
Memory Consumption Analysis
of Java Smart Cards

GERARDO SCHNEIDER

University of Oslo - Norway

Joint work withPABLO GIAMBIAGI (SICS, Sweden)

Partially supported by the RNTL French projectCASTLES (Conception d’Analyses

Statiques et de Tests pour le Logiciel Embarqué Śecuriśe). IRISA/INRIA - Rennes,

INRIA Sophia-Antipolis, Oberthur Card Systems and AQL

CLEI’05 - Cali, Colombia - October 2005
Memory Consumption Analysis of Java Smart Cards – p.1/??

Overview

Introduction and motivation

Objective - Our approach

Final discussion

Memory Consumption Analysis of Java Smart Cards – p.2/??

Introduction and Motivation

Memory Consumption Analysis of Java Smart Cards – p.3/??

Smart cards

Plastic substrate

Smart card chip

Small communicating devices with restricted
resources

Execute stand-alone applications specifically
written for the hardware it runs on

Memory Consumption Analysis of Java Smart Cards – p.4/??

New generation of Java smart cards

High-level language for programming applets
(JavaCard Language)

Multi-application: various applets may be
downloaded and interact in the same card

Post-issuance: applets may be loaded on the
card after issued by the manufacturer

Size (banking - high-tech cards): EEPROM (16K -
64K), ROM (16K - 200K), RAM (1K - 4K)

Applications: mobile phones, e-purse, e-identity,

medical file management, etc
Memory Consumption Analysis of Java Smart Cards – p.5/??

Security Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

Memory Consumption Analysis of Java Smart Cards – p.6/??

Security Issues

Downloaded applets may attack by leaking or
modifying confidential information, causing
malfunctioning, etc

The “Sandbox” model relies on that applets are:

Compiled to bytecode for a virtual machine

Not given direct access to hardware
resources

Subject to a static analysis: bytecode
verification (checks applets are well-typed)

Memory Consumption Analysis of Java Smart Cards – p.6/??

Security Issues (cont.)

Extensions of the bytecode verifier are needed to
guarantee (among others)

Information flow (i.e. an applet does not
“leak” confidential information)

Reactiveness (bounding the running time of
the applet between two interactions with the
environment)

Availability of services

Memory Consumption Analysis of Java Smart Cards – p.7/??

Security Issues (cont.)

Extensions of the bytecode verifier are needed to
guarantee (among others)

Information flow (i.e. an applet does not
“leak” confidential information)

Reactiveness (bounding the running time of
the applet between two interactions with the
environment)

Availability of services (resource-awareness
analysis - Memory)

Memory Consumption Analysis of Java Smart Cards – p.7/??

How to program in small devices?

Quoted from “Java Card Technology for Smart
Cards - Sun Series” [Chen,2000; Chapter 13]

“...neither persistent nor transient objects
should be created willy-nilly.”

“You should also limit nested method
invocations...”

“..applets should not use recursive calls.”

“An applet should always check that an
object is created only once.”

Memory Consumption Analysis of Java Smart Cards – p.8/??

The problem

Nothing in the standards prevents a(n)
(intentionally) badly written applet to allocate
all persistent memory on a card!

State-of-the-art tools do not detect whether a
given applet will make the card run out of
memory

Example:
public class Example

...

while(arg > 0)

new Example();

... Memory Consumption Analysis of Java Smart Cards – p.9/??

Objectives - Our Approach

Memory Consumption Analysis of Java Smart Cards – p.10/??

Objective

An analyser for estimating memory usage on
Java smart cards, which

Statically analyses the bytecode

Does not assume any structure on the
bytecode

Comprises intra- and inter-procedural
analysis

Is as precise as possible

Is compositional/extensible

Has low complexity (on-card analyser)
Memory Consumption Analysis of Java Smart Cards – p.11/??

The JavaCard bytecode language

Stack manipulation: push, pop, dup, dup2,
swap, numop;

Local variables manipulation: load, store;

Jump instructions: if, goto;

Heap manipulation: new, putfield,
getfield;

Array instructions: arraystore, arrayload;

Method calls and return: invokevirtual,
invokedefinite, return

Exceptions and subroutines
Memory Consumption Analysis of Java Smart Cards – p.12/??

Algorithm - Outline

Detection of (mutually) recursive methods
and methods reachable from those (Rec)

Detection of potential intra-method loops
(Loop)

Propagation of Loop inter-procedurally
(Loop’)

Identification of dynamic instantiation of
classes (Γ)

Rec, Loop and Loop’ are functions associating a

set to pairs (m, pc)
Memory Consumption Analysis of Java Smart Cards – p.13/??

