Memory Consumption Analysis
of Java Smart Cards

GERARDO SCHNEIDER
University of Oslo - Norway

Joint work withPABLO GIAMBIAGI (SICS, Sweden)

Partially supported by the RNTL French proj€@ASTLES Conception d’Analyses
Statiques et de Tests pour le Logiciel Emb&@&acurie). IRISA/INRIA - Rennes,

INRIA Sophia-Antipolis, Oberthur Card Systems and AQL I

| Overview

Introduction and motivation
» Objective - Our approach
Final discussion

Introduction and Motivation

B

| Smart cards

Plastic substrate

@
Smart card chip

» Small communicating devices with restricted
resources

» EXxecute stand-alone applications specifically

written for the hardware it runs on I

| New generation of Java smart card:

» High-level language for programming applets
(JavaCard Language)

» Multi-application: various applets may be
downloaded and interact in the same card

» Post-issuance: applets may be loaded on the
card after issued by the manufacturer

Size (banking - high-tech cards):. EEPROM (16K -
64K), ROM (16K - 200K), RAM (1K - 4K)

Applications: mobile phones, e-purse, e-identity,

medical flle management, etc I

| Security Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

| Security Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

The “Sandbox” model relies on that applets are:
» Compiled to bytecode for a virtual machine

» Not given direct access to hardware
resources

Subject to a static analysis: bytecode

verification (checks applets are well-typed) I

| Security Issues (cont.)

Extensions of the bytecode verifier are needed to
guarantee (among others)

» [nformation flow (i.e. an applet does not
“leak” confidential information)

» Reactiveness (bounding the running time of
the applet between two interactions with the

environment)
» Avallability of services

B

| Security Issues (cont.)

Extensions of the bytecode verifier are needed to
guarantee (among others)

» [nformation flow (i.e. an applet does not
“leak” confidential information)

» Reactiveness (bounding the running time of
the applet between two interactions with the

environment)
» Availablility of services (resource-awareness

analysis - Memory)

| How.to program in small devices?

Quoted from “Java Card Technology for Smart
Cards - Sun Series” [Chen,2000; Chapter 13]

» “...neither persistent nor transient objects
should be created willy-nilly.”

#» “You should also limit nested method
Invocations...”

» “..applets should not use recursive calls.”
» “An applet should always check that an

object Is created only once.”

| The problem

Nothing in the standards prevents a(n)
(intentionally) badly written applet to allocate
all persistent memory on a card!

» State-of-the-art tools do not detect whether a
given applet will make the card run out of
memory

Example:
publ i c class Exanpl e

%ﬁile(arg > 0)
new Exanpl e(); I

Objectives - Our Approach

B

| Objective

An analyser for estimating memory usage on
Java smart cards, which

» Statically analyses the bytecode

Does not assume any structure on the
bytecode

» Comprises intra- and inter-procedural
analysis

[s as precise as possible
|s compositional/extensible

» Has low complexity (on-card analyser) I

| The JavaCard bytecode language

o Stack manipulation: push, pop, dup, dup2,
swap, numop;,

o Local variables manipulation: load, store;
& Jump instructions: if, goto;

o Heap manipulation: new, putfield,
getfield,

Array instructions: arraystore, arrayload,;

Method calls and return: invokevirtual,
invokedefinite, return

» EXxceptions and subroutines I

| Algorithm - Outline

» Detection of (mutually) recursive methods
and methods reachable from those (Rec)

» Detection of potential intra-method loops
(Loop)

» Propagation of Loop inter-procedurally
(Loop’)

» |dentification of dynamic instantiation of
classes (I')

Rec, Loop and Loop’ are functions associating a
set to pairs (m, pc) _I

I Example:. Rec, Loop and Loop’

I Example. Rec, Loop and Loop’

I Example. Rec, Loop and Loop’

I Example. Rec, Loop and Loop’

| Example - Detecting loops Loop)

method m

1 goto 4
2 ...

3 goto 2
4 return

| Example - Detecting loops Loop)

method m

1 goto4d Loop(m,1) ={1}
2 ... Loop(m,2) = {}
3 goto 2 Loop(m,3) ={}
A return Loop(m,4) = {}

| Example - Detecting loops Loop)

method m

1 goto4d Loop(m,1) ={1}

2 ... Loop(m,2) = {}

3 goto 2 Loop(m,3) ={}

A return Loop(m,4) = {1,4}

| Example - Detecting loops Loop)

method m

1 goto4d Loop(m,1) ={1}

2 ... Loop(m,2) = {2}
3 goto 2 Loop(m,3) ={}

A return Loop(m,4) = {1,4}

| Example - Detecting loops Loop)

method m

1 goto4d Loop(m,1) ={1}
2 ... Loop(m,2) = {2}
3 goto 2 Loop(m,3) = {2}
A return Loop(m,4) = {1,4}

| Example - Detecting loops Loop)

method m

1 goto4d Loop(m,1) ={1}
2 ... Loop(m,2) = {2,e}
3 goto 2 Loop(m,3) = {2}
A return Loop(m,4) = {1,4}

| Example - Detecting loops Loop)

method m

1 goto4d Loop(m,1) ={1}

2 ... Loop(m,2) = {2,e}
3 goto 2 Loop(m,3) ={2,e}
4 return Loop(m,4) = {1,4}

| Example - Detecting loops Loop)

method m

1 goto4 Loop(m,1)={1}

2 ... Loop(m,2) ={2,e}
3 goto 2 Loop(m,3) ={2,e}
A return Loop(m,4) = {1,4}

A reasonable complex applet may have hundreds

of LoC and around 50 jumps!

