
Memory Usage Estimation for
Java Smart Cards

GERARDO SCHNEIDER

IRISA/INRIA - RENNES, FRANCE

CASTLES: Conception d’Analyses Statiques et de Tests pour le

Logiciel Embarqué Sécurisé

NWPT’04 - Uppsala, 06 October 2004

Memory Usage Estimation for Java Smart Cards – p.1/??

Overview

Introduction and motivation

Objective - Our approach

Our solution

Final discussion

Memory Usage Estimation for Java Smart Cards – p.2/??

Introduction and Motivation

Memory Usage Estimation for Java Smart Cards – p.3/??

Smart cards

Plastic substrate

Smart card chip

Small communicating devices with restricted
resources

Execute stand-alone applications specifically
written for the hardware it runs on

Memory Usage Estimation for Java Smart Cards – p.4/??

New generation of Java smart cards

High-level language for programming applets
(JavaCard Language)

Multi-application: various applets may be
downloaded and interact in the same card

Post-issuance: applets may be loaded on the
card after issued by the manufacturer

Size (banking - high-tech cards): EEPROM (16K -
200K), ROM (16K - 64K), RAM (1K - 4K)

Applications: mobile phones, e-purse, e-identity,

medical file management, etc
Memory Usage Estimation for Java Smart Cards – p.5/??

Security Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

Memory Usage Estimation for Java Smart Cards – p.6/??

Security Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

The “Sandbox” model relies on that applets are:

Compiled to bytecode for a virtual machine

Not given direct address to hardware
resources

Subject to a static analysis: bytecode
verification (check applets are well-typed)

Memory Usage Estimation for Java Smart Cards – p.6/??

Security Issues (cont.)

Extension of the bytecode verifier are needed to
guarantee (among others)

Information flow (i.e. an applet does not
“leak” confidential information)

Reactiveness (bounding the running time of
the applet between two interactions with the
environment)

Availability of services

Memory Usage Estimation for Java Smart Cards – p.7/??

Security Issues (cont.)

Extension of the bytecode verifier are needed to
guarantee (among others)

Information flow (i.e. an applet does not
“leak” confidential information)

Reactiveness (bounding the running time of
the applet between two interactions with the
environment)

Availability of services (resource-awareness
analysis - Memory)

Memory Usage Estimation for Java Smart Cards – p.7/??

How to program in small devices?

Quoted from “Java Card Technology for Smart
Cards - Sun Series” [Chen,2000; Chapter 13]

“...neither persistent nor transient objects
should be created willy-nilly.”

“You should also limit nested method
invocations...”

“..applets should not use recursive calls.”

“An applet should always check that an
object is created only once.”

Memory Usage Estimation for Java Smart Cards – p.8/??

The problem

Nothing in the standards prevents a(n)
(intentionally) badly written applet to allocate
all persistent memory on a card!

State-of-the-art tools do not detect whether a
given applet will make the card run out of
memory

Example:
public class Example

...

while(arg > 0)

new Example();

... Memory Usage Estimation for Java Smart Cards – p.9/??

Objectives - Our Approach

Memory Usage Estimation for Java Smart Cards – p.10/??

Objective

An analyser for estimating memory usage on
Java smart cards, which

Statically analyses the bytecode

Does not assume any structure on the
bytecode

Comprises intra- and Inter-procedural
analysis

Is as precise as possible

Is compositional

Has low complexity (on-card analyser)
Memory Usage Estimation for Java Smart Cards – p.11/??

Objective (Cont.)

The technique used should allow us to:

Develop a certified analyser

Extract a correct analyser

Moreover, we want the formalism to be compati-

ble with previous work (certified Data Flow Anal-

yser developed at IRISA)

Memory Usage Estimation for Java Smart Cards – p.12/??

How to obtain a certified analyser?

Formalise the operational semantics of the
language in a Proof Assistant (Coq)

Define the abstract domains (lattices)

Prove well-foundedness of the lattices

Code the algorithm into Coq (as a
constraint-based algorithm)

Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

Extract a program (proof-as-program
paradigm) using Coq’s extraction mechanism

Memory Usage Estimation for Java Smart Cards – p.13/??

How to obtain a certified analyser?

Formalise the operational semantics of the
language in a Proof Assistant (Coq)

Define the abstract domains (lattices)

Prove well-foundedness of the lattices

Code the algorithm into Coq (as a
constraint-based algorithm)

Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

Extract a program (proof-as-program
paradigm) using Coq’s extraction mechanism

Memory Usage Estimation for Java Smart Cards – p.13/??

Our Solution

Memory Usage Estimation for Java Smart Cards – p.14/??

The JavaCard bytecode language

Stack manipulation: �� � �

, � � �,

�� �,
�� �2,

�� � �, �� 	 � �;

Local variables manipulation:

 � � �

, � � �� ;

Jump instructions:

��

, � � � �;

Heap manipulation: � � , �� �� �
 �

,

� �� �
 �

;

Array instructions: �� � �� � � �� , �� � ��
 � � �

;

Method calls and return:

� �� � � � � � � � �

,

� �� � � � � � � � � ,

� �� � � � � � � � �� , � � � � �

Memory Usage Estimation for Java Smart Cards – p.15/??

