Specification and Analysis of Contracts

Lectures 3 and 4
Background: Modal Logics

Gerardo Schneider
gerardoQifi.uio.no

http://folk.uio.no/gerardo/

Department of Informatics,
University of Oslo

SEFM School, Oct. 27 - Nov. 7, 2008
Cape Town, South Africa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 1/56

Plan of the Course

@ Introduction

@ Components, Services and Contracts

© Background: Modal Logics 1

@ Background: Modal Logics 2

© Deontic Logic

O Challenges in Defining a Good Contract language
@ Specification of 'Deontic’ Contracts (CL)

@ Verification of 'Deontic’ Contracts

O Conflict Analysis of 'Deontic’ Contracts

@ Other Analysis of 'Deontic’ Contracts and Summary

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 2 /56

Modal Logics

@ Modal logic is the logic of possibility and necessity
e O: is necessarily true.
o Oy s possibly true.
@ Not a single system but many different systems depending on
application
@ Good to reason about causality and situations with incomplete
information
o Different interpretation for the modalities: belief, knowledge,
provability, etc.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Modal Logics

@ Modal logic is the logic of possibility and necessity
e O: is necessarily true.
o O p: @ is possibly true.
@ Not a single system but many different systems depending on
application
@ Good to reason about causality and situations with incomplete
information

o Different interpretation for the modalities: belief, knowledge,
provability, etc.
@ Depending on the semantics, we can interpret O ¢ differently

temporal ¢ will always hold

doxastic | believe ¢

epistemic | know ¢

deontic It ought to be the case that ¢

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 3 /56

Modal Logic

Dynamic Aspect of Modal Logic

@ Modal logic is good to reason in dynamic situations
o Truth values may vary over time (classical logic is static)

@ Sentences in classical logic are interpreted over a single structure or
world
@ In modal logic, interpretation consists of a collection K of possible
worlds or states
o If states change, then truth values can also change

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 /56

Modal Logic

Dynamic Aspect of Modal Logic

@ Modal logic is good to reason in dynamic situations
o Truth values may vary over time (classical logic is static)

@ Sentences in classical logic are interpreted over a single structure or
world
@ In modal logic, interpretation consists of a collection K of possible
worlds or states
o If states change, then truth values can also change
@ Dynamic interpretation of modal logic
e Temporal logic

o Linear time
o Branching time

e Dynamic logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 56

Modal Logics

We will see

In the rest of this and next lecture (2 hours):

@ Temporal logic

@ Propositional modal logic
@ Multimodal logic

@ Dynamic logic

@ p-calculus

o Real-time logics

In the following lecture (1 hour):

@ Deontic logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5/ 56

Plan

@ Temporal Logic

© Propositional Modal Logic
© Multimodal Logic

@ Dynamic Logic

© Mu-calculus

@ Real-Time Logics

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts

SEFM, 3-7 Nov 2008

6 / 56

Plan

@ Temporal Logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 56

Temporal Logic

Introduction

@ Temporal logic is the logic of time

@ There are different ways of modeling time
e linear time vs. branching time
e time instances vs. time intervals
o discrete time vs. continuous time
e past and future vs. future only

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Temporal Logic

Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is
now,

@ p holds in i and every following point (the future)

@ p holds in i and every preceding point (the past)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 56

Temporal Logic

Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is
now,

@ p holds in i and every following point (the future)
@ p holds in i and every preceding point (the past)

We will only be concerned with the future

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 56

Temporal Logic

Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is

now,
@ p holds in i and every following point (the future)
@ p holds in i and every preceding point (the past)

We will only be concerned with the future

p p p P

N J [] [] [] [] e ..
i-2 -1 i i+1 i+2 i+3
p p p

[] [] [] [] [] e ..
-2 -1 i i+1 i+2 i+3

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

9/ 56

Temporal Logic

Introduction

We extend the first-order language £ to a temporal language Lt by adding
the temporal operators O, &, (O, U, R and W.

