A Note on Scope and Infinite Behaviour in CCS-like Calculi

GERARDO Schneider

Uppsala University
Department of Information Technology
UppsALA, SWEDEN

Joint work with Pablo Giambiagi and Frank Valencia

Motivation: Scoping

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} . b \| X) \backslash a
$$

Motivation: Scoping

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

- Question: Will action b ever be executed?

Motivation: Scoping

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

- Question: Will action b ever be executed?
- Answer: It depends... (!?)
\Longrightarrow Static vs Dynamic Scoping

Motivation: Infiniteness

- Parametric vs. Constant definitions

1. CCS-like calculus, with $A \stackrel{\text { def }}{=} P$
2. CCS-like calculus, with $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$

Motivation: Infiniteness

- Parametric vs. Constant definitions

1. CCS-like calculus, with $A \xlongequal{\text { def }} P$
2. CCS-like calculus, with $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$

- Can we encode (2) into (1)?

Motivation: Infiniteness

- Parametric vs. Constant definitions

1. CCS-like calculus, with $A \stackrel{\text { def }}{=} P$
2. CCS-like calculus, with $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$

- Can we encode (2) into (1)?
. Do we need relabelling?

Motivation: Infiniteness

- Parametric vs. Constant definitions

1. CCS-like calculus, with $A \xlongequal{\text { def }} P$
2. CCS-like calculus, with $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$

- Can we encode (2) into (1)?
. Do we need relabelling?
- What happens with other forms of introducing infinite behaviour? For instance, Replication

Motivation and Contributions

These are important issues when comparing CCS variants

- Static vs Dynamic Scoping?
- Parametric vs. Constant definitions?
- Recursion vs Replication

Motivation and Contributions

These are important issues when comparing CCS variants

- Static vs Dynamic Scoping?
- Parametric vs. Constant definitions?
- Recursion vs Replication

We will show that these issues affect

- Expressiveness
- Analysis of certain properties

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

The Finite Core: Syntax

- Given:
- A set of names, $\mathcal{N}(a, b, x, y \ldots)$
- A set of co-names, $\overline{\mathcal{N}}=\{\bar{a} \mid a \in \mathcal{N}\}$
- A set of actions, Act $=\mathcal{N} \cup \overline{\mathcal{N}} \cup\{\tau\}$ (α, β)

The Finite Core: Syntax

- Given:
- A set of names, $\mathcal{N}(a, b, x, y \ldots)$
- A set of co-names, $\overline{\mathcal{N}}=\{\bar{a} \mid a \in \mathcal{N}\}$
- A set of actions, Act $=\mathcal{N} \cup \overline{\mathcal{N}} \cup\{\tau\}$ (α, β)
- Processes specifying finite behaviour:

$$
P::=\sum_{i \in I} \alpha_{i} \cdot P_{i}|P \backslash a| P \| P
$$

The Finite Core: Semantics

$\operatorname{SUM} \overline{\sum_{i \in I} \alpha_{i} \cdot P_{i} \xrightarrow{\alpha_{j}} P_{j}}$ if $j \in I$

$$
\text { RES } \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash a \xrightarrow{\alpha} P^{\prime} \backslash a} \text { if } \alpha \notin\{a, \bar{a}\}
$$

$\operatorname{PAR}_{1} \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left\|Q \xrightarrow{\alpha} P^{\prime}\right\| Q}$
$\mathrm{PAR}_{2} \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P\|Q \xrightarrow{\alpha} P\| Q^{\prime}}$

$$
\operatorname{COM} \frac{P \xrightarrow{l} P^{\prime} Q \xrightarrow{\bar{l}} Q^{\prime}}{P\left\|Q \xrightarrow{\tau} P^{\prime}\right\| Q^{\prime}}
$$

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

Scoping: Example

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Scoping: Example

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} . b \| X) \backslash a
$$

Consider the following rule:

$$
\operatorname{REC} \frac{P[\mu X \cdot P / X] \stackrel{\alpha}{\longrightarrow} P^{\prime}}{\mu X \cdot P \xrightarrow{\alpha} P^{\prime}}
$$

(without name α-conversion)

Scoping: Example

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{a} \cdot b \| \mu X . P) \backslash a$