Algorithm - Outline

Detection of potential intra-method loops
(

��� � �)

Propagation of

��� � � inter-procedurally

Detection of (mutually) recursive methods
and methods reachable from those (��)

Identification of dynamic instantiation of
classes (

�

)

Memory Usage Estimation for Java Smart Cards – p.16/??

What is new about it?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Memory Usage Estimation for Java Smart Cards – p.17/??

What is new about it?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Answer: Yes.

Memory Usage Estimation for Java Smart Cards – p.17/??

What is new about it?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Answer: Yes.

Audience: What is the challenge, then?

Memory Usage Estimation for Java Smart Cards – p.17/??

What is new about it?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Answer: Yes.

Audience: What is the challenge, then?

Answer: To write a constraint-based algorithm
suitable to be formalised in Coq and to
extract a certified analyser

Memory Usage Estimation for Java Smart Cards – p.17/??

What is new about it?

Audience: But we know how to detect cycles in
(assembly-like) programs!! (Compiler...)

Answer: Yes.

Audience: What is the challenge, then?

Answer: To write a constraint-based algorithm
suitable to be formalised in Coq and to
extract a certified analyser

Presented as a set of rules defining one (or more)

constraint(s) for each bytecode instruction

Memory Usage Estimation for Java Smart Cards – p.17/??

Algorithm - Constraints

The constraints are of the form:

� ��� � � ��� � � � � � � � � �

� � ��� � � � � � � 	 � � � 	 �

� � � � � is the current instruction

� � � �

is a set of conditions (predicate)

is a monotonic function

is the context being generated

� � 	 � � � 	 �
is the next instruction

Memory Usage Estimation for Java Smart Cards – p.18/??

Detecting loops (� �)

��� � �� �	�
� � � ��

��� �� �

� � � �� � � �� � � �
� � � ��

��� �� � � � � � � �� � � � � � � � � � � �� �

��� �� � � � � � � �� � � � � � � � � � � �� � � �

��� � �� �	� ��� �� � � � ��! �#" $ % �

� � � � � � � � � � � � � � � � � � �� � � �

��� � �� �	� ! � �" ! �

& � � � � � ��� � ' () * �

��� � �� �� + � , � !

� � � � � � � �� � � � � � � ��� � �� � � �

Memory Usage Estimation for Java Smart Cards – p.19/??

Detecting recursive methods (��)

��� � �� �	� ��� �� � � � ��! �#" $ % �

� �� �� ��� � �� � � � � � � �� ��� � � �

� �� � � � �� � � � �� � � � �� � � �

��� � �� �� ! � �" ! �

� �� ��� � �� � � � �� ��� � ' () * �

� � � �� �	� + � , � !

� �� � � � � � � � � �� ��� � �� � � �

Memory Usage Estimation for Java Smart Cards – p.20/??

The algorithm -

� ��� �� ��� 	
� � � � � �� � ��� � ��� �� �

� � � � �� ��� ��� � ��� *�� �� ! " � � � � �� # $ �

� ��� �� ��� 	
� � � � � % �� � ��� � ��� �� �

� � � � �� � � � � ��� �� � ! " � � ��� �� # $ �

� ��� �� ��� & 	 ' (*)

� � � � �� � " � � � � �� # $ �

Memory Usage Estimation for Java Smart Cards – p.21/??

Algorithm - How does it work?

The abstract domains (lattices) chosen and
the “form” of the constraints guarantees the
existence of a least fix-point

The well-foundedness of the lattices
guarantees termination

A constraint solver computes the least
fix-point

Memory Usage Estimation for Java Smart Cards – p.22/??

Final Discussion

Memory Usage Estimation for Java Smart Cards – p.23/??

Achievements

We have written a constraint-based
algorithm for detecting possible memory
overflow due to dynamic instantiation of
classes inside cycles

Already done:

Handwritten proof of
Termination
Soundness and completeness w.r.t. to an
abstraction of the operational semantics

Memory Usage Estimation for Java Smart Cards – p.24/??

Features of our algorithm

+ Written in a “good” way to be fed into Coq
(certification)

+ Modular;

��� � � and �� reusable

+ Compositional

+ Static analysis

? Low computational complexity

– Over-approximation:
It detects (all the) syntactic cycles
An instruction in a method (not in a cycle)
called more than once is counted once

Memory Usage Estimation for Java Smart Cards – p.25/??

Current Work

Currently adapting the algorithm slightly in order
to reuse (in Coq):

Lattice library

Auxiliary lemmas

Fix-point and constraint solver

Proof strategies

Memory Usage Estimation for Java Smart Cards – p.26/??

Current Work

Currently adapting the algorithm slightly in order
to reuse (in Coq):

Lattice library

Auxiliary lemmas

Fix-point and constraint solver

Proof strategies

Current approach: We considered a maximal
semantics (total runs of the program)

New approach: We have to consider a partial se-

mantics (prefixes of runs of the program)
Memory Usage Estimation for Java Smart Cards – p.26/??

