
Towards a Formal Language for Electronic Contracts

Gerardo Schneider
gerardo@i�.uio.no

Joint work with Cristian Prisacariu (cristi@i�.uio.no)

Department of Informatics,
University of Oslo

University of Edinburgh
17 of July 2007 � Edinburgh, Scotland

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 1 / 42

Contracts

�A contract is a binding agreement between two or more persons that
is enforceable by law.� [Webster on-line]

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
4. DEFINITIONS
a) Internet tra�c may be measured by both Client and Provider by means of Equipment

and may take the two values high and normal.
OPERATIVE PART
1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Tra�c is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after noti�cation he must immediately
lower the Internet tra�c to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet tra�c immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider's web page to the Client
Relations Department of the Provider.

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 2 / 42

Contracts

�A contract is a binding agreement between two or more persons that
is enforceable by law.� [Webster on-line]

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
4. DEFINITIONS
a) Internet tra�c may be measured by both Client and Provider by means of Equipment

and may take the two values high and normal.
OPERATIVE PART
1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Tra�c is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after noti�cation he must immediately
lower the Internet tra�c to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet tra�c immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider's web page to the Client
Relations Department of the Provider.
Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 2 / 42

Contracts

We call the above a conventional contract

An e-contract (electronic contract) is a machine-readable contract

Two scenarios:

1 Obtain an e-contract from a conventional contract

Context: legal (e.g. �nancial) contracts

2 Write the e-contract directly in a formal language

Context: web services, components, OO, etc

We are interested in both:

De�nition

A contract is a document which engages several parties in a transaction
and stipulates their obligations, rights, and prohibitions, as well as penalties
in case of contract violations.

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 3 / 42

Contracts

We call the above a conventional contract

An e-contract (electronic contract) is a machine-readable contract

Two scenarios:

1 Obtain an e-contract from a conventional contract

Context: legal (e.g. �nancial) contracts

2 Write the e-contract directly in a formal language

Context: web services, components, OO, etc

We are interested in both:

De�nition

A contract is a document which engages several parties in a transaction
and stipulates their obligations, rights, and prohibitions, as well as penalties
in case of contract violations.

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 3 / 42

Outline

1 Aim and Motivation

2 The Contract Language CL

3 CL Semantics

4 Properties of the Language

5 Model Checking Contracts

6 Final Remarks

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 4 / 42

Aim

1 Give a formal language for specifying/writing contracts
2 Analyse contracts �internally�

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect super�uous contract clauses
. . .

3 Monitor contracts

Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts

. . .

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 5 / 42

A Formal Language for Contracts

A precise and concise syntax and a formal semantics

Expressive enough as to capture natural contract clauses

Restrictive enough to avoid the philosophical (deontic) paradoxes and
be amenable to formal analysis

Model checking
Deductive veri�cation

Allow the representation of complex clauses especially conditional
obligations, permissions, and prohibitions

Allow the speci�cation of (nested) contrary-to-duty (CTD) and
contrary-to-prohibition (CTP)

CTD: when an obligation is not ful�lled
CTP: when a prohibition is violated

We want to combine

The logical approach (e.g., dynamic, temporal, deontic logic)
The automata-like approach (labelled Kripke structures)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 6 / 42

A Formal Language for Contracts

A precise and concise syntax and a formal semantics

Expressive enough as to capture natural contract clauses

Restrictive enough to avoid the philosophical (deontic) paradoxes and
be amenable to formal analysis

Model checking
Deductive veri�cation

Allow the representation of complex clauses especially conditional
obligations, permissions, and prohibitions

Allow the speci�cation of (nested) contrary-to-duty (CTD) and
contrary-to-prohibition (CTP)

CTD: when an obligation is not ful�lled
CTP: when a prohibition is violated

We want to combine

The logical approach (e.g., dynamic, temporal, deontic logic)
The automata-like approach (labelled Kripke structures)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 6 / 42

(Standard) Deontic Logic
Few Words

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indi�erence,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organisations and security systems

Di�cult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
�Practical oddities�, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

