Specification and Analysis of Contracts Lectures 3 and 4 Background: Modal Logics

Gerardo Schneider gerardo@ifi.uio.no http://folk.uio.no/gerardo/
Department of Informatics, University of Oslo

SEFM School, Oct. 27 - Nov. 7, 2008
Cape Town, South Africa

Plan of the Course

(1) Introduction
(2) Components, Services and Contracts
(3) Background: Modal Logics 1
(4) Background: Modal Logics 2
(5) Deontic Logic
(0) Challenges in Defining a Good Contract language
(1) Specification of 'Deontic' Contracts ($\mathcal{C L}$)
(8) Verification of 'Deontic' Contracts
(9) Conflict Analysis of 'Deontic' Contracts
(10) Other Analysis of 'Deontic' Contracts and Summary

Modal Logics

- Modal logic is the logic of possibility and necessity
- $\square \varphi: \varphi$ is necessarily true.
- $\diamond \varphi: \varphi$ is possibly true.
- Not a single system but many different systems depending on application
- Good to reason about causality and situations with incomplete information
- Different interpretation for the modalities: belief, knowledge, provability, etc.

Modal Logics

- Modal logic is the logic of possibility and necessity
- $\square \varphi: \varphi$ is necessarily true.
- $\diamond \varphi: \varphi$ is possibly true.
- Not a single system but many different systems depending on application
- Good to reason about causality and situations with incomplete information
- Different interpretation for the modalities: belief, knowledge, provability, etc.
- Depending on the semantics, we can interpret $\square \varphi$ differently temporal φ will always hold doxastic I believe φ epistemic I know φ deontic It ought to be the case that φ

Modal Logic
 Dynamic Aspect of Modal Logic

- Modal logic is good to reason in dynamic situations
- Truth values may vary over time (classical logic is static)
- Sentences in classical logic are interpreted over a single structure or world
- In modal logic, interpretation consists of a collection K of possible worlds or states
- If states change, then truth values can also change
- Dynamic interpretation of modal logic
- Temporal logic
- Linear time
- Branching time
- Dynamic logic

Modal Logic
 Dynamic Aspect of Modal Logic

- Modal logic is good to reason in dynamic situations
- Truth values may vary over time (classical logic is static)
- Sentences in classical logic are interpreted over a single structure or world
- In modal logic, interpretation consists of a collection K of possible worlds or states
- If states change, then truth values can also change
- Dynamic interpretation of modal logic
- Temporal logic
- Linear time
- Branching time
- Dynamic logic

Modal Logics

We will see

In the rest of this and next lecture (2 hours):

- Temporal logic
- Propositional modal logic
- Multimodal logic
- Dynamic logic
- μ-calculus
- Real-time logics

In the following lecture (1 hour):

- Deontic logic

Plan

(1) Temporal Logic
(2) Propositional Modal Logic
(3) Multimodal Logic

4 Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

Plan

(1) Temporal Logic
(2) Propositional Modal Logic
(3) Multimodal Logic

4 Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

Temporal Logic

Introduction

- Temporal logic is the logic of time
- There are different ways of modeling time
- linear time vs. branching time
- time instances vs. time intervals
- discrete time vs. continuous time
- past and future vs. future only

Temporal Logic

Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is now,

- p holds in i and every following point (the future)
- p holds in i and every preceding point (the past) We will only be concerned with the future

Temporal Logic

Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is now,

- p holds in i and every following point (the future)
- p holds in i and every preceding point (the past)

We will only be concerned with the future

Temporal Logic

Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is now,

- p holds in i and every following point (the future)
- p holds in i and every preceding point (the past)

We will only be concerned with the future

Temporal Logic

Introduction

We extend the first-order language \mathcal{L} to a temporal language \mathcal{L}_{T} by adding the temporal operators $\square, \diamond, \bigcirc, U, R$ and W.