Scoping: Example

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{a} . b \| \mu X . P) \backslash a$
$=a \|(\bar{a} \cdot b \| \mu X .(a \|(\bar{a} \cdot b \| X) \backslash a)) \backslash a$

Scoping: Example

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{a} . b \| \mu X . P) \backslash a$
$=a \|(\bar{a} \cdot b \| \mu X .(a \|(\bar{a} \cdot b \| X) \backslash a)) \backslash a$

Scoping: Example

- Consider $\mu X . P$ with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{a} . b \| \mu X . P) \backslash a$
$=a \|(\bar{a} \cdot b \| \mu X .(a \|(\bar{a} \cdot b \| X) \backslash a)) \backslash a$
Then b may be executed!

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} . b \| X) \backslash a
$$

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Consider now the following rule:

$$
\operatorname{REC} \frac{P[\mu X \cdot P / X] \stackrel{\alpha}{\longrightarrow} P^{\prime}}{\mu X \cdot P \xrightarrow{\alpha} P^{\prime}}
$$

(applying name α-conversion when necessary)

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{a} . b \| \mu X . P) \backslash a$

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{a} . b \| \mu X . P) \backslash a$

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{c} . b \| \mu X . P) \backslash c$

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{c} . b \| \mu X . P) \backslash c$
$=a \|(\bar{c} . b \| \mu X .(a \|(\bar{a} . b \| X) \backslash a)) \backslash c$

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} \cdot b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{c} . b \| \mu X . P) \backslash c$
$=a \|(\bar{c} . b \| \mu X .(a \|(\bar{a} . b \| X) \backslash a)) \backslash c$

Scoping: Example 2

- Consider again μX. P with

$$
P=a \|(\bar{a} . b \| X) \backslash a
$$

Then, $P[\mu X . P / X]$
$=a \|(\bar{c} . b \| \mu X . P) \backslash c$
$=a \|(\bar{c} . b \| \mu X .(a \|(\bar{a} . b \| X) \backslash a)) \backslash c$
Then b will never be executed!

Static vs Dynamic Scoping

- Name α-conversion to avoid name capture \Longrightarrow static scoping
- Otherwise, \Longrightarrow dynamic scoping

Dynamic scoping: the occurrence of a name may get dynamically (i.e. during execution) captured under the scope of some restriction

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

- $\mathrm{CCS}_{\mathrm{k}}$: Infinite behavior given by a finite set of constant (i.e., parameterless) definitions
of the form $A \xlongequal{\text { def }} P$. The calculus is essentially CCS (Milner's book'1989) without relabelling nor infinite summations.

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

- $\mathrm{CCS}_{\mathrm{k}}: A \xlongequal{\text { def }} P$
- $\mathrm{CCS}_{\mathrm{p}}$: Like $\mathrm{CCS}_{\mathrm{k}}$ but using parametric definitions of the form $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$. The calculus is the variant in Milner's book on the π-calculus

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

- $\mathrm{CCS}_{\mathrm{k}}: A \xlongequal{\text { def }} P$
- $\mathrm{CCS}_{\mathrm{p}}: A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$
- CCS!: Infinite behavior given by replication of the form! P. This variant is presented, e.g. in a paper by Busi, Gabbrielli and Zavattaro.

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

- $\mathrm{CCS}_{\mathrm{k}}: A \xlongequal{\text { def }} P$
- $\operatorname{CCS}_{\mathrm{p}}: A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$
- CCS!: ! P
- CCS_{μ} : Infinite behavior given by recursive expressions of the form $\mu X . P$. However, we adopt static scoping of channel names.

Infinite Behaviour

There are at least four manners of introducing infinite behaviour

- $\mathrm{CCS}_{\mathrm{k}}: A \xlongequal{\text { def }} P$
- $\operatorname{CCS}_{\mathrm{p}}: A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P$
- CCS!:! P
- CCS $_{\mu}: \mu X . P$

Parametric Definitions: $\mathrm{CCS}_{\mathrm{p}}$

Syntax:

$$
P::=\ldots \mid A\left(y_{1}, \ldots, y_{n}\right)
$$

where $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P_{A}, f n\left(P_{A}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.

