
university-logo

Specification and Analysis of Contracts
Lecture 7

Specification of ’Deontic’ Contracts Using CL

Gerardo Schneider
gerardo@ifi.uio.no

http://folk.uio.no/gerardo/

Department of Informatics,
University of Oslo

SEFM School, Oct. 27 - Nov. 7, 2008
Cape Town, South Africa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 1 / 27

university-logo

Plan of the Course

1 Introduction
2 Components, Services and Contracts
3 Background: Modal Logics 1
4 Background: Modal Logics 2
5 Deontic Logic
6 Challenges in Defining a Good Contract language
7 Specification of ’Deontic’ Contracts (CL)
8 Verification of ’Deontic’ Contracts
9 Exercises
10 Exercises and Summary

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 2 / 27

university-logo

Plan

1 The Contract Language CL

2 Properties of the Language

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 3 / 27

university-logo

Plan

1 The Contract Language CL

2 Properties of the Language

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 27

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 27

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 27

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 27

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 27

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 27

university-logo

Aim and Motivation

Use deontic e-contracts to ‘rule’ services exchange (e.g., web services
and component-based development)

1 Give a formal language for specifying/writing contracts
2 Analyze contracts “internally”

Detect contradictions/inconsistencies statically
Determine the obligations (permissions, prohibitions) of a signatory
Detect superfluous contract clauses

3 Tackle the negotiation process (automatically?)
4 Develop a theory of contracts

Contract composition
Subcontracting
Conformance between a contract and the governing policies
Meta-contracts (policies)

5 Monitor contracts
Run-time system to ensure the contract is respected
In case of contract violations, act accordingly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 27

university-logo

A Formal Language for Contracts

A precise and concise syntax and a formal semantics
Expressive enough as to capture natural contract clauses
Restrictive enough to avoid (deontic) paradoxes and be amenable to
formal analysis

Model checking
Deductive verification

Allow representation of complex clauses: conditional obligations,
permissions, and prohibitions
Allow specification of (nested) contrary-to-duty (CTD) and
contrary-to-prohibition (CTP)

CTD: when an obligation is not fulfilled
CTP: when a prohibition is violated

We want to combine
The logical approach (e.g., dynamic, temporal, deontic logic)
The automata-like approach (labelled Kripke structures)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 6 / 27

university-logo

A Formal Language for Contracts

A precise and concise syntax and a formal semantics
Expressive enough as to capture natural contract clauses
Restrictive enough to avoid (deontic) paradoxes and be amenable to
formal analysis

Model checking
Deductive verification

Allow representation of complex clauses: conditional obligations,
permissions, and prohibitions
Allow specification of (nested) contrary-to-duty (CTD) and
contrary-to-prohibition (CTP)

CTD: when an obligation is not fulfilled
CTP: when a prohibition is violated

We want to combine
The logical approach (e.g., dynamic, temporal, deontic logic)
The automata-like approach (labelled Kripke structures)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 6 / 27

university-logo

The Contract Specification Language CL

Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 27

university-logo

The Contract Specification Language CL

Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 27

university-logo

The Contract Specification Language CL

Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 27

university-logo

The Contract Specification Language CL

Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 27

university-logo

The Contract Specification Language CL

Definition (CL)
Contract := D ; C

C := CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO
CP := P(α) | CP ⊕ CP
CF := F (α) | CF ∨ [α]CF

O(α), P(α), F (α) specify obligation, permission (rights), and
prohibition (forbidden) over actions
α are actions given in the definition part D

+ choice
· concatenation (sequencing)

& concurrency
φ? test

∧, ∨, and ⊕ are conjunction, disjunction, and exclusive disjunction
[α] and 〈α〉 are the action parameterized modalities of dynamic logic
U , ©, and � correspond to temporal logic operators

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 27

university-logo

Actions
Test and Negation

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds
then action a is performed
Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C

Action negation α
It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 8 / 27

university-logo

Actions
Test and Negation

Tests as actions: φ?

