A Compositional Algorithm for Parallel Model Checking of Polygonal Hybrid Systems

Gordon Pace¹ Gerardo Schneider²

¹Dept. of Computer Science and AI – University of Malta

²Dept. of Informatics – University of Oslo

ICTAC'06 November 20–24, 2006 - Tunis

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems (SPDIs)
- Motivation
- Phase Portrait of SPDIs
 - Controllability and Viability Kernels

Independent Questions and Parallelization

- SPDI Decomposition
- Unavoidable Kernels
- Counting Subproblems

Parallel Algorithm for Reachability

Outline

Introduction

Hybrid Systems

- Polygonal Hybrid Systems (SPDIs)
- Motivation
- Phase Portrait of SPDIs
 - Controllability and Viability Kernels
- Independent Questions and Parallelization
 - SPDI Decomposition
 - Unavoidable Kernels
 - Counting Subproblems
- Parallel Algorithm for Reachability

Hybrid Systems

• Usual representation: Hybrid Automata

In general, we can have *differential inclusions* instead of differential equations

• Usual representation: Hybrid Automata

In general, we can have *differential inclusions* instead of differential equations

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems (SPDIs)
- Motivation
- 2 Phase Portrait of SPDIs
 - Controllability and Viability Kernels
- Independent Questions and Parallelization
 - SPDI Decomposition
 - Unavoidable Kernels
 - Counting Subproblems
 - Parallel Algorithm for Reachability

- A finite partition of the plane into convex polygonal sets (regions)
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

- A finite partition of the plane into convex polygonal sets (regions)
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

- A finite partition of the plane into convex polygonal sets (regions)
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_a^b$

- A finite partition of the plane into convex polygonal sets (regions)
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

• An SPDI can be seen as a hybrid automaton

 The reachability algorithm operates on a graph representation, not on the automaton

 The reachability algorithm operates on a graph representation, not on the automaton

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

 The reachability algorithm operates on a graph representation, not on the automaton

Parallel Model Checking SPDIs

 The reachability algorithm operates on a graph representation, not on the automaton

Parallel Model Checking SPDIs

 The reachability algorithm operates on a graph representation, not on the automaton

Parallel Model Checking SPDIs

Polygonal Hybrid Systems (SPDIs) Three Views

• We will, however, use the geometrical representation in what follows instead for clarity of presentation

Reachability is decidable –in the plane

(based on Poincaré maps, finite charact. of simple cycles, acceleration, ...)

- DFS algorithm (HSCC'01)
- BFS algorithm (VMCAI'04)
- Tool: SPeeDI (CAV'02)
- Reachability is undecidable –3-dim and higher (ICALP'94)
- For slights extensions in 2-dim reachability is an open question, for others is undecidable (CONCUR'02, FSTTCS'05)
- Phase portrait computation
 - Viability and controllability kernels (HSCC'02)
 - Invariance kernels (NJC'04)
 - Semi-separatrices (FORMATS'06)

Contributors: E. Asarin, O. Maler, V. Mysore, G. Pace, A. Pnueli, G. Schneider, S. Yovine

20/91

A (10) A (10) A (10)

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems (SPDIs)
- Motivation
- 2 Phase Portrait of SPDIs
 - Controllability and Viability Kernels
- Independent Questions and Parallelization
 - SPDI Decomposition
 - Unavoidable Kernels
 - Counting Subproblems
- Parallel Algorithm for Reachability

- Application: Use of SPDIs for approximating non-linear differential equations
 - Triangulation of the plane: Huge number of regions
- Need to reduce the complexity ... without too much overhead
 - Static analysis to reduce the state space
 - Parallelizing the reachability algorithm

< ロ > < 同 > < 回 > < 回 >

- Application: Use of SPDIs for approximating non-linear differential equations
 - Triangulation of the plane: Huge number of regions
- Need to reduce the complexity ... without too much overhead
 - Static analysis to reduce the state space
 - Parallelizing the reachability algorithm