| Form of the constraint rules

For each function A (Rec, Loop and Loop’), the
specification is given by a set of constraint rules
of the form:

(m, pc) : Instr Cond
f(A(m, pe)) E A(m/, pc')

Instr IS the current instruction
Cond IS a set of conditions (predicate)

f Is a monotonic function I
(m/, pc’) is the next instruction

© o o o

I Detecting loops (oop)

(m, pc) : invokevirtual m’

{1} € Loop(m, 1) Loop(m, pc) C Loop(m, pc + 1)
(m, pc) : goto pc’ (m, pc) : return
F(Loop(m, pc), pc’) C Loop(m, pc’) L & Loop(m, ENDp,)
(m, pc) : if t op goto pc’ (m, pc) : Instr
F(Loop(m, pc), pc’) E Loop(m, pc’) Loop(m, pc) E Loop(m, pc + 1)

F(Loop(m, pc), pc + 1) E Loop(m, pc + 1)

Instr IS any instruction different from the ones appearing in

the rules and also from throw and jsr I

| Spec. of the main algorithm -I"

o Similar rules to Loop are defined for Loop’
and Rec

| Spec. of the main algorithm -I"

o Similar rules to Loop are defined for Loop’
and Rec

— /
Let Cycle = Loop,, ,. V Loop,, ,, V Recy pe

™m,pc

oo if (m,pc) :neu(cl) N Cycle,, .
['(m,pc) =< 1 if (m,pc):neu(cl) N —Cycle
0 otherwise

™m,pc

B

| Spec. of the main algorithm -I"

o Similar rules to Loop are defined for Loop’
and Rec

— /
Let Cycle = Loop,, ,. V Loop,, ,, V Recy pe

™m,pc

oo if (m,pc) :neu(cl) N Cycle,, .

['(m,pc) =< 1 if (m,pc):neu(cl) N —Cycle
0 otherwise

™m,pc

Fix-point computations: Rec, Loop and Loop’!

|

| Algorithm - How does it work?

» The domains (lattices) used and the “form” of
the constraints guarantee the existence of a
least fix-point

» The well-foundedness of the lattices
guarantees termination

o A constraint solver computes the least
fix-point

B

| Exceptions and Subroutines

The finally block of a try...finally Java
construct iIs compiled into a subroutine, a
fragment of code called with the jsr
bytecode instruction

[n Java, exceptions are thrown using the
throw Instruction, compiled into throw

» Other forms of exceptions (try...catch) are
compiled into invokevirtual method calls

(accessing the Exception Table)

| Exceptions and Subroutines (cont.)

We have extended the above algorithm to handle
subroutines and throw exceptions by adding
rules to Loop and Rec

» Added rules for handling subroutines

(m, pc) : jst pc’ (m,pc) : ret i
F(Loop(m, pc)) & Loop(m, pc') 1 & Loop(m,ENDyet)
F'(Loop(m, pc)) € Loop(m, pc + 1)

» Similar rules for treating exceptions

B

| Exceptions and Subroutines (cont.)

We have extended the above algorithm to handle
subroutines and throw exceptions by adding
rules to Loop and Rec

» Added rules for handling subroutines

(m, pc) : jst pc’ (m,pc) : ret i
F(Loop(m, pc)) & Loop(m, pc') 1 & Loop(m,ENDyet)
F'(Loop(m, pc)) € Loop(m, pc + 1)

» Similar rules for treating exceptions

We don’t need to change the previous defined
rules! I

Final Discussion

| Achievements

» \We have written a constraint-based

algorithm for detecting possible memory
overflow due to dynamic instantiation of
classes inside cycles

o Handwritten proof of
» Termination

» Soundness and completeness w.r.t. to an
abstraction of the operational semantics

B

| Features of our algorithm

+ Written in a “good” way to be fed into Cog
(certification)

+ Rec, Loop and Loop’ reusable/extensible
+ Static analysis
Low space and time complexity

Compositional

— Over-approximation:
» |t detects (all the) syntactic cycles

An instruction in a method (not in a cycle)
called more than once iIs counted once

| Related \Work

» [n [CJIPSO05]: a certified analyser for Java card
bytecode

s Constraint-based

» Formalisation based on abstract
Interpretation

» A proof of the algorithm soundness in Coq

» Extraction of OCAML code from its CoqQg’s
proof

[CIPSO05] D. Cachera, T. Jensen, D. Pichardie and G. Schneider. Certified Memory

Usage Analysis. In: Formal Methods. LNCS 3582, p.91-106. July 2005 I

| Contributions (comparison)

» |mproved the algorithm presented in [CIPS05]

» Our algorithm performs better in terms of
space-complexity (for a method with 200
lines and 50 basic blocks Loop uses 10
KB vs 40 KB)

» We treat exceptions (partially)
» We treat subroutines

» Time complexity is similar (computation of
fix-points converges at most in 4 iterations)

» No Coqg proof in our work (paper-proof of its
correctness and completeness) I

Improvements to be done

» |Implementation would improve efficiency

» Treat all the cases of exceptions (not
difficult!)