�The Internet Provider must send a password to the Client�

ought-to-be: expressions consider state of a�airs (results of actions)
�The average bandwidth must be more than 20kb/s�

We'll only consider obligation, permission and prohibition over actions
Assertions de�ne the �state of a�airs�

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 7 / 42

(Standard) Deontic Logic
Few Words

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indi�erence,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organisations and security systems

Di�cult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
�Practical oddities�, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

�The Internet Provider must send a password to the Client�

ought-to-be: expressions consider state of a�airs (results of actions)
�The average bandwidth must be more than 20kb/s�

We'll only consider obligation, permission and prohibition over actions
Assertions de�ne the �state of a�airs�

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 7 / 42

(Standard) Deontic Logic
Few Words

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indi�erence,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organisations and security systems

Di�cult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
�Practical oddities�, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

�The Internet Provider must send a password to the Client�

ought-to-be: expressions consider state of a�airs (results of actions)
�The average bandwidth must be more than 20kb/s�

We'll only consider obligation, permission and prohibition over actions
Assertions de�ne the �state of a�airs�

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 7 / 42

(Standard) Deontic Logic
Few Words

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indi�erence,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organisations and security systems

Di�cult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
�Practical oddities�, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

�The Internet Provider must send a password to the Client�

ought-to-be: expressions consider state of a�airs (results of actions)
�The average bandwidth must be more than 20kb/s�

We'll only consider obligation, permission and prohibition over actions
Assertions de�ne the �state of a�airs�

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 7 / 42

(Standard) Deontic Logic
Few Words

Concerned with moral and normative notions
obligation, permission, prohibition, optionality, power, indi�erence,
immunity, etc

Focus on
The logical consistency of the above notions
The faithful representation of their intuitive meaning in law, moral
systems, business organisations and security systems

Di�cult to avoid puzzles and paradoxes
Logical paradoxes, where we can deduce contradictory actions
�Practical oddities�, where we can get counterintuitive conclusions

Approaches
ought-to-do: expressions consider names of actions

�The Internet Provider must send a password to the Client�

ought-to-be: expressions consider state of a�airs (results of actions)
�The average bandwidth must be more than 20kb/s�

We'll only consider obligation, permission and prohibition over actions
Assertions de�ne the �state of a�airs�

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 7 / 42

Outline

1 Aim and Motivation

2 The Contract Language CL

3 CL Semantics

4 Properties of the Language

5 Model Checking Contracts

6 Final Remarks

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 8 / 42

The Contract Speci�cation Language CL

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (δ) | CF ∨ [α]CF

φ denotes assertions and ranges over Boolean expressions

O(α), P(α), F (δ) specify obligation, permission (rights), and
prohibition (forbidden) over actions

α and δ are actions given in the de�nition part D
[α] and 〈α〉 are the action parameterised modalities of dynamic logic

U , ©, and � correspond to temporal logic operators

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 9 / 42

The Contract Speci�cation Language CL

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (δ) | CF ∨ [α]CF

φ denotes assertions and ranges over Boolean expressions

O(α), P(α), F (δ) specify obligation, permission (rights), and
prohibition (forbidden) over actions

α and δ are actions given in the de�nition part D
[α] and 〈α〉 are the action parameterised modalities of dynamic logic

U , ©, and � correspond to temporal logic operators

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 9 / 42

Actions

Actions are denoted by α and are constructed using the operators:

+ choice
· concatenation (sequencing)

& concurrent execution

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds

then action a is performed

Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C
Action negation α

It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 10 / 42

Actions

Actions are denoted by α and are constructed using the operators:

+ choice
· concatenation (sequencing)

& concurrent execution

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds

then action a is performed

Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C
Action negation α

It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 10 / 42

Actions

Actions are denoted by α and are constructed using the operators:

+ choice
· concatenation (sequencing)

& concurrent execution

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds

then action a is performed

Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C
Action negation α

It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 10 / 42

Actions
Concurrent actions

a&b

�The client must pay immediately, or the client must notify the service
provider by sending an e-mail specifying that he delays the payment�

O(p)⊕ O(d&n)

O(d&n) ≡ O(d) ∧ O(n)