Interpretation

O ¢ will always (in every state) hold
O ¢ will eventually (ins some state) hold
Oep o will hold at the next point in time

Uy ¥ will eventually hold, and until that point ¢ will hold
o RY ¥ holds until (incl.) the point (if any) where ¢ holds (release)
oW ¢ will hold until ¢ holds (weak until or waiting for)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 56

Temporal Logic

Introduction

We define LTL formulae as follows:

o L C L: first-order formulae are also LTL formulae
@ If ¢ is an LTL formulae, so are

Op, O, Op and —p
@ If ¢ and 1 are LTL formulae, so are

oUY, oRY, WY, oV, oA, o = P and p =9

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 11 / 56

Temporal Logic

Semantics

@ A path is an infinite sequence of states
0 = 50,51,52,-.-

o ok denotes the path Sky Skt1s Skt2s - - -
@ o denotes the state s

@ All computations are paths, but not vice versa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Linear Temporal Logic

Semantics

We define the notion that an LTL formula ¢ is true (false) relative to a
path o, written o = ¢ (0 [~ ¢) as follows.

oE@ iff o9 E @ when p € L
oE-p iff oo
cEeVYy iff ocEporokEY

okE=Op iff oX = forall k>0
oE=<Cp iff o }= ¢ for some k > 0

cEQe ff oo

(cont.)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 56

Linear Temporal Logic

Semantics

(cont.)

ocE=oUy iff ok =4 for some k >0, and
o = ¢ for every i such that 0 </ < k

ocEeRYy iff for every j >0,
if for every i < j o' [~ o then o/ =4

cEeWy iff ocEeUYporol=0¢p

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 56

Temporal Logic

Semantics

o If o |= ¢ for all paths o, we say that ¢ is (temporally) valid and write

Eo (Validity)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 56

Temporal Logic

Semantics

o If o |= ¢ for all paths o, we say that ¢ is (temporally) valid and write

Eo (Validity)

o If =p =1 (ile. 0 = piff o =1, for all o), we say that ¢ and 1) are

equivalent and write

0~ Y (Equivalence)

v

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 56

Temporal Logic

Semantics
cEOp
p p p p p
[] [] [] [] []
0 1 2 3 4

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 56

Temporal Logic

Semantics
cEOp
p p p p p
[] [] [] [] []
0 1 2 3 4
oE=<Op
p
o [] [] [] []

o
H
N
w
N

SEFM, 3-7 Nov 2008 16 / 56

Specification and Analysis of e-Contracts

Gerardo Schneider (UiO)

Temporal Logic

Semantics
cEOp

p p p p p

[] [] [] [] []

0 1 2 3 4
oE=<Op

p
o [] [] [] []

o
H
N
w
N

c=0p

o
H
N
w
N

SEFM, 3-7 Nov 2008 16 / 56

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts

Temporal Logic

Semantics

o = pUq - The sequence of p is finite
p p P q

o
H
N
w
IN

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 56

Temporal Logic

Semantics

o = pUq - The sequence of p is finite

p p p q
° ° ° e o

0 1 2 3 4

o EpRq - The sequence of g may be infinite

q a q9 qPp
° ° ° o o

0 1 2 3 4

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 56

Temporal Logic

Semantics

o = pUq - The sequence of p is finite

p p p q
° ° ° e o

0 1 2 3 4

o EpRq - The sequence of g may be infinite

q a q9 qPp
° ° ° o o

0 1 2 3 4
o= pWq - The sequence of p may be infinite (p W q = (pU q) vV Op)

p p p q
° ° ° o o

0 1 2 3 4

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 56

Temporal Logic

Examples

Example (Response)
O(p = ©9)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 56

Temporal Logic

Examples

Example (Response)
O(p = ©9)
Every o-position coincides with or is followed by a w-position

Gerardo Schneider (UiO)

Specification and Analysis of e-Contracts

SEFM, 3-7 Nov 2008 18 / 56

Temporal Logic

Examples

Example (Response)

O(p = ©9)
Every o-position coincides with or is followed by a w-position

This formula will also hold in every path where ¢ never holds

I R L
° ° ° o o
0 1 2 3 4

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

How does one formalize the informal requirement “¢ implies "7

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example

How does one formalize the informal requirement “¢ implies "7
e p = Y7

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example

How does one formalize the informal requirement “¢ implies "7
@ p = 17 ¢ = 1 holds in the initial state

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example

How does one formalize the informal requirement “¢ implies "7
@ p = 17 ¢ = 1 holds in the initial state
o O(p = ¢)?

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example

How does one formalize the informal requirement “¢ implies "7
@ © = Y7 ¢ = 1 holds in the initial state
e O(¢ = ¥)? ¢ = 4 holds in every state

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example

How does one formalize the informal requirement “¢ implies "7
@ © = Y7 ¢ = 1 holds in the initial state
e O(¢ = ¥)? ¢ = 4 holds in every state
0 v = OY?