Future Work

Still to be done:

A more precise analysis: Exact amount of
memory used if no � � occurs in a cycle

“Implement” the algorithm we have
presented in Coq and extract the analyser

Compare performance of both approaches:
complexity Vs simplicity of proofs

Besides this work:

Other techniques for resource-bounded
analysis and other security properties

Memory Usage Estimation for Java Smart Cards – p.27/??

Thank you very much!

Memory Usage Estimation for Java Smart Cards – p.28/??

Rules for � �

��� � �� �	�
� � � �� �� �� ��

��� �� �

��� � �� �	�
� � � �� �� � ��

��� �� �

��� � �� �	� � � � � �
� � � �� �� �� ��

�� �� � � � � � � �� � � � � � � � � � � �� �

��� �� � � � � � � �� � � � � � � � � � � �� � � �

��� � �� �	� � � � � �
� � � �� �� � ��

��� �� � � � � � � �� � � � � � � � � � � �� �

��� �� � � � � � � �� � � � � � � � � � � �� � � �

Memory Usage Estimation for Java Smart Cards – p.29/??

Rules for � � (cont.)

��� � �� �	� ��� �� � � � ��! �#" $ % �

� � � � � � � � � � � � � � � � � � �� � � �

��� � �� �� ! � �" ! �

& � � � � � ��� � ' () * �

� � � �� �	� + � , � !

� � � � � � � � � � � � � � � � � � �� � � �

Memory Usage Estimation for Java Smart Cards – p.30/??

Definition of the functions

�� �� * � � � � �
�

�
� * � � � � � ��� � � !

if

� �� � �� ! � � *�� ��

� * � � � � � �� � �� !

otherwise

�� � � * � �� � �
�

�
� * � �� � 	�
 �� � if

� �� � �� ! � � * � ��

� � *�� �� � 	 � � � �� � �� !

otherwise

�� � � * � �� � �
�

�
� * � �� � 	�
 �� � if

� �� � �� # $! � � *�� ��

� � *�� �� � 	 � � � �� � �� # $!

otherwise

Where

	�
 � � �
��� �

� � �� � �� � �� � �� !

Memory Usage Estimation for Java Smart Cards – p.31/??

Rules for � �

��� � �� �	� ��� �� � � � ��! �#" $ % � � � �

� �� � � � �� � � � � � � �� � � � �� ��� � � �

� �� � � � �� � � � �� � � � �� � � �

��� � �� �	� ��� �� � � � ��! �#" $ % � � � � �

� �� �� ��� � �� � � � � � � �� ��� � � �

� �� � � � �� � � � �� � � � �� � � �

��� � �� �� ! � �" ! �

� �� ��� � �� � � � �� ��� � ' () * �

� � � �� �	� + � , � !

� �� � � � � � � � � �� ��� � �� � � �

Memory Usage Estimation for Java Smart Cards – p.32/??

Definition of

� � � * � � � � � � �
�

�
� *�� �� � � � � ��� !

if
� � ! � � * � � �

� *�� �� � � � !

if
� � ! �� � * � � �

Memory Usage Estimation for Java Smart Cards – p.33/??

Example of � �

20 ... {30,50,31,41,40,70,20,Y70}

30 if goto 50 {30,50,31,41,40,70,20,Y70}

... {30,31,50,41,40,51,70,20,Y70}

40 if goto 90 {30,31,50,41,40,51,70,20,Y70}

... {30,31,41,40,50,51,70,20,Y70}

50 if goto 90 {30,31,41,40,50,51,70,20,Y70}

... {30,31,41,40,50,51,70,20,Y70}

70 goto 20 {30,31,41,40,50,51,70,20,Y70}

...

90 ... {30,31,40,90,41,50,51,70,20}

(b)

Memory Usage Estimation for Java Smart Cards – p.34/??

Example of � �

30 if goto 50

31 goto 49 {30,31}

...

40 goto 60 {30,50,31,49,40}

...

49 if goto 60 {30,31,49}

50 goto 40 {30,50,31,49}

...

60 ... {30,31,49,60,40}

(a)

Memory Usage Estimation for Java Smart Cards – p.35/??

	Overview
		extcolor {RoyalBlue}{Introduction and Motivation}
	Smart cards
	New generation of Java smart cards
	Security Issues
	Security Issues (cont.)
	How to program in small devices?
	The problem
		extcolor {RoyalBlue}{Objectives - Our Approach}
	Objective
	Objective (Cont.)
	How to obtain a certified analyser?
		extcolor {RoyalBlue}{Our Solution}
	The JavaCard bytecode language
	Algorithm - Outline
	What is new about it?
	Algorithm - Constraints
	Detecting loops (Loop)
	Detecting recursive methods (Rec)
	The algorithm - $Gamma $
	Algorithm - How does it work?
		extcolor {RoyalBlue}{Final Discussion}
	Achievements
	Features of our algorithm
	Current Work
	Future Work
		extcolor {RoyalBlue}{Thank you very much!}
	Rules for Loop
	Rules for Loop ~(cont.)
	Definition of the functions
	Rules for Rec
	Definition of F
	Example of Loop
	Example of Loop