» Propagate the pc-numbers of basic blocks
only to relevant points (not difficult!)

» For analysing an applet with methods
containing 50 basic blocks (independently
of the Nr of LoC) Loop would need only
2.5 KB!

» Extend the analysis for “open” composite
applets (a bit more difficult!) I

Thank you very much!
Questions?

B

| Research on this topic?

» Fortunately, there are many interesting
M.Sc. (Ph.D.) research possibilities related
to the topic of this talk

| Research on this topic?

» Fortunately, there are many interesting
M.Sc. (Ph.D.) research possibilities related

to the topic of this talk

» Unfortunately, | don’'t have money for
scholarships

B

| Detecting recursive methods Rec)

(m, pc) : invokevirtual m’ m =m/

Rec(m, pc) U {m, e} C Rec(m’,1) (m, pc) : return
Rec(m, pc) C Rec(m, pc + 1) Rec(m, pc) E Rec(m, ENDp,)

(m, pc) : Instr

(m, pc) : invokevirtual m’ m # m/
G(Rec(m, pc),m’) E Rec(m/, 1)
Rec(m, pc) C Rec(m, pc + 1)

Rec(m, pc) C Rec(m, pc + 1)

B

Rules for Loop’

(m, pc) : invokevirtual m’ Loop,, ,.

e C Loop’(m/,1) (m, pc) : Instr
Loop’ (m, pc) T Loop’ (m, pc + 1) Loop’ (m, pc) C Loop’ (m, pc + 1)

(m, pc) : return

1L C Loop’(m,END,,)

(m, pc) : invokevirtual m/ = Lo0op ., e

Loop' (m, pc) T Loop’(m/, 1)
Loop’ (m, pc) C Loop’ (m, pc + 1)

| Definition.of the functions £ and G

y

Lm,pc U {.} |f pC, - Lm,pc
Ly \ {o} U{pc’} otherwise

\

i

R pe U{m, e} if m' € Ry, pe
Rmapc U {m} If m/ Q/ Rm,pc
\

B

I Rules for Handling Exceptions

(m,pc) : throwe (m,pc) € findHandler(m, pc,e)

F(Loop(m, pc)) C Loop(m, pc’)

(m,pc) : throwe (m/,pc") € findHandler(m,pc,e) m' #m

G(Rec(m, pc),m') E Rec(m/', pc)

B

| Some M.Sc. (Ph.D.) subjects

» |Implement the O.S. of the JCVM, and the
(optimised) analysis in Maude

» Prove correctness of the algorithm in Coq
(using a prefix semantics) and extract the
program

Specify an implement a modular analysis in
order to minimise global fix-point
computations

B

| Objective (Cont.)

The technique used should allow us to:
o Develop a certified analyser
» EXxtract a correct analyser

Moreover, we want the formalism to be compati-
ble with previous work (certified Data Flow Anal-
yser developed at IRISA)

B

| How to obtain a certified analyser?

» Formalise the operational semantics of the
anguage In a Proof Assistant (Coq)

Define the abstract domains (lattices)
» Prove well-foundedness of the lattices

» Code the algorithm into Coq (as a
constraint-based algorithm)

» Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

» Extract a program (proof-as-program

paradigm) using Cog’s extraction mechanism I

| How to obtain a certified analyser?

» Formalise the operational semantics of the
anguage In a Proof Assistant (Coq)

Define the abstract domains (lattices)
» Prove well-foundedness of the lattices

Code the algorithm into Coq (as a
constraint-based algorithm)

Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

» Extract a program (proof-as-program

paradigm) using Coqg’s extraction mechanism I

	Overview
		extcolor {blue}{Introduction and Motivation}
	Smart cards
	New generation of Java smart cards
	Security Issues
	Security Issues (cont.)
	How to program in small devices?
	The problem
		extcolor {blue}{Objectives - Our Approach}
	Objective
	The JavaCard bytecode language
	Algorithm - Outline
	Example: Rec , Loop and Loop '
	Example - Detecting loops (Loop)
	Form of the constraint rules
	Detecting loops (Loop)
	Spec. of the main algorithm - $Gamma $
	Algorithm - How does it work?
	Exceptions and Subroutines
	Exceptions and Subroutines (cont.)
		extcolor {blue}{Final Discussion}
	Achievements
	Features of our algorithm
	Related Work
	Contributions (comparison)
	Improvements to be done
		extcolor {blue}{Thank you very much! \ Questions?}
	Research on this topic?
	Detecting recursive methods (Rec)
	Rules for Loop '
	Definition of the functions F and G
	Rules for Handling Exceptions
	Some M.Sc. (Ph.D.)
subjects
	Objective (Cont.)
	How to obtain a certified analyser?