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example
How does one formalize the informal requirement “¢ implies "7
@ © = Y7 ¢ = 1 holds in the initial state
e O(¢ = ¥)? ¢ = 4 holds in every state
o o = OY? If p holds in the initial state, ¢ will hold in some state

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example
How does one formalize the informal requirement “¢ implies "7
@ © = Y7 ¢ = 1 holds in the initial state
e O(¢ = ¥)? ¢ = 4 holds in every state
o o = OY? If p holds in the initial state, ¢ will hold in some state
o O(p = Cv)?

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example
How does one formalize the informal requirement “¢ implies "7
@ © = Y7 ¢ = 1 holds in the initial state
e O(¢ = ¥)? ¢ = 4 holds in every state
o o = OY? If p holds in the initial state, ¢ will hold in some state
o O(p = <O)? As above, but iteratively

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

@ Duality is symmetrical; if e is the dual of o then o is the dual of e,
thus we may refer to two connectives as dual

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

@ Duality is symmetrical; if e is the dual of o then o is the dual of e,
thus we may refer to two connectives as dual

e A and V are duals; (¢ A 1)) is equivalent to (—p V =)

@ — is its own dual

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

@ Duality is symmetrical; if e is the dual of o then o is the dual of e,
thus we may refer to two connectives as dual

e A and V are duals; (¢ A 1)) is equivalent to (—p V =)

@ — is its own dual

@ What is the dual of O7 And of &7

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

@ Duality is symmetrical; if e is the dual of o then o is the dual of e,
thus we may refer to two connectives as dual

e A and V are duals; (¢ A 1)) is equivalent to (—p V =)

@ — is its own dual

@ What is the dual of O7 And of &7

e Oand ¢ areduals: = Op ~C—p, =Cp~O-p

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

@ Duality is symmetrical; if e is the dual of o then o is the dual of e,
thus we may refer to two connectives as dual

e A and V are duals; (¢ A 1)) is equivalent to (—p V =)

@ — is its own dual

@ What is the dual of O7 And of &7

e Oand ¢ areduals: = Op ~C—p, =Cp~O-p

@ Any other?

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Duals

@ For a binary boolean connective o (such as A), a binary boolean
connective e is its dual if =(p 0 1)) is equivalent to (- @ —1))

@ Similarly for unary connectives; e is the dual of o if = o ¢ is equivalent
to e—p.

@ Duality is symmetrical; if e is the dual of o then o is the dual of e,

thus we may refer to two connectives as dual

A and V are duals; =(p A 1) is equivalent to (- V =)

— is its own dual

What is the dual of O7 And of &7

Oand O areduals: “Op ~ O, =O@~0O-p

Any other?

U and R are duals:

—(pU) ~ (=) R(=¢)
(e RY) ~ (mp)U (—¢)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety O

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety O

liveness S

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety O
liveness S
obligation OV Oy

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety O
liveness S
obligation OV Oy

recurrence O @

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety O
liveness S
obligation OV Oy
recurrence O @

persistence & O

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety O

liveness S

obligation OV Oy
recurrence O @
persistence & O
reactivity OOV OOY

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 56

© Propositional Modal Logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 56

Propositional Modal Logic

@ The logic of possibility and necessity
e Ow: ¢ is "necessarily true”, or “¢ holds in all possible worlds"
o O pis “possibly true”, or “there is a possible world that realizes ¢

@ The modalities are dual
0o O %) déf -0d -

SEFM, 3-7 Nov 2008 23 / 56

Specification and Analysis of e-Contracts

Gerardo Schneider (UiO)

Propositional Modal Logic

Semantics: Kripke Frames

A Kripke frame M is a structure (W, R,) where
@ W is a finite non-empty set of states (or worlds) —W is called the
universe of M
@ RC W x W is an accessibility relation between states (transition
relation)
o v : P — 2K determines the truth assignment to the atomic
propositional variables in each state

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 24 / 56

Propositional Modal Logic

Semantics: Kripke Frames

We define the notion that a modal formula ¢ is true in the world w in the
model M, written M, w = ¢ as follows:

M,w = p

M, w | —p
M,W):¢1v902

M,wEOgp
MwECp

iff

iff
iff

iff
iff

w € v(p)