Interpretation

$\square \varphi$
$\diamond \varphi$
\bigcirc
$\varphi \mathcal{U} \psi$
$\varphi R \psi$
$\varphi W \psi$
φ will always (in every state) hold
φ will eventually (ins some state) hold
φ will hold at the next point in time
ψ will eventually hold, and until that point φ will hold
ψ holds until (incl.) the point (if any) where φ holds (release)
φ will hold until ψ holds (weak until or waiting for)

Temporal Logic

Introduction

Definition

We define LTL formulae as follows:

- $\mathcal{L} \subseteq \mathcal{L}_{\mathrm{T}}$: first-order formulae are also LTL formulae
- If φ is an LTL formulae, so are

$$
\square \varphi, \diamond \varphi, \bigcirc \varphi \text { and } \neg \varphi
$$

- If φ and ψ are LTL formulae, so are

$$
\varphi \mathcal{U} \psi, \varphi R \psi, \varphi W \psi, \varphi \vee \psi, \varphi \wedge \psi, \varphi \Rightarrow \psi \text { and } \varphi \equiv \psi
$$

Temporal Logic

Semantics

Definition

- A path is an infinite sequence of states

$$
\sigma=s_{0}, s_{1}, s_{2}, \ldots
$$

- σ^{k} denotes the path $s_{k}, s_{k+1}, s_{k+2}, \ldots$
- σ_{k} denotes the state s_{k}
- All computations are paths, but not vice versa

Linear Temporal Logic

Semantics

Definition

We define the notion that an LTL formula φ is true (false) relative to a path σ, written $\sigma \models \varphi(\sigma \not \models \varphi)$ as follows.

$$
\begin{array}{lll}
\sigma \models \varphi & \text { iff } & \\
\sigma_{0} \models \varphi \text { when } \varphi \in \mathcal{L} \\
\sigma \models \neg \varphi & \text { iff } & \sigma \not \models \varphi \\
\sigma \models \varphi \vee \psi & \text { iff } & \sigma \models \varphi \text { or } \sigma \models \psi \\
& & \\
\sigma \models \square \varphi & & \text { iff }
\end{array} \quad \sigma^{k} \models \varphi \text { for all } k \geq 0
$$

(cont.)

Linear Temporal Logic

Semantics

Definition

(cont.)

$$
\begin{array}{ll}
\sigma \models \varphi \mathcal{U} \psi \quad \text { iff } \quad & \sigma^{k} \models \psi \text { for some } k \geq 0, \text { and } \\
& \sigma^{i} \models \varphi \text { for every } i \text { such that } 0 \leq i<k \\
\sigma \models \varphi R \psi \quad \text { iff } \quad & \begin{array}{l}
\text { for every } j \geq 0, \\
\text { if for every } i<j \sigma^{i} \not \models \varphi \text { then } \sigma^{j} \models \psi
\end{array} \\
\sigma \models \varphi W \psi \quad \text { iff } \quad & \sigma \models \varphi \mathcal{U} \psi \text { or } \sigma \models \square \varphi
\end{array}
$$

Temporal Logic

Definition

- If $\sigma \models \varphi$ for all paths σ, we say that φ is (temporally) valid and write

$$
\models \varphi \quad \text { (Validity) }
$$

- If $\mid=\varphi \equiv \psi$ (ie. $\sigma \models \varphi$ iff $\sigma \models \psi$, for all σ), we say that φ and ψ are equivalent and write
(Equivalence)