Parametric Definitions: $\mathrm{CCS}_{\mathrm{p}}$

Syntax:

$$
P::=\ldots \mid A\left(y_{1}, \ldots, y_{n}\right)
$$

where $A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P_{A}, f n\left(P_{A}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.
Semantics:

$$
\operatorname{CALL} \frac{P_{A}\left[y_{1}, \ldots, y_{n} / x_{1}, \ldots, x_{n}\right] \stackrel{\alpha}{\longrightarrow} P^{\prime}}{A\left(y_{1}, \ldots, y_{n}\right) \xrightarrow{\alpha} P^{\prime}} \text { if } A\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} P_{A}
$$

(name α-conversion when necessary)

Constant Definitions: $\mathrm{CCS}_{\mathrm{k}}$

Syntax:

where $A \stackrel{\text { def }}{=} P_{A}$

Constant Definitions: $\mathrm{CCS}_{\mathrm{k}}$

Syntax:

$$
P::=\ldots \mid A
$$

where $A \xlongequal{\text { def }} P_{A}$
Semantics:

$$
\operatorname{CONS} \frac{P_{A} \xrightarrow{\alpha} P^{\prime}}{A \xrightarrow{\alpha} P^{\prime}} \text { if } A \stackrel{\text { def }}{=} P_{A}
$$

Constant Definitions: $\mathrm{CCS}_{\mathrm{k}}$

Syntax:

$$
P::=\ldots \mid A
$$

where $A \xlongequal{\text { def }} P_{A}$
Semantics (alternative):

$$
\text { REC } \frac{P[\mu X . P / X] \stackrel{\alpha}{\longrightarrow} P^{\prime}}{\mu X . P \xrightarrow{\alpha} P^{\prime}}
$$

(without name α-conversion)

Recursion Expressions: CCS $_{\mu}$

Syntax:

$$
P::=\ldots|X| \mu X . P
$$

Recursion Expressions: CCS $_{\mu}$

Syntax:

$$
P::=\ldots|X| \mu X . P
$$

Semantics:

$$
\operatorname{REC} \frac{P[\mu X . P / X] \stackrel{\alpha}{\longrightarrow} P^{\prime}}{\mu X . P \xrightarrow{\alpha} P^{\prime}}
$$

(name α-conversion when necessary)

Replication: CCS

Syntax:

$$
P::=\ldots \mid!P
$$

Replication: CCS

Syntax:

Semantics:

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

Expressiveness and Classifi cation Criteria

- Bisimilarity \rightarrow

Expressiveness and Classifi cation Criteria

- Bisimilarity
- CCS_{σ} is as expressive as $\mathrm{CCS}_{\sigma^{\prime}}$ iff for every $P \in \operatorname{Proc}_{\sigma}$, there exists $Q \in \operatorname{Proc}_{\sigma^{\prime}}$ such that $P \approx Q$

Expressiveness and Classifi cation Criteria

- Bisimilarity
- CCS_{σ} is as expressive as $\mathrm{CCS}_{\sigma^{\prime}}$ iff for every $P \in \operatorname{Proc}_{\sigma}$, there exists $Q \in \operatorname{Proc}_{\sigma^{\prime}}$ such that $P \approx Q$
- Divergence

Expressiveness and Classifi cation Criteria

- Bisimilarity
- CCS_{σ} is as expressive as $\mathrm{CCS}_{\sigma^{\prime}}$ iff for every $P \in \operatorname{Proc}_{\sigma}$, there exists $Q \in \operatorname{Proc}_{\sigma^{\prime}}$ such that $P \approx Q$
- Divergence P is divergent iff $P(\xrightarrow{\tau})^{\omega}$, i.e., there exists an infinite sequence $P=P_{0} \xrightarrow{\tau} P_{1} \xrightarrow{\tau} \ldots$

Expressiveness and Classifi cation Criteria

- Bisimilarity
- CCS_{σ} is as expressive as $\mathrm{CCS}_{\sigma^{\prime}}$ iff for every $P \in \operatorname{Proc}_{\sigma}$, there exists $Q \in \operatorname{Proc}_{\sigma^{\prime}}$ such that $P \approx Q$
- Divergence

We will study:

1. The relative expressiveness w.r.t. weak bisimilarity
2. The decidability of divergence

Expressiveness Results

Encodings: (weak) bisimulation preserving mappings $\llbracket \cdot \rrbracket:$ Proc $_{\sigma} \rightarrow$ Proc $_{\sigma^{\prime}}$

Expressiveness Results

Encodings: (weak) bisimulation preserving mappings $\llbracket \cdot \rrbracket: \operatorname{Proc}_{\sigma} \rightarrow \operatorname{Proc}_{\sigma^{\prime}}$

- Encoding CCS $_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$
- Encoding CCS $_{k}$ into CCS $_{p}$
- Encoding CCS $_{\mu}$ into $C C S$!
- Encoding CCS! into CCS $_{\mu}$

Expressiveness Results

Encodings: (weak) bisimulation preserving mappings $\llbracket \cdot \rrbracket: \operatorname{Proc}_{\sigma} \rightarrow \operatorname{Proc}_{\sigma^{\prime}}$

- Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$
- Encoding CCS $_{k}$ into CCS $_{p}$
- Encoding CCS_{μ} into $\mathrm{CCS}_{\text {! }}$
- Encoding CCS! into CCS $_{\mu}$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

$\llbracket]:$ Proc $_{p} \rightarrow$ Prock $_{k}$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

$\llbracket \cdot \rrbracket:$ Proc $_{p} \rightarrow$ Proc $_{k}$
Idea:

- Assume a definition of the form $A(x) \stackrel{\text { def }}{=} P_{A}$
- Generate as many constants A_{y} as occurrences of $A(y)$ in P_{A}

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

$\llbracket \cdot \rrbracket:$ Proc $_{p} \rightarrow$ Proc $_{k}$
Idea:

- Assume a definition of the form $A(x) \stackrel{\text { def }}{=} P_{A}$
- Generate as many constants A_{y} as occurrences of $A(y)$ in P_{A}
Problem: Potentially infinitely many definitions!

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

$\llbracket \cdot \rrbracket: \operatorname{Proc}_{p} \rightarrow \operatorname{Proc}_{k}$
Idea:

- Assume a definition of the form $A(x) \stackrel{\text { def }}{=} P_{A}$
- Generate as many constants A_{y} as occurrences of $A(y)$ in P_{A}
Problem: Potentially infinitely many definitions!
- Due to name α-conversion a possible infinite number of fresh names can be generated

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

$$
\text { Let } A(x) \stackrel{\text { def }}{=}(z x . x .0\|\bar{x} .0\| A(z)) \backslash z
$$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

$$
\text { Let } A(x) \stackrel{\text { def }}{=}(z x . x .0\|\bar{x} .0\| A(z)) \backslash z
$$

$$
\text { 1. } A_{x} \stackrel{\text { def }}{=}\left(z \cdot x \cdot 0\|\bar{x} \cdot 0\| A_{z}\right) \backslash z
$$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

$$
\text { Let } A(x) \stackrel{\text { def }}{=}(z . x .0\|\bar{x} .0\| A(z)) \backslash z
$$

$$
\text { 1. } A_{x} \xlongequal{\text { def }}\left(z . x .0\|\bar{x} .0\| A_{z}\right) \backslash z
$$

$$
\text { 2. } A_{z} \stackrel{\text { def }}{=}\left(z . z .0\|\bar{z} .0\| A_{z}\right) \backslash z
$$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

$$
\text { Let } A(x) \stackrel{\text { def }}{=}(z . x .0\|\bar{x} .0\| A(z)) \backslash z
$$

$$
\text { 1. } A_{x} \xlongequal{\text { def }}\left(z . x .0\|\bar{x} .0\| A_{z}\right) \backslash z
$$

$$
\text { 2. } A_{z} \stackrel{\text { def }}{=}\left(z . z .0\|\bar{z} .0\| A_{z}\right) \backslash z
$$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

$$
\text { Let } A(x) \stackrel{\text { def }}{=}(z \cdot x .0\|\bar{x} .0\| A(z)) \backslash z
$$

$$
\text { 1. } A_{x} \stackrel{\text { def }}{=}\left(z \cdot x \cdot 0\|\bar{x} \cdot 0\| A_{z}\right) \backslash z
$$