Action algebra enriched with a con�ict relation to represent
incompatible actions

a = �increase Internet tra�c� and b = �decrease Internet tra�c�

a#C b

O(a) ∧ O(b) gives an inconsistency

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 11 / 42

Actions
Concurrent actions

a&b

�The client must pay immediately, or the client must notify the service
provider by sending an e-mail specifying that he delays the payment�

O(p)⊕ O(d&n)

O(d&n) ≡ O(d) ∧ O(n)

Action algebra enriched with a con�ict relation to represent
incompatible actions

a = �increase Internet tra�c� and b = �decrease Internet tra�c�

a#C b

O(a) ∧ O(b) gives an inconsistency

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 11 / 42

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTDs)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTPs)

FC(α) = F (α) ∧ [α]C

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 12 / 42

More on the Contract Language

Example

�In case the client delays the payment, after noti�cation he must
immediately lower the Internet tra�c to the low level, and pay later twice.
If the client does not lower the Internet tra�c immediately, then the client
will have to pay three times�

In CL:

�([d&n](OC(l) ∧ [l]♦(O(p&p))))

where

C = ♦O(p&p&p)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 13 / 42

Outline

1 Aim and Motivation

2 The Contract Language CL

3 CL Semantics

4 Properties of the Language

5 Model Checking Contracts

6 Final Remarks

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 14 / 42

Why µ-calculus?

Expressive � embeds most of the used temporal and process logics

Well studied � has a complete axiomatic and proof system

Mathematically well founded on �x-point theory

Possible to represent actions in the modal variant of µ-calculus

E�cient algorithms for model checking

Tools

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 15 / 42

Cµ � A variant of the modal µ-calculus
Syntax

The syntax of the Cµ logic
ϕ := P | Z | Pc | > | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | µZ .ϕ(Z)

Main di�erences with respect to the classical µ-calculus:

1 Pc is set of propositional constants Oa and Fa, one for each basic
action a

Semantic restriction: ‖Fa‖TV ∩ ‖Oa‖TV = ∅, ∀a ∈ L
2 Multisets of basic actions: i.e. γ = {a, a, b} is a label

3 Restricted non-determinism (more later)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 16 / 42

Cµ � A variant of the modal µ-calculus
Syntax

The syntax of the Cµ logic
ϕ := P | Z | Pc | > | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | µZ .ϕ(Z)

Main di�erences with respect to the classical µ-calculus:

1 Pc is set of propositional constants Oa and Fa, one for each basic
action a

Semantic restriction: ‖Fa‖TV ∩ ‖Oa‖TV = ∅, ∀a ∈ L
2 Multisets of basic actions: i.e. γ = {a, a, b} is a label

3 Restricted non-determinism (more later)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 16 / 42

Cµ � A variant of the modal µ-calculus
Semantics

‖>‖TV = S ; ‖P‖TV = VProp(P)

‖Z‖TV = V(Z) ; ‖Pc‖TV = VProp(Pc)

‖¬ϕ‖TV = S \ ‖ϕ‖TV
‖ϕ ∧ ψ‖TV = ‖ϕ‖TV ∩ ‖ψ‖TV
‖[γ]ϕ‖TV = {s | ∀t ∈ S. (s, t) ∈ Rγ ⇒ t ∈ ‖ϕ‖TV }

‖νZ .ϕ‖TV =
⋃
{S ⊆ S | S ⊆ ‖ϕ‖TV[Z :=S]}

‖ϕ ∨ ψ‖TV = ‖ϕ‖TV ∪ ‖ψ‖TV
‖〈γ〉ϕ‖TV = {s | ∃t ∈ S. (s, t) ∈ Rγ ∧ t ∈ ‖ϕ‖TV }

‖µZ .ϕ‖TV =
⋂
{S ⊆ S | S ⊇ ‖ϕ‖TV[Z :=S]}

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 17 / 42

From CL to Cµ

(1) f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai
)

