitions

ECCS advocates the static scoping of names

CHOCS uses dynamic name scoping in the
context of higher-order CCS
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Auxiliary Slides
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Bisimilarity

A relation S ⊆ Proc × Proc is a (strong)
simulation if for all (P,Q) ∈ S:

P
α

−→ P ′

S

Q
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Bisimilarity

A relation S ⊆ Proc × Proc is a (strong)
simulation if for all (P,Q) ∈ S:

P
α

−→ P ′

S S

Q
α

−→ Q′
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Bisimilarity

A relation S ⊆ Proc × Proc is a (strong)
simulation if for all (P,Q) ∈ S:

P
α

−→ P ′

S S

Q
α

−→ Q′

S is a (strong) bisimulation if both S and its
converse are (strong) simulations: P ∼ Q.
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Bisimilarity

A relation S ⊆ Proc × Proc is a weak simulation if
for all (P,Q) ∈ S:

P
s

=⇒ P ′

S S

Q
s

=⇒ Q′

S is a weak bisimulation if both S and its
converse are weak simulations: P ≈Q.
- “ s

=⇒” (where s = α1.α2. . . .) is (
τ
−→)∗

α1
−→ (

τ
−→)∗ . . . (

τ
−→)∗

αn

−→ (
τ
−→)∗

←
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Encoding CCSp into CCSk

[[·]] : Procp → Prock

Idea:

For each P ∈ CCSp, let P̂ ∈ CCSk replacing
in P each occurrence of B(y) with By

For each definition A(x)
def
= PA, generate a

constant definition Ax
def
= P̂A
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