- Reduction of memory and time requirements are the main reasons for seeking parallelization
 - In verification the main bottleneck is usually memory
- The challenge:

To partition the task among different processes keeping a balanced distribution of the use of memory and execution time... without a high communication cost

And, if possible

compositionally

Remark: Hybrid system are, by nature, non compositional

- Reduction of memory and time requirements are the main reasons for seeking parallelization
 - In verification the main bottleneck is usually memory
- The challenge:

To partition the task among different processes keeping a balanced distribution of the use of memory and execution time... without a high communication cost

And, if possible

compositionally

• Remark: Hybrid system are, by nature, non compositional

Outline

Hybrid Systems

- Polygonal Hybrid Systems (SPDIs)
- Motivation

Phase Portrait of SPDIs

Controllability and Viability Kernels

Independent Questions and Parallelization

- SPDI Decomposition
- Unavoidable Kernels
- Counting Subproblems
- Parallel Algorithm for Reachability

Few Preliminaries

- We only need to consider simple cycles
 - Given a sequence of non-repeating edges (except for the first and last edge) e.g., σ = e₁, · · · , e_k, e₁
 - Consider the polygonal subset of the SPDI determined by such sequence (denoted K_σ)

G. Pace & G. Schneider ()

Few Preliminaries

- We only need to consider simple cycles
 - Given a sequence of non-repeating edges (except for the first and last edge) e.g., σ = e₁, · · · , e_k, e₁
 - Consider the polygonal subset of the SPDI determined by such sequence (denoted K_σ)

G. Pace & G. Schneider ()

 Given *K_σ*, its controllability kernel is the largest subset such that any two points are reachable from each other

 Given *K_σ*, its controllability kernel is the largest subset such that any two points are reachable from each other

 Given *K_σ*, its controllability kernel is the largest subset such that any two points are reachable from each other

 Given *K_σ*, its controllability kernel is the largest subset such that any two points are reachable from each other

 Given *K_σ*, its controllability kernel is the largest subset such that any two points are reachable from each other

 Given *K_σ*, its controllability kernel is the largest subset such that any two points are reachable from each other

G. Pace & G. Schneider ()

Viability Kernels

 Given K_σ, its viability kernel is the largest subset such that for any point in the set, there is at least one trajectory which remains in the set forever

프 > < 프

Viability Kernels

 Given K_σ, its viability kernel is the largest subset such that for any point in the set, there is at least one trajectory which remains in the set forever

G. Pace & G. Schneider ()

Outline

- Hybrid Systems
- Polygonal Hybrid Systems (SPDIs)
- Motivation
- 2 Phase Portrait of SPDIs
 - Controllability and Viability Kernels

Independent Questions and Parallelization SPDI Decomposition

- Unavoidable Kernels
- Counting Subproblems
- Parallel Algorithm for Reachability

Given an SPDI and a reachability question, for each controllability kernel, we can:

- Answer the reachability question without any further analysis;
- Provide the state space necessary for reachability analysis; or
- Oecompose the reachability question into two smaller, and independent reachability questions
1. Immediate Answer

Two interesting properties:

- Within the controllability kernel of a loop, any two points are mutually reachable
- Any point on the viability kernel of the same loop can eventually reach the controllability kernel

Theorem 1

Given an SPDI S, K_{σ} , and two points I and I', if

then REACH(S, I, I').

• Two interesting properties:

- Within the controllability kernel of a loop, any two points are mutually reachable
- Any point on the viability kernel of the same loop can eventually reach the controllability kernel

Theorem 1

Given an SPDI S, K_{σ} , and two points I and I', if

•
$$I \subseteq \text{Viab}(K_{\sigma})$$
, and

$$2 I' \subseteq \operatorname{Cntr}(K_{\sigma})$$

then REACH(S, I, I').