(2) f T (CO ⊕ CO) = f T (CO) ∧ f T (CO)
(3) f T (P(&n

i=1ai)) = 〈{a1, . . . , an}〉(∧n
i=1¬Fai

)
(4) f T (CP ⊕ CP) = f T (CP) ∧ f T (CP)
(5) f T (F (&n

i=1ai)) = [{a1, . . . , an}](∧n
i=1Fai

)
(6) f T (F (δ) ∨ [β]F (δ)) = f T (F (δ)) ∨ f T ([β]F (δ))
(7) f T (C1 ∧ C2) = f T (C1) ∧ f T (C2)
(8) f T (©C) = [any]f T (C)
(9) f T (C1 U C2) = µZ .f T (C2) ∨ (f T (C1) ∧ [any]Z ∧ 〈any〉>)
(10) f T ([&n

i=1ai]C) = [{a1, . . . , an}]f T (C)
(11) f T ([(&n

i=1ai)α]C) = [{a1, . . . , an}]f T ([α]C)
(12) f T ([α+ β]C) = f T ([α]C) ∧ f T ([β]C)
(13) f T ([ϕ?]C) = f T (ϕ) ⇒ f T (C)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 18 / 42

From CL to Cµ
Few examples

Obligation

f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai
)

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Prohibition

f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai
)

f T (F (a)) = [{a}]Fa

Permission

f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai
)

f T (P(a)) = 〈a〉(¬Fa)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 19 / 42

From CL to Cµ
Few examples

Obligation

f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai
)

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Prohibition

f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai
)

f T (F (a)) = [{a}]Fa

Permission

f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai
)

f T (P(a)) = 〈a〉(¬Fa)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 19 / 42

From CL to Cµ
Few examples

Obligation

f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai
)

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Prohibition

f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai
)

f T (F (a)) = [{a}]Fa

Permission

f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai
)

f T (P(a)) = 〈a〉(¬Fa)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 19 / 42

Outline

1 Aim and Motivation

2 The Contract Language CL

3 CL Semantics

4 Properties of the Language

5 Model Checking Contracts

6 Final Remarks

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 20 / 42

Ross's paradox

1 It is obligatory that one mails the letter

2 It is obligatory that one mails the letter or one destroys the letter

In Standard Deontic Logic (SDL) these are expressed as:

1 O(p)

2 O(p ∨ q)

Problem: in SDL one can infer that O(p) ⇒ O(p ∨ q)

Avoided in CL �Proof Sketch:

f T (O(a)) = 〈a〉Oa

O(a + b) ≡ O(a)⊕ O(b)
f T
= 〈a〉Oa ∧ 〈b〉Ob

〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 21 / 42

Ross's paradox

1 It is obligatory that one mails the letter

2 It is obligatory that one mails the letter or one destroys the letter

In Standard Deontic Logic (SDL) these are expressed as:

1 O(p)

2 O(p ∨ q)

Problem: in SDL one can infer that O(p) ⇒ O(p ∨ q)

Avoided in CL �Proof Sketch:

f T (O(a)) = 〈a〉Oa

O(a + b) ≡ O(a)⊕ O(b)
f T
= 〈a〉Oa ∧ 〈b〉Ob

〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 21 / 42

Properties of the contract language

Theorem

The following paradoxes are avoided in CL:

Ross's paradox

The Free Choice Permission paradox

Sartre's dilemma

The Good Samaritan paradox

Chisholm's paradox

The Gentle Murderer paradox

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 22 / 42

Properties of the contract language (II)

Theorem

The following hold in CL:

P(α) ≡ ¬F (α)

O(α) ⇒ P(α)

P(a) 6⇒ P(a&b)

F (a) 6⇒ F (a&b)

F (a&b) 6⇒ F (a)

P(a&b) 6⇒ P(a)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 23 / 42

Outline

1 Aim and Motivation

2 The Contract Language CL

3 CL Semantics

4 Properties of the Language

5 Model Checking Contracts

6 Final Remarks

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 24 / 42

Model Checking Contracts

1 Model the conventional contract written in English using the formal
language CL;

2 Translate syntactically the CL speci�cation into the extended
µ-calculus Cµ;

3 Obtain a Kripke-like model (a labelled transition system, LTS) of the
Cµ formulae;

4 Translate the LTS into the input language of NuSMV;

5 Perform model checking using NuSMV;

6 In case of a counter-example given by NuSMV, interpret it as a CL
clause and repeat the model checking process until the property is
satis�ed;

7 Finally, repair the original contract by adding a corresponding clause,
if applicable.

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 25 / 42

Case Study
Contract in English

1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Tra�c is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after noti�cation he must immediately
lower the Internet tra�c to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet tra�c immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider's web page to the Client
Relations Department of the Provider.