Temporal Logic

Definition

- If $\sigma \models \varphi$ for all paths σ, we say that φ is (temporally) valid and write

$$
\models \varphi \quad \text { (Validity) }
$$

- If $\models=\varphi \equiv \psi$ (ie. $\sigma \models \varphi$ iff $\sigma \models \psi$, for all σ), we say that φ and ψ are equivalent and write

$$
\varphi \sim \psi \quad \text { (Equivalence) }
$$

Temporal Logic

Semantics

$$
\sigma \models \square p
$$

Temporal Logic

Semantics

$$
\sigma \models \square p
$$

$\sigma \models \diamond p$

Temporal Logic

Semantics

$$
\sigma \models \square p
$$

$\sigma \models \diamond p$

$$
\sigma \models \bigcirc p
$$

Temporal Logic

Semantics

$\sigma \models p \mathcal{U} q$ - The sequence of p is finite

Temporal Logic

Semantics

$\sigma \models p \mathcal{U} q$ - The sequence of p is finite

$\sigma \models p R q$ - The sequence of q may be infinite

Temporal Logic

Semantics

$\sigma \models p \mathcal{U} q$ - The sequence of p is finite

$\sigma \models p R q$ - The sequence of q may be infinite

$\sigma \models p W q$ - The sequence of p may be infinite $(p W q \equiv(p \mathcal{U} q) \vee \square p)$

Temporal Logic

Examples

Example (Response)
 $\square(\varphi \Rightarrow \diamond \psi)$

Temporal Logic

Examples

Example (Response)

$\square(\varphi \Rightarrow \diamond \psi)$
Every φ-position coincides with or is followed by a ψ-position

$$
\begin{array}{ccccccccc}
& \varphi & & \psi & & & \varphi, \psi \\
\bullet & \ldots \\
0 & 1 & 2 & 3 & 4 & 5 & 6 &
\end{array}
$$

Temporal Logic

Examples

Example (Response)

$\square(\varphi \Rightarrow \diamond \psi)$
Every φ-position coincides with or is followed by a ψ-position

$$
\begin{array}{ccccccccc}
& \varphi & & \psi & & & \varphi, \psi \\
\bullet & \ldots \\
0 & 1 & 2 & 3 & 4 & 5 & 6 &
\end{array}
$$

This formula will also hold in every path where φ never holds

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$?
- $\square(\varphi \Rightarrow \psi)$?

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$? $\varphi \Rightarrow \psi$ holds in the initial state

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$? $\varphi \Rightarrow \psi$ holds in the initial state
- $\square(\varphi \Rightarrow \psi)$?

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$? $\varphi \Rightarrow \psi$ holds in the initial state
- $\square(\varphi \Rightarrow \psi)$? $\varphi \Rightarrow \psi$ holds in every state

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$? $\varphi \Rightarrow \psi$ holds in the initial state
- $\square(\varphi \Rightarrow \psi)$? $\varphi \Rightarrow \psi$ holds in every state
- $\varphi \Rightarrow \diamond \psi$?

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$? $\varphi \Rightarrow \psi$ holds in the initial state
- $\square(\varphi \Rightarrow \psi) ? \varphi \Rightarrow \psi$ holds in every state
- $\varphi \Rightarrow \diamond \psi$? If φ holds in the initial state, ψ will hold in some state

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi ? \varphi \Rightarrow \psi$ holds in the initial state
- $\square(\varphi \Rightarrow \psi) ? \varphi \Rightarrow \psi$ holds in every state
- $\varphi \Rightarrow \diamond \psi$? If φ holds in the initial state, ψ will hold in some state
- $\square(\varphi \Rightarrow \diamond \psi)$?

Temporal Logic

Formalization

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi ? \varphi \Rightarrow \psi$ holds in the initial state
- $\square(\varphi \Rightarrow \psi) ? \varphi \Rightarrow \psi$ holds in every state
- $\varphi \Rightarrow \diamond \psi$? If φ holds in the initial state, ψ will hold in some state
- $\square(\varphi \Rightarrow \diamond \psi)$? As above, but iteratively

Temporal Logic

Duals

- For a binary boolean connective \circ (such as \wedge), a binary boolean connective • is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ?
- Any other?

Temporal Logic

Duals

- For a binary boolean connective \circ (such as \wedge), a binary boolean connective • is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ?
- Any other?

