Static Analysis for State-Space Reduction of Polygonal Hybrid Systems

Gordon Pace¹ Gerardo Schneider²

¹Dept. of Computer Science and AI – University of Malta

²Dept. of Informatics – University of Oslo

FORMATS'06 25-27 September 2006, Paris

-∢ ≣ →

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems
- Motivation
- Phase Portrait of SPDIs
 - Kernels
 - Semi-Separatrices
- 3 State-Space Reduction
 - Using Semi-Separatrices
 - Using Kernels

ъ

Hybrid Systems Polygonal Hybrid Systems Motivation

Outline

Introduction

Hybrid Systems

- Polygonal Hybrid Systems
- Motivation
- Phase Portrait of SPDIs
 - Kernels
 - Semi-Separatrices
- 3 State-Space Reduction
 - Using Semi-Separatrices
 - Using Kernels

イロト イポト イヨト イヨト

Hybrid Systems Polygonal Hybrid Systems Motivation

Hybrid Systems

Usual representation: Hybrid Automata

In general, we can have *differential inclusions* instead of differential equations

Hybrid Systems Polygonal Hybrid Systems Motivation

Hybrid Systems

Usual representation: Hybrid Automata

In general, we can have *differential inclusions* instead of differential equations

Hybrid Systems Polygonal Hybrid Systems Motivation

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems
- Motivation
- Phase Portrait of SPDIs
 - Kernels
 - Semi-Separatrices
- 3 State-Space Reduction
 - Using Semi-Separatrices
 - Using Kernels

イロト イポト イヨト イヨト

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs)

- A finite partition of the plane into convex polygonal sets
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

・ 戸 ・ ・ 三 ・ ・

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs)

- A finite partition of the plane into convex polygonal sets
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs)

- A finite partition of the plane into convex polygonal sets
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs)

- A finite partition of the plane into convex polygonal sets
- Dynamics given by the angle determined by two vectors: $\dot{x} \in \angle_{a}^{b}$

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs)

• An SPDI can be seen as a hybrid automaton

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs) Underlying Graph

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs) Underlying Graph

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs) Underlying Graph

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs) Underlying Graph

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs) Underlying Graph

Hybrid Systems Polygonal Hybrid Systems Motivation

Polygonal Hybrid Systems (SPDIs)

 We will, however, use the geometrical representation in what follows instead for clarity of presentation

Hybrid Systems Polygonal Hybrid Systems Motivation

Known Results about SPDIs

- Reachability is decidable –in the plane (based on Poincaré maps, finite characterization of simple cycles, acceleration, ...)
 - DFS algorithm (HSCC'01)
 - BFS algorithm (VMCAI'04)
 - Tool: SPeeDI (CAV'02)
- Reachability is undecidable -3-dim and higher (ICALP'94)
- For slights extensions in 2-dim reachability is an open question, for others is undecidable (CONCUR'02, FSTTCS'05)
- Phase portrait computation
 - Viability and controllability kernels (HSCC'02)
 - Invariance kernels (NJC'04)

Contributors: E. Asarin, O. Maler, V. Mysore, G. Pace, A. Pnueli, G. Schneider, S.

Yovine

イロト イポト イヨト イヨト

Hybrid Systems Polygonal Hybrid Systems Motivation

Outline

Introduction

- Hybrid Systems
- Polygonal Hybrid Systems

Motivation

- Phase Portrait of SPDIs
 - Kernels
 - Semi-Separatrices
- 3 State-Space Reduction
 - Using Semi-Separatrices
 - Using Kernels

・ロト ・回ト ・ヨト ・ヨト

Hybrid Systems Polygonal Hybrid Systems Motivation

Motivation

- Application: Use of SPDIs for approximating non-linear differential equations
 - Triangulation of the plane: Huge number of regions
- Need to reduce the state space (for reachability analysis)... ... without too much overhead

< 🗇 ▶

Hybrid Systems Polygonal Hybrid Systems Motivation

Motivation

- Application: Use of SPDIs for approximating non-linear differential equations
 - Triangulation of the plane: Huge number of regions
- Need to reduce the state space (for reachability analysis)... ... without too much overhead

Kernels Semi-Separatrices

Outline

Using Kernels

Gerardo Schneider State-space reduction of SPDIs

・ 同 ト ・ ヨ ト ・ ヨ ト

Kernels Semi-Separatrices

Few Preliminaries

- We only need to consider simple cycles
 - Given a sequence of non-repeating edges (except for the first and last edge) e.g., σ = e₁, · · · , e_k, e₁
 - Consider the polygonal subset of the SPDI determined by such sequence (denoted *K_σ*)

▲ 프 ▶ - 프

Kernels Semi-Separatrices

Few Preliminaries

- We only need to consider simple cycles
 - Given a sequence of non-repeating edges (except for the first and last edge) e.g., σ = e₁, · · · , e_k, e₁
 - Consider the polygonal subset of the SPDI determined by such sequence (denoted *K_σ*)

▲ 코 ▶ - 코

Kernels Semi-Separatrices

Controllability Kernels

 Given K_σ, its controllability kernel is the largest subset such that any two points are reachable from each other

Kernels Semi-Separatrices

Controllability Kernels

 Given K_σ, its controllability kernel is the largest subset such that any two points are reachable from each other

프 에 에 프 어

Kernels Semi-Separatrices

Controllability Kernels

 Given K_σ, its controllability kernel is the largest subset such that any two points are reachable from each other