6. The Provider may, at its sole discretion, without notice or giving any reason or incurring any
liability for doing so: Suspend Internet Services immediately if Client is in breach of Clause 1;

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 26 / 42

Case Study
CL Speci�cation

φ = the Internet tra�c is high
� = client supplies false information to Client Relations Department
h = client increases Internet tra�c to high level
p = client pays [price]
d = client delays payment
n = client noti�es by e-mail
l = client lowers the Internet tra�c

sfD = client sends the Personal Data Form to the Client Relations Department
o = provider activates the Internet Service (it becomes operative)
s = provider suspends service

1 �FP(s)(�)

2 �[h](φ ⇒ O(p + (d&n)))

3 �([d&n](O(l) ∧ [l]♦O(p&p)))

4 �([d&n · l]♦O(p&p&p))

5 �([o]O(sfD))

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 27 / 42

Case Study
Model Checking

1 CL into Cµ (not showing the outer �)

1 [�]F� ∧ [�]〈s〉Ps

2 [h](φ ⇒ (〈p〉Op ∧ 〈{d , n}〉(Od ∧ On)))
3 [{d , n}](〈l〉Ol ∧ [l](µZ .〈{p, p}〉Op ∨ ([any]Z ∧ 〈any〉>)))
4 [{d , n}][l](µZ .〈{p, p, p}〉Op ∨ ([any]Z ∧ 〈any〉>))
5 [o]〈sfD〉OsfD

2 From Cµ to input language in NuSMV (using direct speci�cation)
3 Model checking

1 Prove model satis�es the original clauses (represented in LTL)
2 Property about client obligations: �After the Internet is high and the

client pays then the client is not obliged to pay again immediately�

FALSE � Modify the contract

3 Property about payment: �If the Internet is high and the client delays
and noti�es, and afterwards lowers the Internet tra�c, the client does
not pay twice until the Internet tra�c is high again�

FALSE � Modify the contract

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 28 / 42

Case Study
Model Checking

1 CL into Cµ (not showing the outer �)

1 [�]F� ∧ [�]〈s〉Ps

2 [h](φ ⇒ (〈p〉Op ∧ 〈{d , n}〉(Od ∧ On)))
3 [{d , n}](〈l〉Ol ∧ [l](µZ .〈{p, p}〉Op ∨ ([any]Z ∧ 〈any〉>)))
4 [{d , n}][l](µZ .〈{p, p, p}〉Op ∨ ([any]Z ∧ 〈any〉>))
5 [o]〈sfD〉OsfD

2 From Cµ to input language in NuSMV (using direct speci�cation)
3 Model checking

1 Prove model satis�es the original clauses (represented in LTL)
2 Property about client obligations: �After the Internet is high and the

client pays then the client is not obliged to pay again immediately�

FALSE � Modify the contract

3 Property about payment: �If the Internet is high and the client delays
and noti�es, and afterwards lowers the Internet tra�c, the client does
not pay twice until the Internet tra�c is high again�

FALSE � Modify the contract

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 28 / 42

Case Study
Model Checking

1 CL into Cµ (not showing the outer �)

1 [�]F� ∧ [�]〈s〉Ps

2 [h](φ ⇒ (〈p〉Op ∧ 〈{d , n}〉(Od ∧ On)))
3 [{d , n}](〈l〉Ol ∧ [l](µZ .〈{p, p}〉Op ∨ ([any]Z ∧ 〈any〉>)))
4 [{d , n}][l](µZ .〈{p, p, p}〉Op ∨ ([any]Z ∧ 〈any〉>))
5 [o]〈sfD〉OsfD