$$
\text { 2. } A_{z} \stackrel{\text { def }}{=}\left(z_{1} \cdot z \cdot 0\|\bar{z} \cdot 0\| A_{z_{1}}\right) \backslash z_{1}
$$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

$$
\text { Let } A(x) \stackrel{\text { def }}{=}(z \cdot x .0\|\bar{x} .0\| A(z)) \backslash z
$$

$$
\text { 1. } A_{x} \stackrel{\text { def }}{=}\left(z \cdot x \cdot 0\|\bar{x} \cdot 0\| A_{z}\right) \backslash z
$$

$$
\text { 2. } A_{z} \stackrel{\text { def }}{=}\left(z_{1} \cdot z \cdot 0\|\bar{z} \cdot 0\| A_{z_{1}}\right) \backslash z_{1}
$$

$$
\text { 3. } A_{z_{1}} \stackrel{\text { def }}{=}\left(z . z_{1} .0\left\|\overline{z_{1}} .0\right\| A_{z}\right) \backslash z
$$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$: Example

Let $A(x) \stackrel{\text { def }}{=}(z x .0\|\bar{x} .0\| A(z)) \backslash z$

1. $A_{x} \stackrel{\text { def }}{=}\left(z . x .0\|\bar{x} .0\| A_{z}\right) \backslash z$
2. $A_{z} \xlongequal{\text { def }}\left(z_{1}, z .0\|\bar{z} .0\| A_{z_{1}}\right) \backslash z_{1}$
3. $A_{z_{1}} \stackrel{\text { def }}{=}\left(z . z_{1} .0\left\|\overline{z_{1}} .0\right\| A_{z}\right) \backslash z$

Remark: The generation of fresh names could continue forever!

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

Theorem: For any $P \in \mathrm{CCS}_{\mathrm{p}}$ with a finite set of definitions, one can effectively construct the associated set of definitions of $\llbracket P \rrbracket$.

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

Theorem: For any $P \in \mathrm{CCS}_{\mathrm{p}}$ with a finite set of definitions, one can effectively construct the associated set of definitions of $\llbracket P \rrbracket$.

Theorem: Given a process $P \in \mathrm{CCS}_{\mathrm{p}}, P \sim \llbracket P \rrbracket$.

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

Theorem: For any $P \in \mathrm{CCS}_{\mathrm{p}}$ with a finite set of definitions, one can effectively construct the associated set of definitions of $\llbracket P \rrbracket$.

Theorem: Given a process $P \in \mathrm{CCS}_{\mathrm{p}}, P \sim \llbracket P \rrbracket$.
Corollary: Injective relabellings are redundant in CCS.

Encoding CCS_{μ} into $\mathbf{C C S}$

【.] : Proc $_{\mu} \rightarrow$ Proc!
Idea:

$$
\begin{aligned}
\llbracket X_{i} \rrbracket & =\overline{x_{i}} \mathbf{0} \\
\llbracket \mu X_{i} \cdot P \rrbracket & =\left(!x_{i} \cdot \llbracket P \rrbracket \mid \overline{x_{i}} \cdot \mathbf{0}\right) \backslash x_{i}
\end{aligned}
$$

Encoding CCS $_{\mu}$ into CCS!: Example

Let be the following CCS_{μ} process:

$$
P=\mu X .(a \cdot X)
$$

Encoding CCS $_{\mu}$ into CCS!: Example

Let be the following CCS_{μ} process:

$$
P=\mu X .(a \cdot X)
$$

Then the corresponding encoding is:

$$
\llbracket P \rrbracket=(!x \cdot a \cdot \bar{x} \| \bar{x}) \backslash x
$$

Encoding CCS_{μ} into CCS!: Example

Let be the following CCS_{μ} process:

$$
P=\mu X .(a \cdot X)
$$

Then the corresponding encoding is:

$$
\llbracket P \rrbracket=(!x \cdot a \cdot \bar{x} \| \bar{x}) \backslash x
$$

They are clearly not strongly bisimilar:

$$
\begin{aligned}
& (!x \cdot a \cdot \bar{x} \| \bar{x}) \backslash x \xrightarrow{\tau} \text { ! }(!x \cdot a . \bar{x} \| a \cdot \bar{x}) \backslash x \xrightarrow{a} \text { ! }(!x \cdot a \cdot \bar{x} \| \bar{x}) \backslash x . .
\end{aligned}
$$

Encoding CCS_{μ} into $\mathbf{C C S}$

Theorem: For $P \in \operatorname{Proc}_{\mu}, P \approx \llbracket P \rrbracket$. Moreover, P diverges iff $\llbracket P \rrbracket$ diverges.