Example: Rec, Loop and Loop’

8

����

����

����

����

����

����

����

m m m

m

m m

m

m1

2 3 4

5

6 7

����

Memory Consumption Analysis of Java Smart Cards – p.14/??

Example: Rec, Loop and Loop’

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����

����

����

����

����

m m m

m

m m

m

m1

2 3 4

5

6 7

����

8

����

����

Memory Consumption Analysis of Java Smart Cards – p.14/??

Example: Rec, Loop and Loop’

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����

m m m

m

m m

m

m1

2 3 4

5

6 7

����

8

����

����

����

����

����

����

Memory Consumption Analysis of Java Smart Cards – p.14/??

Example: Rec, Loop and Loop’

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����

m m m

m

m m

m

m1

2 3 4

5

6 7

����

8

����

����

����

����

����

����

Memory Consumption Analysis of Java Smart Cards – p.14/??

Example - Detecting loops (Loop)

method m

1 goto 4
2 ...
3 goto 2
4 return

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {}
3 goto 2 Loop(m,3) = {}
4 return Loop(m,4) = {}

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {}
3 goto 2 Loop(m,3) = {}
4 return Loop(m,4) = {1,4}

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {2}
3 goto 2 Loop(m,3) = {}
4 return Loop(m,4) = {1,4}

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {2}
3 goto 2 Loop(m,3) = {2}
4 return Loop(m,4) = {1,4}

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {2,•}
3 goto 2 Loop(m,3) = {2}
4 return Loop(m,4) = {1,4}

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {2,•}
3 goto 2 Loop(m,3) = {2,•}
4 return Loop(m,4) = {1,4}

Memory Consumption Analysis of Java Smart Cards – p.15/??

Example - Detecting loops (Loop)

method m

1 goto 4 Loop(m,1) = {1}
2 ... Loop(m,2) = {2,•}
3 goto 2 Loop(m,3) = {2,•}
4 return Loop(m,4) = {1,4}

A reasonable complex applet may have hundreds

of LoC and around 50 jumps!

Memory Consumption Analysis of Java Smart Cards – p.15/??

Form of the constraint rules

For each function ∆ (Rec, Loop and Loop’), the
specification is given by a set of constraint rules
of the form:

(m, pc) : Instr Cond

f(∆(m, pc)) ⊑ ∆(m′, pc ′)

Instr is the current instruction

Cond is a set of conditions (predicate)

f is a monotonic function

(m′, pc ′) is the next instruction
Memory Consumption Analysis of Java Smart Cards – p.16/??

Detecting loops (Loop)

{1} ⊑ Loop(m, 1)

(m, pc) : goto pc′

F (Loop(m, pc), pc′) ⊑ Loop(m, pc′)

(m, pc) : if t op goto pc′

F (Loop(m, pc), pc′) ⊑ Loop(m, pc′)

F (Loop(m, pc), pc + 1) ⊑ Loop(m, pc + 1)

(m, pc) : invokevirtual m′

Loop(m, pc) ⊑ Loop(m, pc + 1)

(m, pc) : return

⊥ ⊑ Loop(m, ENDm)

(m, pc) : Instr

Loop(m, pc) ⊑ Loop(m, pc + 1)

Instr is any instruction different from the ones appearing in

the rules and also from throw and jsr

Memory Consumption Analysis of Java Smart Cards – p.17/??

Spec. of the main algorithm -Γ

Similar rules to Loop are defined for Loop’
and Rec

Memory Consumption Analysis of Java Smart Cards – p.18/??

Spec. of the main algorithm -Γ

Similar rules to Loop are defined for Loop’
and Rec

Let Cyclem,pc ≡ Loopm,pc ∨ Loop ′
m,pc ∨ Recm,pc

Γ(m, pc) =

∞ if (m, pc) : new(cl) ∧ Cyclem,pc

1 if (m, pc) : new(cl) ∧ ¬Cyclem,pc

0 otherwise

Memory Consumption Analysis of Java Smart Cards – p.18/??

Spec. of the main algorithm -Γ

Similar rules to Loop are defined for Loop’
and Rec

Let Cyclem,pc ≡ Loopm,pc ∨ Loop ′
m,pc ∨ Recm,pc

Γ(m, pc) =

∞ if (m, pc) : new(cl) ∧ Cyclem,pc

1 if (m, pc) : new(cl) ∧ ¬Cyclem,pc

0 otherwise

Fix-point computations: Rec, Loop and Loop’!

Memory Consumption Analysis of Java Smart Cards – p.18/??

Algorithm - How does it work?

The domains (lattices) used and the “form” of
the constraints guarantee the existence of a
least fix-point

The well-foundedness of the lattices
guarantees termination

A constraint solver computes the least
fix-point

Memory Consumption Analysis of Java Smart Cards – p.19/??