2 From Cµ to input language in NuSMV (using direct speci�cation)
3 Model checking

1 Prove model satis�es the original clauses (represented in LTL)
2 Property about client obligations: �After the Internet is high and the

client pays then the client is not obliged to pay again immediately�

FALSE � Modify the contract

3 Property about payment: �If the Internet is high and the client delays
and noti�es, and afterwards lowers the Internet tra�c, the client does
not pay twice until the Internet tra�c is high again�

FALSE � Modify the contract

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 28 / 42

Outline

1 Aim and Motivation

2 The Contract Language CL

3 CL Semantics

4 Properties of the Language

5 Model Checking Contracts

6 Final Remarks

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 29 / 42

Main Features of CL

We have seen:

A formal speci�cation language for contracts with semantics based on
a variant of µ-calculus

The language

Is specially tailored for specifying contracts
Adopts the ought-to-do approach
Allows the representation of conditional obligations, permissions and
prohibitions
Allows the representation of nested CTDs and CTPs
Is proved to avoid many of the principal deontic paradoxes
Enjoys some nice desirable properties
Combines the logic approach with the automata-like approach

Initial ideas on how to model check contracts

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 30 / 42

Limitations / Questions

Action algebra

Di�erentiate between ¬a and a

Study better the use of a (only on CTDs?)
Restricted non-determinism �introduce priorities

Ought-to-do vs ought-do-be?

Next operator not good for re�nement

Restrictions on prohibitions (needs better study)

No notion of time

Timed µ−calculus, TCTL, . . .?
Time associated with actions or formulae?
Durations, time stamps, beginning and end, dates, . . .?

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 31 / 42

Further Work

Add time

Semantics

µ−calculus vs CTL vs . . .

Develop a theory of contracts

�Normative� automata

Model checking

Automate the process
Model synthesis

Further theoretical investigations of the underlying actions

Contract-as-types (Curry-Howard isomorphism) (?!)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 32 / 42

Links and Papers

Nordunet3 project �Contract-Oriented Software Development for
Internet Services�
(http://folk.uio.no/gerardo/nordunet3/index.shtml)

C. Prisacariu and G. Schneider. A formal language for electronic
contracts. In FMOODS'07, vol. 4468 of LNCS, pages 174-189, June
2007

C. Prisacariu and G. Schneider. Model Checking Contracts �a case
study. In ATVA'07, to appear in LNCS, October 2007

FLACOS'07 � First Workshop on Formal Languages and Analysis of
Contract-Oriented Software (http://www.ifi.uio.no/flacos07/)

Oslo, 9-10 October 2007

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 33 / 42

http://folk.uio.no/gerardo/nordunet3/index.shtml
http://www.ifi.uio.no/flacos07/

Thank you!

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 34 / 42

Rewriting Rules for Obligations

(1) O(a) ∧ O(b) O(a&b)
(2) O(a) ∧ O(a&b) O(a&b)
(3) O(a) ∧ (O(a)⊕ O(b)) O(a)
(4) O(a) ∧ O(a) O(a)
(5) O(a)⊕ O(a) O(a)
(6) O(c) ∧ (O(a)⊕ O(b)) (O(c) ∧ O(a))⊕ (O(c) ∧ O(b))
(7) (⊕iO(ai)) ∧ (⊕jO(bj)) ⊕i ,j(O(ai) ∧ O(bj)) ai 6= bj

Table: Rewriting rules for obligation O

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 35 / 42

Compositional Rules

(1) O(α+ β) ≡ O(α)⊕ O(β)
(2) O(a&b) ≡ O(a) ∧ O(b)
(3) O(αβ) ≡ O(α) ∧ [α]O(β)
(4) P(α+ β) ≡ P(α)⊕ P(β)
(5) P(αβ) ≡ P(α) ∧ 〈α〉P(β)
(6) F (αβ) ≡ F (α) ∨ [α]F (β)

Table: Compositional rules

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 36 / 42

Paradoxes and Practical Oddities

Deontic paradoxes. A paradox is an apparently true statement that
leads to a contradiction, or a situation which is counter-intuitive.

The Gentle Murderer Paradox
1 It is obligatory that John does not kill his mother;
2 If John does kill his mother, then it is obligatory that John kills her

gently;
3 John does kill his mother.