Temporal Logic

Duals

- For a binary boolean connective \circ (such as \wedge), a binary boolean connective • is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ? And of \diamond ?
- Any other?

Temporal Logic

Duals

- For a binary boolean connective \circ (such as \wedge), a binary boolean connective • is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ? And of \diamond ?
- Any other?

Temporal Logic

Duals

- For a binary boolean connective \circ (such as \wedge), a binary boolean connective \bullet is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ? And of \diamond ?
- \square and \diamond are duals: $\neg \square \varphi \sim \diamond \neg \varphi, \neg \diamond \varphi \sim \square \neg \varphi$
- Any other?

Temporal Logic

Duals

- For a binary boolean connective $\circ($ such as $\wedge)$, a binary boolean connective \bullet is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ? And of \diamond ?
- \square and \diamond are duals: $\neg \square \varphi \sim \diamond \neg \varphi, \neg \diamond \varphi \sim \square \neg \varphi$
- Any other?

Temporal Logic

Duals

- For a binary boolean connective \circ (such as \wedge), a binary boolean connective • is its dual if $\neg(\varphi \circ \psi)$ is equivalent to $(\neg \varphi \bullet \neg \psi)$
- Similarly for unary connectives; • is the dual of \circ if $\neg \circ \varphi$ is equivalent to $\bullet \neg \varphi$.
- Duality is symmetrical; if \bullet is the dual of \circ then \circ is the dual of \bullet, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \wedge \psi)$ is equivalent to $(\neg \varphi \vee \neg \psi)$
- \neg is its own dual
- What is the dual of \square ? And of \diamond ?
- \square and \diamond are duals: $\neg \square \varphi \sim \diamond \neg \varphi, \neg \diamond \varphi \sim \square \neg \varphi$
- Any other?
- U and R are duals:

$$
\begin{aligned}
& \neg(\varphi \mathcal{U} \psi) \sim(\neg \varphi) R(\neg \psi) \\
& \neg(\varphi R \psi) \sim(\neg \varphi) \mathcal{U}(\neg \psi)
\end{aligned}
$$

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:
> safety
> liveness ahligation recurrence persistance reactivity

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety

$\square \varphi$
liveness obligation recurrence persistence reactivity

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

safety	$\square \varphi$
liveness	$\diamond \varphi$
obligation	$\square \varphi \vee \diamond \psi$

recurrence persistence $\diamond \square \varphi$

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

```
safety \square\varphi
liveness \diamond\varphi
obligation }\square\varphi\vee\diamond
recurrence \square\diamond\varphi
persistence }\diamond\square
```


Temporal Logic

Classification of Properties

Classification

We can classify a number of properties expressible in LTL:

```
safety }\square
liveness \diamond\varphi
obligation }\square\varphi\vee\diamond
recurrence \square\diamond\varphi
persistence \diamond\square\varphi
reactivity }\quad\square\diamond\varphi\vee\diamond\square
```


Plan

(1) Temporal Logic

(2) Propositional Modal Logic
(3) Multimodal Logic

4 Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

Propositional Modal Logic

- The logic of possibility and necessity
- $\square \varphi: \varphi$ is "necessarily true", or " φ holds in all possible worlds"
- $\diamond \varphi: \varphi$ is "possibly true", or "there is a possible world that realizes φ "
- The modalities are dual
- $\diamond \varphi \stackrel{\text { def }}{=} \neg \square \neg \varphi$

Propositional Modal Logic

Semantics: Kripke Frames

Definition

A Kripke frame \mathcal{M} is a structure (W, R, ν) where

- W is a finite non-empty set of states (or worlds) $-W$ is called the universe of \mathcal{M}
- $R \subseteq W \times W$ is an accessibility relation between states (transition relation)
- $\nu: \mathbb{P} \longrightarrow 2^{K}$ determines the truth assignment to the atomic propositional variables in each state