Mw [E @
M,w = o1 or M, w |= @2

M, w' = ¢ for all w such that (w,w') € R
M, w' |= ¢ for some w' such that (w,w’) € R

Gerardo Schneider (UiO)

Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 25 / 56

Propositional Modal Logic

Examples

Example (Logic T)

@ R reflexive
o Mwl=0O-p

o O

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 56

Propositional Modal Logic

Examples

Example (Logic T)

@ R reflexive
o Mwl=0O-p

o O

v

Example (Logic S4)

@ R reflexive and transitive
o MiwlE=0O-p

oo o)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 56

Propositional Modal Logic

Semantics: Kripke Frames

@ The semantics is alternatively called relational semantics, frame
semantics, world semantics, possible world semantics, Kripke
semantics/frame/structure

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 56

Propositional Modal Logic

Semantics: Kripke Frames

@ The semantics is alternatively called relational semantics, frame
semantics, world semantics, possible world semantics, Kripke
semantics/frame/structure

@ There are different variations of the definition of Kripke semantics

@ Sometimes a Kripke frame is defined to be a structure (W, R), and
then the triple (W, R,v) is called a Kripke model

@ The Kripke model may be defined as (W, R, =) instead
@ Sometimes a set of starting states Wy C W is added to the definition
o In other cases a valuation function V : K — 2F is given instead of v

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 56

Propositional Modal Logic

Semantics: Kripke Frames

@ The semantics is alternatively called relational semantics, frame
semantics, world semantics, possible world semantics, Kripke
semantics/frame/structure

@ There are different variations of the definition of Kripke semantics

@ Sometimes a Kripke frame is defined to be a structure (W, R), and
then the triple (W, R,v) is called a Kripke model

@ The Kripke model may be defined as (W, R, =) instead

@ Sometimes a set of starting states Wy C W is added to the definition

o In other cases a valuation function V : K — 2F is given instead of v

@ The semantics of O and © depend on the properties of R

o R can be reflexive, transitive, euclidean, etc
e Axioms and theorems will be determined by R (or vice-versal)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 56

© Multimodal Logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 28 / 56

Multimodal Logic

e A multimodal logic contains a set A= {a,...} of modalities
@ We can augment propositional logic with one modality for each a € A
o If v is a formula and a € A, then [a]y is a formula

e We also define (a)p o —[a]—e

@ The semantics of (a) and [a] are defined as for ¢ a and O a, but
“labelling” the transition with a

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 29 / 56

Multimodal Logic

A Kripke frame now is a structure M = (W, R, v) where

e W is a finite non-empty set of states (or worlds) =W is called the
universe of M

@ R(a) C W x W is the accessibility relation between states (transition
relation), associating each modality in a € A to a transition

o We get a labelled Kripke frame

o v : P — 2K determines the truth assignment to the atomic
propositional variables in each state

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 30 / 56

Multimodal Logic

Examples

e M,wi = [a]p

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 31 /56

Multimodal Logic

Examples

e M,wi = [a]p
o M,wi = (a)p

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 31 /56

Multimodal Logic

Examples

Example

— i

a
b
EEEEE——
a
Wa w3

wy

e M,wi = [a]p
o M,wi = (a)p
e M,w; [= (b)p, and also M, w; = [b]p

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 31 /56

Multimodal Logic

Examples

Example

— i

a
a
b
EEEEE——
a
Wa w3

wy

e M,wi = [a]p

o M,w; = (a)p

e M,w; [= (b)p, and also M, w; = [b]p
e What about M, w, = (b)—p?

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 31 /56

Multimodal Logic

Examples

Example

— i

a
a
b
EEEEE——
a
Wa w3

wy

e M,wi = [a]p

o M,w; = (a)p

e M,w; [= (b)p, and also M, w; = [b]p
e What about M, w, = (b)—p? NO

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 31 /56

Multimodal Logic

Examples

a
a
b
EEEEE——
a
Wa w3

wy

M, w [= [alp

M, w1 [= (a)p

M, w; = (b)p, and also M, w; |= [b]p
What about M, wy = (b)—p? NO
What about M, w, = [b]—p?