It could be possible to infer that John is obliged to kill his mother

Practical oddities. A situation where you can infer two assertions
which are contradictory from the intuitive practical point of view,
though they might not represent a logical contradiction

Assume you have the following norms and facts:
1 Keep your promise;
2 If you haven't kept your promise, apologise;
3 You haven't kept your promise.

It could be possible to deduce that you are both obliged to keep your
promise and to apologise for not keeping it

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 37 / 42

Paradoxes and Practical Oddities

Deontic paradoxes. A paradox is an apparently true statement that
leads to a contradiction, or a situation which is counter-intuitive.

The Gentle Murderer Paradox
1 It is obligatory that John does not kill his mother;
2 If John does kill his mother, then it is obligatory that John kills her

gently;
3 John does kill his mother.

It could be possible to infer that John is obliged to kill his mother

Practical oddities. A situation where you can infer two assertions
which are contradictory from the intuitive practical point of view,
though they might not represent a logical contradiction

Assume you have the following norms and facts:
1 Keep your promise;
2 If you haven't kept your promise, apologise;
3 You haven't kept your promise.

It could be possible to deduce that you are both obliged to keep your
promise and to apologise for not keeping it

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 37 / 42

Paradoxes
Free Choice Permission Paradox

1 You may either sleep on the sofa or sleep on the bed.

2 You may sleep on the sofa and you may sleep on the bed.

In SDL this is:

1 P(p ∨ q)

2 P(p) ∧ P(q)

The natural intuition tells that P(p ∨ q) ⇒ P(p) ∧ P(q). In SDL this
would lead to P(p) ⇒ P(p ∨ q) which is P(p) ⇒ P(p) ∧ P(q), so
P(p) ⇒ P(q). As an example: If one is permitted something, then one is

permitted anything.

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 38 / 42

Paradoxes
Sartre's Dilemma

1 It is obligatory I now meet Jones (as promised to Jones).

2 It is obligatory I now do not meet Jones (as promised to Smith).

In SDL this is:

1 O(p)

2 O(¬p)

The problem is that in the natural language the two obligations are
intuitive and often happen, where the logical formulae are inconsistent
when put together (in conjunction) in SDL. (In SDL, O(p) ⇒ ¬O(¬p)
and we get a contradiction.)

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 39 / 42

Paradoxes
The Good Samaritan Paradox

1 It ought to be the case that Jones helps Smith who has been robbed.

2 It ought to be the case that Smith has been robbed.

And one naturally infers that:

Jones helps Smith who has been robbed if and only if Jones helps
Smith and Smith has been robbed.

In SDL the �rst two are expressed as:

1 O(p ∧ q)

2 O(q)

The problem is that in SDL one can derive that O(p ∧ q) ⇒ O(q) which
is counter intuitive in the natural language, as in the example above.

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 40 / 42

Paradoxes
Chisholm's Paradox

1 John ought to go to the party.

2 If John goes to the party then he ought to tell them he is coming.

3 If John does not go to the party then he ought not to tell them he is
coming.

4 John does not go to the party.

In Standard Deontic Logic (SDL) these are expressed as:

1 O(p)

2 O(p ⇒ q)

3 ¬p ⇒ O(¬q)

4 ¬p
The problem is that in SDL one can infer O(q) ∧ O(¬q) which is due to
statement (2).

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 41 / 42

Paradoxes
The Gentle Murderer Paradox

1 It is obligatory that John does not kill his mother.

2 If John does kill his mother, then it is obligatory that John kills her
gently.

3 John does kill his mother.

In Standard Deontic Logic (SDL) these are expressed as:

1 O(¬p)

2 p ⇒ O(q)

3 p

The problem is that when adding a natural inference like q ⇒ p then in
SDL one can infer that O(p).

Gerardo Schneider (IfI, UiO) A Formal Language for E-Contracts Edinburgh, 17.07.2007 42 / 42

	Contracts
	Aim and Motivation
	The Contract Language CL
	CL Semantics
	Properties of the Language
	Model Checking Contracts
	Final Remarks