Propositional Modal Logic

Semantics: Kripke Frames

Definition

We define the notion that a modal formula φ is true in the world w in the model \mathcal{M}, written \mathcal{M}, $w \models \varphi$ as follows:
$\mathcal{M}, w \models p \quad$ iff $\quad w \in \nu(p)$
$\begin{array}{lll}\mathcal{M}, w \neq \neg \varphi & \text { iff } \quad \mathcal{M}, w \not \models \varphi \\ \mathcal{M}, w \neq \varphi_{1} \vee \varphi_{2} & \text { iff } \quad \mathcal{M}, w \models \varphi_{1} \text { or } \mathcal{M}, w \models \varphi_{2}\end{array}$
$\mathcal{M}, w \models \square \varphi \quad$ iff $\quad \mathcal{M}, w^{\prime} \models \varphi$ for all w^{\prime} such that $\left(w, w^{\prime}\right) \in R$
$\mathcal{M}, w \models \diamond \varphi \quad$ iff $\quad \mathcal{M}, w^{\prime} \models \varphi$ for some w^{\prime} such that $\left(w, w^{\prime}\right) \in R$

Propositional Modal Logic

Examples

Example (Logic T)

- R reflexive
- $M, w \models \square \neg p$

Propositional Modal Logic

Examples

Example (Logic T)

- R reflexive
- $M, w \models \square \neg p$

Example (Logic S4)

- R reflexive and transitive
- $M, w \models \square \neg p$

Propositional Modal Logic

Semantics: Kripke Frames

Remarks

- The semantics is alternatively called relational semantics, frame semantics, world semantics, possible world semantics, Kripke semantics/frame/structure
- There are different variations of the definition of Kripke semantics
- Sometimes a Kripke frame is defined to be a structure (W,R), and then the triple (W, R, ν) is called a Kripke model
- The Kripke model may be defined as $(W, R,=)$ instead
- Sometimes a set of starting states $W_{0} \subseteq W$ is added to the definition
- In other cases a valuation function $V: K \rightarrow 2^{\mathbb{P}}$ is given instead of ν
- The semantics of \square and \diamond depend on the properties of R
- R can be reflexive, transitive, euclidean, etc
- Axioms and theorems will be determined by R (or vice-versa!)

Propositional Modal Logic

Semantics: Kripke Frames

Remarks

- The semantics is alternatively called relational semantics, frame semantics, world semantics, possible world semantics, Kripke semantics/frame/structure
- There are different variations of the definition of Kripke semantics
- Sometimes a Kripke frame is defined to be a structure (W, R), and then the triple (W, R, ν) is called a Kripke model
- The Kripke model may be defined as (W, R, \models) instead
- Sometimes a set of starting states $W_{0} \subseteq W$ is added to the definition
- In other cases a valuation function $V: K \rightarrow 2^{\mathbb{P}}$ is given instead of ν
- The semantics of \square and \diamond depend on the properties of R
- R can be reflexive, transitive, euclidean, etc
- Axioms and theorems will be determined by R (or vice-versa!)

Propositional Modal Logic

Semantics: Kripke Frames

Remarks

- The semantics is alternatively called relational semantics, frame semantics, world semantics, possible world semantics, Kripke semantics/frame/structure
- There are different variations of the definition of Kripke semantics
- Sometimes a Kripke frame is defined to be a structure (W, R), and then the triple (W, R, ν) is called a Kripke model
- The Kripke model may be defined as (W, R, \models) instead
- Sometimes a set of starting states $W_{0} \subseteq W$ is added to the definition
- In other cases a valuation function $V: K \rightarrow 2^{\mathbb{P}}$ is given instead of ν
- The semantics of \square and \diamond depend on the properties of R
- R can be reflexive, transitive, euclidean, etc
- Axioms and theorems will be determined by R (or vice-versa!)