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Multimodal Logic

Examples

a
a
b
EEEEE——
a
Wa w3

wy

M, w = [alp

M, w1 [= (a)p

M, w; = (b)p, and also M, w; |= [b]p
What about M, wy = (b)—p? NO
What about M, w, = [b]—p? YES

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

@ Dynamic Logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 32 /56

Propositional Dynamic Logic (PDL)

@ The dynamic aspect of modal logic fits well the framework of program
execution
e K: universe of all possible execution states of a program
e With any program «, define a relation R over K s.t. (s,t) € Riff tisa
possible final state of the program « with initial state s

@ “possible” since programs may be non-deterministic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 33 /56

Propositional Dynamic Logic (PDL)

@ The dynamic aspect of modal logic fits well the framework of program
execution
e K: universe of all possible execution states of a program
e With any program «, define a relation R over K s.t. (s,t) € Riff tisa
possible final state of the program « with initial state s

@ “possible” since programs may be non-deterministic
@ Syntactically, each program gives rise to a modality of a multimodal
logic
e {(a)¢: it is possible to execute o and halt in a state satisfying ¢
o [a]ep: whenever « halts, it does so in a state satisfying ¢

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 33 /56

Propositional Dynamic Logic (PDL)

@ The dynamic aspect of modal logic fits well the framework of program
execution
e K: universe of all possible execution states of a program

e With any program «, define a relation R over K s.t. (s,t) € Riff tisa
possible final state of the program « with initial state s

@ “possible” since programs may be non-deterministic
@ Syntactically, each program gives rise to a modality of a multimodal
logic
e {(a)¢: it is possible to execute o and halt in a state satisfying ¢
o [a]ep: whenever « halts, it does so in a state satisfying ¢

@ Dynamic logic (PDL) is more than just multimodal logic applied to
programs

o It uses various calculi of programs, together with predicate logic, giving
rise to a reasoning system for interacting programs

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 33 /56

Propositional Dynamic Logic (PDL)

@ The dynamic aspect of modal logic fits well the framework of program
execution

e K: universe of all possible execution states of a program
e With any program «, define a relation R over K s.t. (s,t) € Riff tisa
possible final state of the program « with initial state s

@ “possible” since programs may be non-deterministic
@ Syntactically, each program gives rise to a modality of a multimodal
logic
e {(a)¢: it is possible to execute o and halt in a state satisfying ¢
o [a]ep: whenever « halts, it does so in a state satisfying ¢

@ Dynamic logic (PDL) is more than just multimodal logic applied to
programs

o It uses various calculi of programs, together with predicate logic, giving
rise to a reasoning system for interacting programs

@ Dynamic logic subsumes Hoare logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 33 /56

Propositional Dynamic Logic

Syntax

@ PDL contains syntax constructs from:

e Propositional logic
e Modal logic
o Algebra of regular expressions

@ Expressions are of two sorts

e Propositions and formulas: ¢,), ...
e Programs: «, 3,7, ...

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Propositional Dynamic Logic
Syntax

Programs and propositions of regular PDL are built inductively using the

following operators

@ Propositional operators

— implication
0 falsity

@ Program operators

: composition

u choice
* iteration
@ Mixed operators
[1 necessity
? test

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Propositional Dynamic Logic

Intuitive Meaning

@ [a]p: It is necessary that after executing «, ¢ is true (necessity)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 36 / 56

Propositional Dynamic Logic

Intuitive Meaning

@ [a]p: It is necessary that after executing «, ¢ is true (necessity)

@ a U B: Choose either o or 3 non-deterministically and execute it
(choice)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 36 / 56

Propositional Dynamic Logic

Intuitive Meaning

@ [a]p: It is necessary that after executing «, ¢ is true (necessity)

@ a U B: Choose either o or 3 non-deterministically and execute it
(choice)

e «; [3: Execute «, then execute (3 (concatenation, sequencing)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 36 / 56

Propositional Dynamic Logic

Intuitive Meaning

[a]e: It is necessary that after executing «, ¢ is true (necessity)

a U B: Choose either o or 8 non-deterministically and execute it
(choice)

a; 3: Execute «, then execute (3 (concatenation, sequencing)

a*: Execute « a non-deterministically chosen finite of times —zero or
more (Kleene star)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 36 / 56

Propositional Dynamic Logic

Intuitive Meaning

@ [a]p: It is necessary that after executing «, ¢ is true (necessity)

@ a U B: Choose either o or 3 non-deterministically and execute it
(choice)

e «; [3: Execute «, then execute (3 (concatenation, sequencing)

@ o*: Execute o a non-deterministically chosen finite of times —zero or
more (Kleene star)