Exceptions and Subroutines

The finally block of a try . . . finally Java
construct is compiled into a subroutine, a
fragment of code called with the jsr

bytecode instruction

In Java, exceptions are thrown using the
throw instruction, compiled into throw

Other forms of exceptions (try . . . catch) are
compiled into invokevirtual method calls
(accessing the Exception Table)

Memory Consumption Analysis of Java Smart Cards – p.20/??

Exceptions and Subroutines (cont.)

We have extended the above algorithm to handle
subroutines and throw exceptions by adding
rules to Loop and Rec

Added rules for handling subroutines

(m, pc) : jsr pc′

F (Loop(m, pc)) ⊑ Loop(m, pc′)

F (Loop(m, pc)) ⊑ Loop(m, pc + 1)

(m, pc) : ret i

⊥ ⊑ Loop(m, ENDret)

Similar rules for treating exceptions

Memory Consumption Analysis of Java Smart Cards – p.21/??

Exceptions and Subroutines (cont.)

We have extended the above algorithm to handle
subroutines and throw exceptions by adding
rules to Loop and Rec

Added rules for handling subroutines

(m, pc) : jsr pc′

F (Loop(m, pc)) ⊑ Loop(m, pc′)

F (Loop(m, pc)) ⊑ Loop(m, pc + 1)

(m, pc) : ret i

⊥ ⊑ Loop(m, ENDret)

Similar rules for treating exceptions

We don’t need to change the previous defined

rules!
Memory Consumption Analysis of Java Smart Cards – p.21/??

Final Discussion

Memory Consumption Analysis of Java Smart Cards – p.22/??

Achievements

We have written a constraint-based
algorithm for detecting possible memory
overflow due to dynamic instantiation of
classes inside cycles

Handwritten proof of
Termination
Soundness and completeness w.r.t. to an
abstraction of the operational semantics

Memory Consumption Analysis of Java Smart Cards – p.23/??

Features of our algorithm

+ Written in a “good” way to be fed into Coq
(certification)

+ Rec, Loop and Loop’ reusable/extensible

+ Static analysis

+/- Low space and time complexity

+/- Compositional

– Over-approximation:
It detects (all the) syntactic cycles
An instruction in a method (not in a cycle)
called more than once is counted once

Memory Consumption Analysis of Java Smart Cards – p.24/??

Related Work

In [CJPS05]: a certified analyser for Java card
bytecode

Constraint-based
Formalisation based on abstract
interpretation
A proof of the algorithm soundness in Coq
Extraction of OCAML code from its Coq’s
proof

[CJPS05] D. Cachera, T. Jensen, D. Pichardie and G. Schneider. Certified Memory

Usage Analysis. In: Formal Methods. LNCS 3582, p.91-106. July 2005

Memory Consumption Analysis of Java Smart Cards – p.25/??

Contributions (comparison)

Improved the algorithm presented in [CJPS05]

Our algorithm performs better in terms of
space-complexity (for a method with 200
lines and 50 basic blocks Loop uses 10
KB vs 40 KB)
We treat exceptions (partially)
We treat subroutines

Time complexity is similar (computation of
fix-points converges at most in 4 iterations)

No Coq proof in our work (paper-proof of its
correctness and completeness)

Memory Consumption Analysis of Java Smart Cards – p.26/??

Improvements to be done

Implementation would improve efficiency

Treat all the cases of exceptions (not
difficult!)

Propagate the pc-numbers of basic blocks
only to relevant points (not difficult!)

For analysing an applet with methods
containing 50 basic blocks (independently
of the Nr of LoC) Loop would need only
2.5 KB!

Extend the analysis for “open” composite
applets (a bit more difficult!)

Memory Consumption Analysis of Java Smart Cards – p.27/??

Thank you very much!
Questions?

Memory Consumption Analysis of Java Smart Cards – p.28/??

Research on this topic?

Fortunately, there are many interesting
M.Sc. (Ph.D.) research possibilities related
to the topic of this talk

Memory Consumption Analysis of Java Smart Cards – p.29/??

Research on this topic?

Fortunately, there are many interesting
M.Sc. (Ph.D.) research possibilities related
to the topic of this talk

Unfortunately, I don’t have money for
scholarships

Memory Consumption Analysis of Java Smart Cards – p.29/??