1. Immediate Answer Example

G. Pace & G. Schneider ()

1/91

印

1. Immediate Answer Example

G. Pace & G. Schneider ()

43 / 91

伊

Theorem 2

```
Given an SPDI S, two points I and I' and a controllability kernel C = Cntr(K_{\sigma}), if
```

```
\bigcirc I \subseteq C_{in}, \text{ and }
```

```
  2  I' \subseteq C_{in},
```

```
then \mathsf{REACH}(\mathcal{S}, I, I') iff \mathsf{REACH}(\mathcal{S} \setminus C_{out}, I, I').
```

Similarly, if

```
• I \subseteq C_{out}, and
```

```
  I' \subseteq C_{out}
```

then $\mathsf{REACH}(\mathcal{S}, I, I')$ iff $\mathsf{REACH}(\mathcal{S} \setminus C_{in}, I, I')$.

45/91

< 回 > < 三 > < 三 >

Theorem 2

Given an SPDI S, two points *I* and *I'* and a controllability kernel $C = Cntr(K_{\sigma})$, if

```
\bigcirc I \subseteq C_{in}, \text{ and }
```

```
  I' \subseteq C_{in},
```

```
then \mathsf{REACH}(\mathcal{S}, I, I') iff \mathsf{REACH}(\mathcal{S} \setminus C_{out}, I, I').
```

Similarly, if

```
• I \subseteq C_{out}, and

• I' \subseteq C_{out}

then REACH(S, I, I') iff REACH(S \setminus C_{in}, I, I').
```


2. Reduction of the State-Space Example

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

ICTAC'06 - 23.11.2006

47 / 91

3

Theorem 3

Given an SPDI S, two points I and I' and a controllability kernel $C = Cntr(K_{\sigma})$, if $I \subseteq C_{in}$ and

 $I' \subseteq C_{out}$

then

$\begin{array}{c} \mathsf{Reach}(\mathcal{S},\textit{I},\textit{I}') \\ \mathsf{iff} \\ \mathsf{Reach}(\mathcal{S} \setminus \textit{C}_{out},\textit{I},\textit{C}) \land \mathsf{Reach}(\mathcal{S} \setminus \textit{C}_{\textit{in}},\textit{C},\textit{I}'). \end{array}$

Similarly, for $I \subseteq C_{out}$, and $I' \subseteq C_{in}$.

49/91

< ロ > < 同 > < 回 > < 回 >

Theorem 3

Given an SPDI S, two points I and I' and a controllability kernel $C = Cntr(K_{\sigma})$, if • $I \subseteq C_{in}$ and • $I' \subseteq C_{out}$ then

$$\begin{array}{c} \mathsf{Reach}(\mathcal{S}, I, I') \\ \mathsf{iff} \\ \mathsf{Reach}(\mathcal{S} \setminus \mathcal{C}_{out}, I, \mathcal{C}) \land \mathsf{Reach}(\mathcal{S} \setminus \mathcal{C}_{in}, \mathcal{C}, I'). \end{array}$$

Similarly, for $I \subseteq C_{out}$, and $I' \subseteq C_{in}$.

49/91

A D M A A A M M

G. Pace & G. Schneider ()

G. Pace & G. Schneider ()

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems (SPDIs)
- Motivation
- 2 Phase Portrait of SPDIs
 - Controllability and Viability Kernels

3 Independent Questions and Parallelization

- SPDI Decomposition
- Unavoidable Kernels
- Counting Subproblems

Definition

Given an SPDI S and two points I and I', we say that a controllability kernel $Cntr(K_{\sigma})$ is unavoidable if any segment of line with extremes on points lying on I and I' intersects with both the edges of $Cntr^{I}(K_{\sigma})$ and those of $Cntr^{u}(K_{\sigma})$ an odd number of times (disregarding tangential intersections with vertices).