@ p?: Test ¢; proceed if true, fail if false (test)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 36 / 56

Propositional Dynamic Logic

Intuitive Meaning

@ [a]p: It is necessary that after executing «, ¢ is true (necessity)

@ a U B: Choose either o or 3 non-deterministically and execute it
(choice)

e «; [3: Execute «, then execute (3 (concatenation, sequencing)

@ o*: Execute o a non-deterministically chosen finite of times —zero or
more (Kleene star)

@ p?: Test ¢; proceed if true, fail if false (test)

o We define (a)y o —[a]-¢p

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 36 / 56

Propositional Dynamic Logic

Additional Programs

skip = 17
fail < o7
if or— a1 |.. .| pn— a,fi def w1t UL Uep? ap
doyp; —ag|...| ¢ — a, od def (p17 a1 U Upp?an)" (b1 Ao A—pp
if ¢ then o else def ifop—al|-p—gf
= ¢haU-h3
while pdo o ¥ do ¢ — a od
= (pha)"-p?
repeat « until ¢ ef «; while ¢ do o od

= a; ()" e?
{pafv) € o—[aly

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Propositional Dynamic Logic

@ It is possible to reason about programs by using PDF proof system
@ We will not see the semantics here

@ The semantics of PDL comes from that from modal logic
o Kripke frames

@ We will see its application in our contract language

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 38 / 56

© Mu-calculus

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 39 / 56

p-calculus

@ s-calculus is a powerful language to express properties of transition
systems by using least and greatest fixpoint operators

e v is the greatest fixpoint meaning looping
e 41 is the least fixpoint meaning finite looping

@ Many temporal and program logics can be encoded into the u-calculus
o Efficient model checking algorithms

@ Formulas are interpreted relative to a transition system
o The Kripke structure needs to be slightly modified

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 40 / 56

p~calculus: Syntax

o Let Var ={Z,Y,...} be an (infinite) set of variable names
o Let Prop ={P,Q,...} be a set of atomic propositions
o Let L ={a,b,...} be a set of labels (or actions)

The set of p-calculus formulae (w.r.t. (Var, Prop, L)) is defined as follows:

@ Pis a formula

Z is a formula

If ¢1 and ¢, are formulae, so is ¢1 A @2
If ¢ is a formula, so is [a]®

If ¢ is a formula, so is —¢

If ¢ is a formula, then vZ.¢ is a formula

o Provided every free occurrence of Z in ¢ occurs positively (within the
scope of an even number of negations)
e v is the only binding operator

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 41 / 56

p~calculus: Syntax

e If ¢(Z), then the subsequent writing ¢(1)) means ¢ with 1 substituted
for all free occurrences of Z

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 42 / 56

p~calculus: Syntax

e If ¢(Z), then the subsequent writing ¢(1)) means ¢ with 1 substituted
for all free occurrences of Z

@ The positivity requirement syntactically guarantees monotonicity in Z
e Unique minimal and maximal fixpoint

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 42 / 56

p~calculus: Syntax

e If ¢(Z), then the subsequent writing ¢(1)) means ¢ with 1 substituted
for all free occurrences of Z
@ The positivity requirement syntactically guarantees monotonicity in Z
e Unique minimal and maximal fixpoint
@ Derived operators
o $1V o2 & (=1 A)
o (a)o = —[a] ¢

o uZ.4(2) Y vz ~p(~2)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 42 / 56

p~-calculus: Semantics

Definition

A labelled transition system (LTS) is a triple M = (S, T, L), where:
@ S is a nonempty set of states
o L is a set of labels (actions) as defined before
@ T CS8S x L xS is a transition relation

A modal p-calculus structure 7 (over Prop and L) is a LTS (S, T, L)

together with an interpretation Vpyo, : Prop — 25 for the atomic
propositions

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

43 / 56

p-calculus

Semantics

Given a structure Tand an interpretation V : Var — 25 of the variables,
the set | ¢[| is defined as follows:

IPIZ = Verop(P)

I1zI% = v(2)
I=ells = S =gl
lgr A 2ls = llgally N lially
lalells = {s|Vt(s,a,t) € T = telloli}

lvz.glly = (HSCSSISCldlfizzs)

where V[Z := S] is the valuation mapping Z to S and otherwise agrees
with V

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 44 / 56

p-calculus

Semantics

If we consider only positive formulae, we may add the following derived
operators