Overview of the presentation

- The finite core
- Static vs Dynamic scoping
- Infinite behaviour
- Expressiveness
- Concluding Remarks

Conclusions

$\operatorname{CCS}_{\mathrm{p}} \sim \operatorname{CCS}_{\mathrm{k}}$
 Divergence: Undecidable

$\mathrm{CCS}_{\mu} \approx \mathrm{CCS}_{!}$

Divergence: Decidable

Conclusions

$$
\mathrm{CCS}_{\mathrm{p}} \sim \mathrm{CCS}_{\mathrm{k}}
$$

Divergence: Undecidable

$\mathrm{CCS}_{\mu} \approx \mathrm{CCS}_{!}$

Divergence: Decidable

- Injective relabellings are redundant in CCS
- Interpretation of Rule REC leads to important differences
- CCS exhibits dynamic name scope and it does not preserve α-conversion

Related Work

- The CCS variant in Milner's book π-calculus uses parametric definitions with static scope
- Edinburgh Concurrency Workbench tool (CWB) uses dynamic scoping for parametric definitions
- ECCS advocates the static scoping of names
- CHOCS uses dynamic name scoping in the context of higher-order CCS

Auxiliary Slides

A relation $\mathcal{S} \subseteq \operatorname{Proc} \times \operatorname{Proc}$ is a (strong) simulation if for all $(P, Q) \in \mathcal{S}$:

$$
P \xrightarrow{\alpha} P^{\prime}
$$

$$
\mathcal{S}
$$

Q

A relation $\mathcal{S} \subseteq \operatorname{Proc} \times \operatorname{Proc}$ is a (strong) simulation if for all $(P, Q) \in \mathcal{S}$:

\[

\]

Bisimilarity

A relation $\mathcal{S} \subseteq$ Proc \times Proc is a (strong) simulation if for all $(P, Q) \in \mathcal{S}$:

$$
\begin{array}{lll}
P & \alpha & P^{\prime} \\
\mathcal{S} & & \mathcal{S} \\
Q & \alpha & Q^{\prime}
\end{array}
$$

\mathcal{S} is a (strong) bisimulation if both \mathcal{S} and its converse are (strong) simulations: $P \sim Q$.

Bisimilarity

A relation $\mathcal{S} \subseteq$ Proc \times Proc is a weak simulation if for all $(P, Q) \in \mathcal{S}$:

$$
\begin{array}{rlr}
P & \stackrel{s}{\Longrightarrow} P^{\prime} \\
\mathcal{S} & & \mathcal{S} \\
Q & \stackrel{s}{\Longrightarrow} Q^{\prime}
\end{array}
$$

\mathcal{S} is a weak bisimulation if both \mathcal{S} and its converse are weak simulations: $P \approx Q$.
$-" \xrightarrow{s} "$ (where $\left.s=\alpha_{1} \cdot \alpha_{2} \ldots\right)$ is $(\xrightarrow{\tau})^{*} \xrightarrow{\alpha_{1}}(\xrightarrow{\tau})^{*} \ldots(\xrightarrow{\tau})^{*} \xrightarrow{\alpha_{n}}(\xrightarrow{\tau})^{*}$

Encoding $\mathrm{CCS}_{\mathrm{p}}$ into $\mathrm{CCS}_{\mathrm{k}}$

$\llbracket]:$ Proc $_{p} \rightarrow$ Proc $_{k}$
Idea:

- For each $P \in \mathrm{CCS}_{\mathrm{p}}$, let $\widehat{P} \in \mathrm{CCS}_{\mathrm{k}}$ replacing in P each occurrence of $B(y)$ with B_{y}
- For each definition $A(x) \stackrel{\text { def }}{=} P_{A}$, generate a constant definition $A_{x} \stackrel{\text { def }}{=} \widehat{P_{A}}$