Unavoidable Kernels Example

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

ICTAC'06 - 23.11.2006

58/91

Ŕ

Unavoidable Kernels Example

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

ICTAC'06 - 23.11.2006

Unavoidable Kernels Example

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

ICTAC'06 - 23.11.2006

Theorem

Given an SPDI S, two points *I* and *I'*, and a controllability kernel $C = Cntr(K_{\sigma})$, then *C* is an unavoidable kernel if and only if one of the following conditions holds

•
$$I \subseteq C_{in}$$
 and $I' \subseteq C_{out}$; or

•
$$I \subseteq C_{out}$$
 and $I' \subseteq C_{in}$.

Outline

- Hybrid Systems
- Polygonal Hybrid Systems (SPDIs)
- Motivation
- 2 Phase Portrait of SPDIs
 - Controllability and Viability Kernels

Independent Questions and Parallelization

- SPDI Decomposition
- Unavoidable Kernels
- Counting Subproblems

Theorem (upper bound)

Given an SPDI S and two points I and I', the question REACH(S, I, I') can be split into no more than **k** reachability questions, **k** is the number of mutually-disjoint controllability kernels

Theorem (lower bound)

Given an SPDI S and two points I and I', the question REACH(S, I, I') can be split into at least **u+1** reachability questions, **u** is the number of mutually-disjoint unavoidable controllability kernels

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (upper bound)

Given an SPDI S and two points I and I', the question REACH(S, I, I') can be split into no more than **k** reachability questions, **k** is the number of mutually-disjoint controllability kernels

Theorem (lower bound)

Given an SPDI S and two points I and I', the question REACH(S, I, I') can be split into at least **u+1** reachability questions, **u** is the number of mutually-disjoint unavoidable controllability kernels

67/91

function ReachPar(S, I, I') = ReachParKernels (S, ControllabilityKernels(S), I, I')

function ReachParKernels(S, [], I, I') = Reach(S, I, I');

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

イロト イポト イヨト イヨト 三旦

function ReachPar(S, I, I') = ReachParKernels (S, ControllabilityKernels(S), I, I')

function ReachParKernels(\mathcal{S} , [], I, I') = Reach(\mathcal{S} , I, I');

Ð

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

```
function ReachParKernels (S, k: ks, l, l') =
  if (ImmedieteAnswer(\mathcal{S}, I, I')) then
     True;
  elsif (SameSideOfKernel(\mathcal{S}, k, l, l')) then
     S I := S \setminus EdgesOnOtherSideOf(S, k, l');
     ReachParKernels (S I, ks, l, l');
  else
     S I := S \setminus EdgesOnOtherSideOf(S, k, l);
     S I' := S \setminus EdgesOnOtherSideOf(S k, l');
     parbegin
         r1 := ReachParKernels(S I, ks, l, viability(k));
         r2 := ReachParKernels(S I', ks, k, l');
     parend;
     return (r1 and r2);
```

```
function ReachParKernels (S, k: ks, l, l') =
  if (ImmedieteAnswer(S, I, I')) then {Theorem 1}
     True;
  elsif (SameSideOfKernel(\mathcal{S}, k, l, l')) then
     S I := S \setminus EdgesOnOtherSideOf(S, k, l');
     ReachParKernels (S I, ks, l, l');
  else
     S I := S \setminus EdgesOnOtherSideOf(S, k, l);
     S I' := S \setminus EdgesOnOtherSideOf(S k, l');
     parbegin
         r1 := ReachParKernels(S I, ks, l, viability(k));
         r2 := ReachParKernels(S I', ks, k, l');
     parend;
     return (r1 and r2);
```

```
function ReachParKernels (S, k: ks, l, l') =
  if (ImmedieteAnswer(\mathcal{S}, I, I')) then {Theorem 1}
     True;
  elsif (SameSideOfKernel(S, k, l, l')) then {Theorem 2}
     S I := S \setminus EdgesOnOtherSideOf(S, k, l');
     ReachParKernels (S I, ks, l, l');
  else
     S I := S \setminus EdgesOnOtherSideOf(S, k, l);
     S I' := S \setminus EdgesOnOtherSideOf(S k, l');
     parbegin
         r1 := ReachParKernels(S I, ks, l, viability(k));
         r2 := ReachParKernels(S I', ks, k, l');
     parend;
     return (r1 and r2);
```