The behaviour of a test is like a guard ; e.g. ϕ? · a if the test succeeds
then action a is performed
Tests are used to model implication: [ϕ?]C is the same as ϕ⇒ C

Action negation α
It represents all immediate traces that take us outside the trace of α
Involves the use of a canonic form of actions
E.g.: consider two atomic actions a and b then a · b is b + a · a

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 8 / 27

university-logo

Actions
Concurrent actions

a&b
“The client must pay immediately, or the client must notify the service
provider by sending an e-mail specifying that he delays the payment”

O(p)⊕ O(d&n)

O(d&n) ≡ O(d) ∧ O(n)

Action algebra enriched with a conflict relation to represent
incompatible actions

a = “increase Internet traffic” and b = “decrease Internet traffic”
a #C b
O(a) ∧ O(b) gives an inconsistency

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 27

university-logo

Actions
Concurrent actions

a&b
“The client must pay immediately, or the client must notify the service
provider by sending an e-mail specifying that he delays the payment”

O(p)⊕ O(d&n)

O(d&n) ≡ O(d) ∧ O(n)

Action algebra enriched with a conflict relation to represent
incompatible actions

a = “increase Internet traffic” and b = “decrease Internet traffic”
a #C b
O(a) ∧ O(b) gives an inconsistency

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 27

university-logo

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTD)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTP)

FC(α) = F (α) ∧ [α]C

Example
“[...] the client must immediately lower the Internet traffic to the low level,
and pay . If the client does not lower the Internet traffic immediately, then
the client will have to pay three times the price”

In CL: �(OC(l) ∧ [l]♦(O(p&p)))

where C = ♦O(p&p&p)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 27

university-logo

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTD)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTP)

FC(α) = F (α) ∧ [α]C

Example
“[...] the client must immediately lower the Internet traffic to the low level,
and pay . If the client does not lower the Internet traffic immediately, then
the client will have to pay three times the price”

In CL: �(OC(l) ∧ [l]♦(O(p&p)))

where C = ♦O(p&p&p)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 27

university-logo

More on the Contract Language
CTD and CTP

Expressing contrary-to-duty (CTD)

OC(α) = O(α) ∧ [α]C

Expressing contrary-to-prohibition (CTP)

FC(α) = F (α) ∧ [α]C

Example
“[...] the client must immediately lower the Internet traffic to the low level,
and pay . If the client does not lower the Internet traffic immediately, then
the client will have to pay three times the price”

In CL: �(OC(l) ∧ [l]♦(O(p&p)))

where C = ♦O(p&p&p)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 27

university-logo

CL Semantics

A first semantics given through a translation into a variant of
µ-calculus (Cµ)

A Kripke-like modal semantics have been developed recently
Why µ-calculus?

µ-calculus is a combination of propositional logic, the action
parameterized modal operator [a], and the fix point constructions
Expressive – embeds most of the used temporal and process logics
Well studied – has a complete axiomatic system and a complete proof
system
Very efficient algorithms for model checking
Mathematically well founded in the results on fix points (Tarski,
Knaster, Kleene, et al.)
The modal variant of µ-calculus is based on actions (labels)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 11 / 27

university-logo

CL Semantics
Cµ – A variant of the modal µ-calculus

Definition
The syntax of the Cµ calculus is defined as follows:

ϕ := P | Z | Pc | > | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | µZ .ϕ(Z)

Main differences with respect to the classical µ-calculus:
1 Pc is set of propositional constants Oa and Fa, one for each basic

action a
Semantic restriction: ‖Fa‖TV ∩ ‖Oa‖TV = ∅, ∀a ∈ L

2 Multisets of basic actions: i.e. γ = {a, a, b} is a label

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 12 / 27

university-logo

CL Semantics
Cµ – A variant of the modal µ-calculus

Definition
The syntax of the Cµ calculus is defined as follows:

ϕ := P | Z | Pc | > | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | µZ .ϕ(Z)

Main differences with respect to the classical µ-calculus:
1 Pc is set of propositional constants Oa and Fa, one for each basic

action a
Semantic restriction: ‖Fa‖TV ∩ ‖Oa‖TV = ∅, ∀a ∈ L

2 Multisets of basic actions: i.e. γ = {a, a, b} is a label

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 12 / 27

university-logo

CL Semantics
A Taste: Obligation

Obligation

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Oa
{a, b}

O(a&b)

Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 27

university-logo

CL Semantics
A Taste: Obligation

Obligation

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

Oa
{a, b}

O(a&b)

Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 27

university-logo

CL Semantics
Difficulties in the Encoding

We would like to have a compositional semantics and preserve the
intuitive properties of obligations, permissions and prohibitions
Also: get rid of paradoxes!