Interpretation

lérv éalT = llenlF U lidallf
Ka)¢lT = {s|3t(s,at) e Tate|ol}
InZ.4IT = (HUSCSSIS2 6%z s}

Gerardo Schneider (UiO)

Specification and Analysis of e-Contracts

SEFM, 3-7 Nov 2008

p-calculus

@ 4 is liveness

e “On all length a-path, P eventually holds”
uZ.(PV[a]Z)
e “On some a-path, P holds until @ holds”
uZ.(QV (P A{(a)Z)

@ v is safety
e “Pis true along every a-path”

vZ.(PAl[a]Z)

e "“On every a-path P holds while Q fails”

vZ.(QV (P A[4]2))

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

@ Real-Time Logics

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 47 / 56

Real-time Logics

e Temporal logic (TL) is concerned with the qualitative aspect of
temporal system requirements

e Invariance, responsiveness, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 48 / 56

Real-time Logics

e Temporal logic (TL) is concerned with the qualitative aspect of
temporal system requirements

e Invariance, responsiveness, etc

@ TL cannot refer to metric time: Not suitable for the specification of
quantitative temporal requirements

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 48 / 56

Real-time Logics

e Temporal logic (TL) is concerned with the qualitative aspect of
temporal system requirements
e Invariance, responsiveness, etc

@ TL cannot refer to metric time: Not suitable for the specification of
quantitative temporal requirements
@ There are many ways to extend a temporal logic with real-time

© Replace the unrestricted temporal operators with time-bounded versions

@ Extend temporal logic with explicit references to the times of temporal
contexts (freeze quantification)

© Add an explicit clock variable

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 48 / 56

Real-time Logics
1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

o =ploplone| U

where p is a propositional variable, and / is a rational interval

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 49 / 56

Real-time Logics
1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

o =ploplone| U

where p is a propositional variable, and / is a rational interval

e Informally, 1 U @2 holds at time t in a timed observation sequence iff
o There is a later time t' € t 4+ | s.t. o, holds at time t' and 1 holds
through the interval (¢,t’)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 49 / 56

Real-time Logics
1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

o =ploplone| U

where p is a propositional variable, and / is a rational interval

e Informally, 1 U @2 holds at time t in a timed observation sequence iff
o There is a later time t' € t 4+ | s.t. o, holds at time t' and 1 holds
through the interval (¢,t’)
@ Derived operators
o Ojp C true : time-bounded eventually

o Ojp def =& pmp: time-bounded always

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 49 / 56

Real-time Logics
1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

o =ploplone| U

where p is a propositional variable, and / is a rational interval

e Informally, 1 U @2 holds at time t in a timed observation sequence iff
o There is a later time t' € t 4+ | s.t. o, holds at time t' and 1 holds
through the interval (¢,t’)
@ Derived operators
o Ojp C true : time-bounded eventually

o Ojp def =& pmp: time-bounded always

@ Opp 4p means “p holds at all times within 2 to 4 time units”

e O(p = <p,39): “every stimulus p is followed by a response g within
3 time units”

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 49 / 56

Real-time Logics

2. Freeze Quantification

@ Bounded-operator cannot express non-local timing requirements
e Ex: "every stimulus p is followed by a response g, followed by another
response r, such that r is within 3 time units of p”

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 50 / 56

Real-time Logics

2. Freeze Quantification

@ Bounded-operator cannot express non-local timing requirements
e Ex: "every stimulus p is followed by a response g, followed by another
response r, such that r is within 3 time units of p”

@ Need to have explicit references to time of temporal contexts

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 50 / 56

Real-time Logics

2. Freeze Quantification

@ Bounded-operator cannot express non-local timing requirements
e Ex: "every stimulus p is followed by a response g, followed by another
response r, such that r is within 3 time units of p”
@ Need to have explicit references to time of temporal contexts
@ The freeze quantifier x. binds x to the time of the current temporal
context
e x.¢p(x) holds at time t iff ©(t) does
@ A logic with freeze quantifier is called half-order

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 50 / 56

Real-time Logics

2. Freeze Quantification

@ Bounded-operator cannot express non-local timing requirements
e Ex: "every stimulus p is followed by a response g, followed by another
response r, such that r is within 3 time units of p”
@ Need to have explicit references to time of temporal contexts
@ The freeze quantifier x. binds x to the time of the current temporal
context
e x.¢p(x) holds at time t iff ©(t) does
@ A logic with freeze quantifier is called half-order