프 에 에 프 어

Kernels Semi-Separatrices

Controllability Kernels

 Given K_σ, its controllability kernel is the largest subset such that any two points are reachable from each other

코어 세 코어

Kernels Semi-Separatrices

Controllability Kernels

 Given K_σ, its controllability kernel is the largest subset such that any two points are reachable from each other

프 에 에 프 어

Kernels Semi-Separatrices

Controllability Kernels

 Given K_σ, its controllability kernel is the largest subset such that any two points are reachable from each other

프 🖌 🔺 프 🛌

Kernels Semi-Separatrices

Viability Kernels

 Given K_σ, its viability kernel is the largest subset such that for any point in the set, there is at least one trajectory which remains in the set forever

Kernels Semi-Separatrices

Viability Kernels

 Given K_σ, its viability kernel is the largest subset such that for any point in the set, there is at least one trajectory which remains in the set forever

▲ 프 ▶ - 프

Kernels Semi-Separatrices

Invariance Kernels

 Given K_σ, its invariance kernel is the largest subset such that for any point x in the set, there is at least one trajectory starting in it and every trajectory starting in x is viable

Kernels Semi-Separatrices

Invariance Kernels

 Given K_σ, its invariance kernel is the largest subset such that for any point x in the set, there is at least one trajectory starting in it and every trajectory starting in x is viable

Semi-Separatrices

Outline

- - Using Semi-Separatrices
 - Using Kernels

→ Ξ → < Ξ →</p>

< 🗇 🕨

Kernels Semi-Separatrices

Semi-Separatrices

 A semi-separatrix is a closed curve dissecting the state space into two subsets such that one is reachable from the other but not vice-versa

Kernels Semi-Separatrices

Semi-Separatrices

 A semi-separatrix is a closed curve dissecting the state space into two subsets such that one is reachable from the other but not vice-versa

Kernels Semi-Separatrices

Semi-Separatrices

Based on properties of limit trajectories on simple cycles and the invariance kernel we have an algorithm for computing semi-separatrices

Theorem

The computation of semi-separatrices for SPDIs is decidable

Kernels Semi-Separatrices

Phase Portrait

Gerardo Schneider State-space reduction of SPDIs

£.

Using Semi-Separatrices Using Kernels

Outline

★ Ξ → ★ Ξ →

< 🗇 🕨

Using Semi-Separatrices Using Kernels

State-Space Reduction using Semi-Separatrices

Let e be a source edge and e' a target edge

- Identification of *inert* edges
 - Given a semi-separatrix γ, e_l is inert if it lies outside γ while e lies inside, or it lies inside, while e' lies outside

Theorem

Given an SPDI S, a semi-separatrix γ , and edges e and e', then, e' is reachable from e in S if and only if e' is reachable from e in S without the inert edges

Using Semi-Separatrices Using Kernels

State-Space Reduction using Semi-Separatrices

Let e be a source edge and e' a target edge

- Identification of *inert* edges
 - Given a semi-separatrix γ, e_l is inert if it lies outside γ while e lies inside, or it lies inside, while e' lies outside

Theorem

Given an SPDI S, a semi-separatrix γ , and edges e and e', then, e' is reachable from e in S if and only if e' is reachable from e in S without the inert edges

Using Semi-Separatrices Using Kernels

State-Space Reduction using Semi-Separatrices

Using Semi-Separatrices Using Kernels

State-Space Reduction using Semi-Separatrices

Using Semi-Separatrices Using Kernels

Outline

→ Ξ → < Ξ →</p>

< 🗇 🕨

Using Semi-Separatrices Using Kernels

State-Space Reduction using Kernels

Let e be a source edge and e' a target edge

- Identification of redundant edges
 - *e_R* is redundant if it lies on an opposite side of a controllability kernel as both *e* and *e'*

Theorem

Given an SPDI S, a cycle σ , edges e and e', then e' is reachable from e in S if and only if e' is reachable from e in S without the redundant edges

< /₽> < ∃>

Using Semi-Separatrices Using Kernels

State-Space Reduction using Kernels

Let e be a source edge and e' a target edge

- Identification of redundant edges
 - *e_R* is redundant if it lies on an opposite side of a controllability kernel as both *e* and *e'*

Theorem

Given an SPDI S, a cycle σ , edges e and e', then e' is reachable from e in S if and only if e' is reachable from e in S without the redundant edges

Using Semi-Separatrices Using Kernels

State-Space Reduction using Kernels

Gerardo Schneider State-space reduction of SPDIs

Using Semi-Separatrices Using Kernels

State-Space Reduction using Kernels

Using Semi-Separatrices Using Kernels

State-Space Reduction using Kernels

V \mathbf{N} 프 아 씨 프 아

Final Remarks

- Computation of Semi-Separatrices
- Use of the phase portrait objects to reduce the state-space (for reachability analysis)
 - No extra work needed to perform the optimization: identification and analysis of loops is performed in the first part of the reachability algorithm
- Combination of techniques
 - The detection of *inert* and *redundant* edges may be done by using standard geometrical test (odd-parity test, used in computer graphics)
 - The reduction is then performed on the graph

Final Remarks

Extensions and Applications

- Not exact extensions to higher dimensions (undecidable)
 - Maybe use the idea for approximations
- Use of SPDIs for approximating non-linear differential equations on the plane
 - Approximation of phase portrait objects

Implementation

Implementation in SPeeDI⁺