Not easy!

Conjunction in dynamic logic is a branching
What is the semantics of O(a) ∧ O(b)?

‖O(a) ∧ O(b)‖ should be defined as ‖O(a)‖ and ‖O(b)‖
How to enforce it?

How to enforce some properties?
‖P(αβ)‖ ≡ ‖P(α) ∧ 〈α〉P(β)‖
O(a&b) ≡ O(a) ∧ O(b)

Solution
We will add some equivalences and rewriting rules to enforce the above

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 27

university-logo

CL Semantics
Difficulties in the Encoding

We would like to have a compositional semantics and preserve the
intuitive properties of obligations, permissions and prohibitions
Also: get rid of paradoxes!

Not easy!

Conjunction in dynamic logic is a branching
What is the semantics of O(a) ∧ O(b)?

‖O(a) ∧ O(b)‖ should be defined as ‖O(a)‖ and ‖O(b)‖
How to enforce it?

How to enforce some properties?
‖P(αβ)‖ ≡ ‖P(α) ∧ 〈α〉P(β)‖
O(a&b) ≡ O(a) ∧ O(b)

Solution
We will add some equivalences and rewriting rules to enforce the above

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 27

university-logo

CL Semantics
Difficulties in the Encoding

We would like to have a compositional semantics and preserve the
intuitive properties of obligations, permissions and prohibitions
Also: get rid of paradoxes!

Not easy!

Conjunction in dynamic logic is a branching
What is the semantics of O(a) ∧ O(b)?

‖O(a) ∧ O(b)‖ should be defined as ‖O(a)‖ and ‖O(b)‖
How to enforce it?

How to enforce some properties?
‖P(αβ)‖ ≡ ‖P(α) ∧ 〈α〉P(β)‖
O(a&b) ≡ O(a) ∧ O(b)

Solution
We will add some equivalences and rewriting rules to enforce the above

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 27

university-logo

CL Semantics
Difficulties in the Encoding

We would like to have a compositional semantics and preserve the
intuitive properties of obligations, permissions and prohibitions
Also: get rid of paradoxes!

Not easy!

Conjunction in dynamic logic is a branching
What is the semantics of O(a) ∧ O(b)?

‖O(a) ∧ O(b)‖ should be defined as ‖O(a)‖ and ‖O(b)‖
How to enforce it?

How to enforce some properties?
‖P(αβ)‖ ≡ ‖P(α) ∧ 〈α〉P(β)‖
O(a&b) ≡ O(a) ∧ O(b)

Solution
We will add some equivalences and rewriting rules to enforce the above

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 27

university-logo

CL Semantics
Pre-processing

Compositional Rules

(1) O(α+ β) ≡ O(α)⊕ O(β)
(2) O(a&b) ≡ O(a) ∧ O(b)
(3) O(αβ) ≡ O(α) ∧ [α]O(β)
(4) P(α+ β) ≡ P(α)⊕ P(β)
(5) P(αβ) ≡ P(α) ∧ 〈α〉P(β)
(6) F (αβ) ≡ F (α) ∨ [α]F (β)

Some of the above are intended to force “common sense” relationship
If we were to define an axiomatic system, we would aim the above to
be axioms or theorems

Concurrent actions are compositional only under obligation —No
similar rules for F and P

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 27

university-logo

CL Semantics
Pre-processing

Rewriting Rules for Obligation

(1) O(a) ∧ O(b) O(a&b)
(2) O(a) ∧ O(a&b) O(a&b)
(3) O(a) ∧ (O(a)⊕ O(b)) O(a)
(4) O(a) ∧ O(a) O(a)
(5) O(a)⊕ O(a) O(a)
(6) O(c) ∧ (O(a)⊕ O(b)) (O(c) ∧ O(a))⊕ (O(c) ∧ O(b))
(7) (⊕iO(ai)) ∧ (⊕jO(bj)) ⊕i ,j(O(ai) ∧ O(bj)) ai 6= bj