Example of a R-T logic with freeze quantification

o =plT|op|leAe|eUp | xp

e V is a set of time variables
o 7 € (V) represents atomic timing constraints with free variables
from V (e.g., z < x+3)

SEFM, 3-7 Nov 2008 50 / 56

Specification and Analysis of e-Contracts

Gerardo Schneider (UiO)

Real-time Logics

2. Freeze Quantification

@ "“Every stimulus p is followed by a response g within 3 time units”

Ox.(p = Oy.(gAhy <x+3))

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 51 / 56

Real-time Logics

2. Freeze Quantification

@ "“Every stimulus p is followed by a response g within 3 time units”

Ox.(p = Oy.(gAhy <x+3))

@ “Every stimulus p is followed by a response g, followed by another
response r, such that r is within 3 time units of p"

Ox.(p = O(gACz.(r Az < x+3)))

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 51 / 56

Real-time Logics

3. Explicit Clock Variable

@ It uses a dynamic state variable T (the clock variable), and
@ A first-order quantification for global (rigid) variables over time

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 52 / 56

Real-time Logics

3. Explicit Clock Variable

@ It uses a dynamic state variable T (the clock variable), and
@ A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

p=plr|lplone|pUe|Ixep

e x € V, with V a set of (global) time variables

o m € M(V U{T}) represents atomic timing constraints over the
variables from VU{T}) (e.g., T < x+3)

The freeze quantifier x.¢ is equivalent to 3x.(T = x A ¢)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008

Real-time Logics
3. Explicit Clock Variable

@ It uses a dynamic state variable T (the clock variable), and
@ A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

pi=plr|-pleAeploUe|Ixe

e x € V, with V a set of (global) time variables
o m € M(V U{T}) represents atomic timing constraints over the

variables from VU{T}) (e.g., T < x+3)
The freeze quantifier x.¢ is equivalent to 3x.(T = x A ¢)

@ “Every stimulus p is followed by a response g within 3 time units”

Vx.O(pAT=x) = O(gA T <x+3))

SEFM, 3-7 Nov 2008 52 / 56

Specification and Analysis of e-Contracts

Gerardo Schneider (UiO)

Real-time Logics

Examples of Real-Time Logics

Linear-time:
e MTL (metric temporal logic)
e A propositional bounded-operator logic
@ TPTL (timed temporal logic)
e A propositional half-order logic using only the future operators until
and next
@ RTTL (real-time temporal logic)
e A first-order explicit-clock logic
o XCTL (explicit-clock temporal logic)
e A propositional explicit-clock logic with a rich timing constraints
(comparison and addition)
o Does not allow explicit quantification over time variables (implicit
universal quantification)
e MITL (metric interval temporal logic)
e A propositional linear-time with an interval-based strictly-monotonic
real-time semantics
e Does not allow equality constraints

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 53 / 56

Real-time Logics

Examples of Real-Time Logics

Branching-time:
@ RTCTL (real-time computation tree logic)

e A propositional branching-time logic for synchronouys systems
e Bounded-operator extension of CTL with a point-based
strictly-monotonic integer-time semantics

@ TCTL (timed computation tree logic)

e A propositional branching-time logic with less restricted semantics
e Bounded-operator extension of CTL with an interval-based
strictly-monotonic real-time semantics

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 54 / 56

Final Remarks

@ For most of the presented logics, there is an axiomatic system, and/or
a Natural Deduction system
@ Though important, it is not needed for the rest of the tutorial
o Our contract language will use the syntax of some of the presented

logics
o We will focus on the semantics (Kripke models, semantic encoding into
other logic)

v

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 55 / 56

Further Reading

Modal and Temporal Logics

e M. Fitting. Basic Modal Logic. Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 1, 1993

e C. Stirling. Modal and Temporal Logics. Handbook of Logic in
Computer Science, vol. 2, 1992

Dynamic Logic
e D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT, 2003

p-calculus:

e J. Bradfield and C. Stirling. Modal logics and p-calculi: an
introduction

Real-time logics:

@ R. Alur and T. Henzinger. Logics and Models of Real time: A
Survey. LNCS 600, pp. 74-106, 1992

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 56 / 56

	Temporal Logic
	Propositional Modal Logic
	Multimodal Logic
	Dynamic Logic
	Mu-calculus
	Real-Time Logics