Detecting recursive methods (Rec)

(m, pc) : invokevirtual m′ m = m′

Rec(m, pc) ∪ {m, •} ⊑ Rec(m′, 1)

Rec(m, pc) ⊑ Rec(m, pc + 1)

(m, pc) : invokevirtual m′ m 6= m′

G(Rec(m, pc), m′) ⊑ Rec(m′, 1)

Rec(m, pc) ⊑ Rec(m, pc + 1)

(m, pc) : return

Rec(m, pc) ⊑ Rec(m, ENDm)

(m, pc) : Instr

Rec(m, pc) ⊑ Rec(m, pc + 1)

Memory Consumption Analysis of Java Smart Cards – p.30/??

Rules for Loop’

(m, pc) : invokevirtual m′ Loopm,pc

• ⊑ Loop′(m′, 1)

Loop′(m, pc) ⊑ Loop′(m, pc + 1)

(m, pc) : invokevirtual m′ ¬Loopm,pc

Loop′(m, pc) ⊑ Loop′(m′, 1)

Loop′(m, pc) ⊑ Loop′(m, pc + 1)

(m, pc) : Instr

Loop′(m, pc) ⊑ Loop′(m, pc + 1)

(m, pc) : return

⊥ ⊑ Loop′(m, ENDm)

Memory Consumption Analysis of Java Smart Cards – p.31/??

Definition of the functions F and G

F (Lm,pc, pc
′) =

Lm,pc ∪ {•} if pc ′ ∈ Lm,pc

Lm,pc \ {•} ∪ {pc ′} otherwise

G(Rm,pc,m
′) =

Rm,pc ∪ {m, •} if m′ ∈ Rm,pc

Rm,pc ∪ {m} if m′ 6∈ Rm,pc

Memory Consumption Analysis of Java Smart Cards – p.32/??

Rules for Handling Exceptions

(m, pc) : throw e (m, pc′) ∈ findHandler(m, pc, e)

F (Loop(m, pc)) ⊑ Loop(m, pc ′)

(m, pc) : throw e (m′, pc ′) ∈ findHandler(m, pc, e) m′ 6= m

G(Rec(m, pc),m′) ⊑ Rec(m′, pc ′)

Memory Consumption Analysis of Java Smart Cards – p.33/??

Some M.Sc. (Ph.D.) subjects

Implement the O.S. of the JCVM, and the
(optimised) analysis in Maude

Prove correctness of the algorithm in Coq
(using a prefix semantics) and extract the
program

Specify an implement a modular analysis in
order to minimise global fix-point
computations

Memory Consumption Analysis of Java Smart Cards – p.34/??

Objective (Cont.)

The technique used should allow us to:

Develop a certified analyser

Extract a correct analyser

Moreover, we want the formalism to be compati-

ble with previous work (certified Data Flow Anal-

yser developed at IRISA)

Memory Consumption Analysis of Java Smart Cards – p.35/??

How to obtain a certified analyser?

Formalise the operational semantics of the
language in a Proof Assistant (Coq)

Define the abstract domains (lattices)

Prove well-foundedness of the lattices

Code the algorithm into Coq (as a
constraint-based algorithm)

Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

Extract a program (proof-as-program
paradigm) using Coq’s extraction mechanism

Memory Consumption Analysis of Java Smart Cards – p.36/??

How to obtain a certified analyser?

Formalise the operational semantics of the
language in a Proof Assistant (Coq)

Define the abstract domains (lattices)

Prove well-foundedness of the lattices

Code the algorithm into Coq (as a
constraint-based algorithm)

Prove the correctness of the algorithm w.r.t.
(an abstraction of) the operational semantics

Extract a program (proof-as-program
paradigm) using Coq’s extraction mechanism

Memory Consumption Analysis of Java Smart Cards – p.36/??

	Overview
		extcolor {blue}{Introduction and Motivation}
	Smart cards
	New generation of Java smart cards
	Security Issues
	Security Issues (cont.)
	How to program in small devices?
	The problem
		extcolor {blue}{Objectives - Our Approach}
	Objective
	The JavaCard bytecode language
	Algorithm - Outline
	Example: Rec , Loop and Loop '
	Example - Detecting loops (Loop)
	Form of the constraint rules
	Detecting loops (Loop)
	Spec. of the main algorithm - $Gamma $
	Algorithm - How does it work?
	Exceptions and Subroutines
	Exceptions and Subroutines (cont.)
		extcolor {blue}{Final Discussion}
	Achievements
	Features of our algorithm
	Related Work
	Contributions (comparison)
	Improvements to be done
		extcolor {blue}{Thank you very much! \ Questions?}
	Research on this topic?
	Detecting recursive methods (Rec)
	Rules for Loop '
	Definition of the functions F and G
	Rules for Handling Exceptions
	Some M.Sc. (Ph.D.)
subjects
	Objective (Cont.)
	How to obtain a certified analyser?