Rules (1)-(3): guided by intuition
Rules (4)-(5): usual contraction rules
Rules (6)-(7): distributivity of conjunction over the exclusive
disjunction

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 27

university-logo

CL Semantics

Definition (The Semantic Encoding)

(1) f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)

(2) f T (CO ⊕ CO) = f T (CO) ∧ f T (CO)

(3) f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai)

(4) f T (CP ⊕ CP) = f T (CP) ∧ f T (CP)

(5) f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai)

(6) f T (F (δ) ∨ [β]F (δ)) = f T (F (δ)) ∨ f T ([β]F (δ))

(7) f T (C1 ∧ C2) = f T (C1) ∧ f T (C2)
(8) f T (©C) = [any]f T (C)
(9) f T (C1 U C2) = µZ .f T (C2) ∨ (f T (C1) ∧ [any]Z ∧ 〈any〉>)

(10) f T ([&n
i=1ai]C) = [{a1, . . . , an}]f T (C)

(11) f T ([(&n
i=1ai)α]C) = [{a1, . . . , an}]f T ([α]C)

(12) f T ([α+ β]C) = f T ([α]C) ∧ f T ([β]C)
(13) f T ([ϕ?]C) = f T (ϕ) =⇒ f T (C)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 27

university-logo

CL Semantics

Example

f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)

“The Provider is obliged to provide internet and telephony services (at
the same time)”:

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai)

“It is forbidden to send private information”

f T (F (a)) = [a]Fa

f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai)

“It is permitted to receive an acknowledgement”

f T (P(a)) = 〈a〉¬Fa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 27

university-logo

CL Semantics

Example

f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)

“The Provider is obliged to provide internet and telephony services (at
the same time)”:

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai)

“It is forbidden to send private information”

f T (F (a)) = [a]Fa

f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai)

“It is permitted to receive an acknowledgement”

f T (P(a)) = 〈a〉¬Fa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 27

university-logo

CL Semantics

Example

f T (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)

“The Provider is obliged to provide internet and telephony services (at
the same time)”:

f T (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)

f T (F (&n
i=1ai)) = [{a1, . . . , an}](∧n

i=1Fai)

“It is forbidden to send private information”

f T (F (a)) = [a]Fa

f T (P(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai)

“It is permitted to receive an acknowledgement”

f T (P(a)) = 〈a〉¬Fa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 27

university-logo

CL Semantics

Example
Contrary-to-duty (CTD): OO(b)(a) = O(a) ∧ [a]O(b)

Applying the semantic encoding:

f T (OO(b)(a)) = 〈a〉Oa ∧ [a]〈b〉Ob

Contrary-to-prohibition (CTP): FO(b)(a) = F (a) ∧ [a]O(b)

Applying the semantic encoding:

f T (FO(b)(a)) = [a]Fa ∧ [a]〈b〉Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 27

university-logo

CL Semantics

Example
Contrary-to-duty (CTD): OO(b)(a) = O(a) ∧ [a]O(b)

Applying the semantic encoding:

f T (OO(b)(a)) = 〈a〉Oa ∧ [a]〈b〉Ob

Contrary-to-prohibition (CTP): FO(b)(a) = F (a) ∧ [a]O(b)

Applying the semantic encoding:

f T (FO(b)(a)) = [a]Fa ∧ [a]〈b〉Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 27

university-logo

CL Semantics

Example
Contrary-to-duty (CTD): OO(b)(a) = O(a) ∧ [a]O(b)

Applying the semantic encoding:

f T (OO(b)(a)) = 〈a〉Oa ∧ [a]〈b〉Ob

Contrary-to-prohibition (CTP): FO(b)(a) = F (a) ∧ [a]O(b)

Applying the semantic encoding:

f T (FO(b)(a)) = [a]Fa ∧ [a]〈b〉Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 27

university-logo

Plan

1 The Contract Language CL

2 Properties of the Language

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 27

university-logo

Properties of the contract language

Theorem

The following paradoxes are avoided in CL:

Ross’s paradox
The Free Choice Permission paradox
Sartre’s dilemma
The Good Samaritan paradox
Chisholm’s paradox
The Gentle Murderer paradox