・ロット (四) ・ (日) ・ (日)

```
function ReachParKernels (S, k: ks, l, l') =
  if (ImmedieteAnswer(\mathcal{S}, I, I')) then {Theorem 1}
     True;
  elsif (SameSideOfKernel(S, k, l, l')) then {Theorem 2}
     S I := S \setminus EdgesOnOtherSideOf(S, k, l');
     ReachParKernels (S I, ks, l, l');
             {Theorem 3}
  else
     S I := S \setminus EdgesOnOtherSideOf(S, k, l);
     S_{I'} := S \setminus EdgesOnOtherSideOf(S k, l');
     parbegin
         r1 := ReachParKernels(\mathcal{S}_{I}, ks, l, viability(k));
         r2 := ReachParKernels(S I', ks, k, l');
     parend;
     return (r1 and r2);
```

77/91

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Parallel (Independent) Reachability Questions

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

ICTAC'06 - 23.11.2006

Theorem

Given an SPDI S and two points $I \subseteq e$ and $I' \subseteq e'$,

 $\begin{aligned} \mathsf{REACH}(\mathcal{S}, I, I') \\ & \text{iff} \\ \mathsf{REACH}_{||}(\mathcal{S}, I, I'). \end{aligned}$

G. Pace & G. Schneider ()

Parallel Model Checking SPDIs

★ ∃ > < ∃ >

- A parallel algorithm for reachability analysis of polygonal hybrid systems
 - Compositional
 - Each parallel task is performed, in general in smaller independent state-spaces
 - No extra work needed to perform the computation of the kernels: identification and analysis of loops is performed in the first part of the reachability algorithm
 - The only extra work is the computation of unavoidable kernels
- Combination of techniques
 - The detection of *unavoidable* kernels may be done by using standard geometrical test (odd-parity test, used in computer graphics)
 - The analysis is then performed on the graph

- A parallel algorithm for reachability analysis of polygonal hybrid systems
 - Compositional
 - Each parallel task is performed, in general in smaller independent state-spaces
 - No extra work needed to perform the computation of the kernels: identification and analysis of loops is performed in the first part of the reachability algorithm
 - The only extra work is the computation of unavoidable kernels
- Combination of techniques
 - The detection of *unavoidable* kernels may be done by using standard geometrical test (odd-parity test, used in computer graphics)
 - The analysis is then performed on the graph

Thank you!

Ē

G. Pace & G. Schneider ()

84 / 91

2

Extensions and Applications

- Not exact extensions to higher dimensions (undecidable)
 - Maybe use the idea for approximations
- Use of SPDIs for approximating non-linear differential equations on the plane
 - Approximation of phase portrait objects

Implementation

Implementation in SPeeDI⁺

Invariance Kernels

 Given K_σ, its invariance kernel is the largest subset such that for any point x in the set, there is at least one trajectory starting in it and every trajectory starting in x is viable

-∃ **→** - 4 ∃-

Invariance Kernels

 Given K_σ, its invariance kernel is the largest subset such that for any point x in the set, there is at least one trajectory starting in it and every trajectory starting in x is viable

G. Pace & G. Schneider ()

Semi-Separatrices

 A semi-separatrix is a closed curve dissecting the state space into two subsets such that one is reachable from the other but not vice-versa

Semi-Separatrices

 A semi-separatrix is a closed curve dissecting the state space into two subsets such that one is reachable from the other but not vice-versa

G. Pace & G. Schneider ()

ICTAC'06 - 23.11.2006
Based on properties of limit trajectories on simple cycles and the invariance kernel we have an algorithm for computing semi-separatrices

Theorem

The computation of semi-separatrices for SPDIs is decidable