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 27

university-logo

Ross’s paradox

1 It is obligatory that one mails the letter
2 It is obligatory that one mails the letter or one destroys the letter

In Standard Deontic Logic (SDL) these are expressed as:
1 O(p)
2 O(p ∨ q)

Problem
In SDL one can infer that O(p) ⇒ O(p ∨ q)

Avoided in CL
Proof Sketch:

f T (O(a)) = 〈a〉Oa

O(a + b) ≡ O(a)⊕ O(b)
f T
= 〈a〉Oa ∧ 〈b〉Ob

〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 27

university-logo

Ross’s paradox

1 It is obligatory that one mails the letter
2 It is obligatory that one mails the letter or one destroys the letter

In Standard Deontic Logic (SDL) these are expressed as:
1 O(p)
2 O(p ∨ q)

Problem
In SDL one can infer that O(p) ⇒ O(p ∨ q)

Avoided in CL
Proof Sketch:

f T (O(a)) = 〈a〉Oa

O(a + b) ≡ O(a)⊕ O(b)
f T
= 〈a〉Oa ∧ 〈b〉Ob

〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 27

university-logo

Ross’s paradox

1 It is obligatory that one mails the letter
2 It is obligatory that one mails the letter or one destroys the letter

In Standard Deontic Logic (SDL) these are expressed as:
1 O(p)
2 O(p ∨ q)

Problem
In SDL one can infer that O(p) ⇒ O(p ∨ q)

Avoided in CL
Proof Sketch:

f T (O(a)) = 〈a〉Oa

O(a + b) ≡ O(a)⊕ O(b)
f T
= 〈a〉Oa ∧ 〈b〉Ob

〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 27

university-logo

Chisholm’s Paradox

1 John ought to go to the party.
2 If John goes to the party then he ought to tell them he is coming.
3 If John does not go to the party then he ought not to tell them he is

coming.
4 John does not go to the party.

In Standard Deontic Logic (SDL) these are expressed as:
1 O(p)

2 O(p ⇒ q)

3 ¬p ⇒ O(¬q)

4 ¬p

Problem
The problem is that in SDL one can infer O(q) ∧ O(¬q) (due to 2)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 23 / 27

university-logo

Chisholm’s Paradox

1 John ought to go to the party.
2 If John goes to the party then he ought to tell them he is coming.
3 If John does not go to the party then he ought not to tell them he is

coming.
4 John does not go to the party.

In Standard Deontic Logic (SDL) these are expressed as:
1 O(p)

2 O(p ⇒ q)

3 ¬p ⇒ O(¬q)

4 ¬p

Problem
The problem is that in SDL one can infer O(q) ∧ O(¬q) (due to 2)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 23 / 27

university-logo

Chisholm’s Paradox (cont.)

Avoided in CL
Expressed in CL as:

1 O(a)
2 [a]O(b)

3 [a]O(b)

(1) and (3) give the CTD formula Oϕ(a) of CL where ϕ = O(b)

In CL O(b) and O(b) cannot hold in the same world
O(b) holds only after doing action a, where O(b) holds only after
doing the contradictory action a

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 24 / 27

university-logo

Properties of the contract language (II)

Theorem
The following hold in CL:

P(α) ≡ ¬F (α)

O(α)⇒ P(α)

P(a) 6⇒ P(a&b)

F (a) 6⇒ F (a&b)

F (a&b) 6⇒ F (a)
P(a&b) 6⇒ P(a)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 25 / 27

university-logo

Final Remarks

We have seen...

CL: A formal language to write contracts
The formal semantics given through an encoding into a µ-calculus
variant
It avoids the most important paradoxes of deontic logic
Does not address all the issues of the ’ideal’ language presented in last
lecture

Next lecture

We will see how to model check contracts written in CL

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 27

university-logo

Final Remarks

We have seen...

CL: A formal language to write contracts
The formal semantics given through an encoding into a µ-calculus
variant
It avoids the most important paradoxes of deontic logic
Does not address all the issues of the ’ideal’ language presented in last
lecture

Next lecture

We will see how to model check contracts written in CL

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 27

university-logo

Further Reading

C. Prisacariu and G. Schneider. A formal language for electronic
contracts. In FMOODS’07, vol. 4468 of LNCS, pp. 174-189, 2007

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 27

	The Contract Language CL
	Properties of the Language