Plan

(1) Temporal Logic

(2) Propositional Modal Logic

(3) Multimodal Logic

4 Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

Multimodal Logic

- A multimodal logic contains a set $A=\{a, \ldots\}$ of modalities
- We can augment propositional logic with one modality for each $a \in A$
- If φ is a formula and $a \in A$, then $[a] \varphi$ is a formula
- We also define $\langle a\rangle \varphi \stackrel{\text { def }}{=} \neg[a] \neg \varphi$
- The semantics of $\langle a\rangle$ and [a] are defined as for $\diamond a$ and $\square a$, but "labelling" the transition with a

Multimodal Logic

Definition

A Kripke frame now is a structure $\mathcal{M}=(W, R, \nu)$ where

- W is a finite non-empty set of states (or worlds) $-W$ is called the universe of \mathcal{M}
- $R(a) \subseteq W \times W$ is the accessibility relation between states (transition relation), associating each modality in $a \in A$ to a transition
- We get a labelled Kripke frame
- $\nu: \mathbb{P} \longrightarrow 2^{K}$ determines the truth assignment to the atomic propositional variables in each state

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1}=\langle a\rangle p$
- $M, w_{1} \models\langle b\rangle p$, and also $M, w_{1} \models[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$?
- What about $M, w_{2}=[b] \neg p$?

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1} \models\langle a\rangle p$
- $M, w_{1}=\langle b\rangle_{p}$, and also $M, w_{1}=[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$?
- What about $M, w_{2} \models[b] \neg p$?

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1} \models\langle a\rangle p$
- $M, w_{1} \models\langle b\rangle p$, and also $M, w_{1} \models[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$?
- What about $M, w_{2} \models[b] \neg p$?

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1} \models\langle a\rangle p$
- $M, w_{1} \models\langle b\rangle p$, and also $M, w_{1} \models[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$?
- What about $M, w_{2}=[b] \neg p$?

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1} \models\langle a\rangle p$
- $M, w_{1} \models\langle b\rangle p$, and also $M, w_{1} \models[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$? NO
- What about M, w 2

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1}=\langle a\rangle p$
- $M, w_{1} \models\langle b\rangle p$, and also $M, w_{1} \models[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$? NO
- What about $M, w_{2} \models[b] \neg p$?

Multimodal Logic

Examples

Example

- $M, w_{1} \models[a] p$
- $M, w_{1}=\langle a\rangle p$
- $M, w_{1} \models\langle b\rangle p$, and also $M, w_{1} \models[b] p$
- What about $M, w_{2} \models\langle b\rangle \neg p$? NO
- What about $M, w_{2} \models[b] \neg p$? YES

Plan

(1) Temporal Logic

(2) Propositional Modal Logic

(3) Multimodal Logic

(4) Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

Propositional Dynamic Logic (PDL)

- The dynamic aspect of modal logic fits well the framework of program execution
- K : universe of all possible execution states of a program
- With any program α, define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
- "possible" since programs may be non-deterministic
- Syntactically
each program gives rise to a modality of a multimodal logic
- $\langle\alpha\rangle \varphi$: it is possible to execute α and halt in a state satisfying φ - [a] $\varphi:$ whenever α halts, it does so in a state satisfying 4
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
- It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

Propositional Dynamic Logic (PDL)

- The dynamic aspect of modal logic fits well the framework of program execution
- K : universe of all possible execution states of a program
- With any program α, define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
- "possible" since programs may be non-deterministic
- Syntactically, each program gives rise to a modality of a multimodal logic
- $\langle\alpha\rangle \varphi$: it is possible to execute α and halt in a state satisfying φ
- $[\alpha] \varphi$: whenever α halts, it does so in a state satisfying φ programs
- It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

Propositional Dynamic Logic (PDL)

- The dynamic aspect of modal logic fits well the framework of program execution
- K : universe of all possible execution states of a program
- With any program α, define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
- "possible" since programs may be non-deterministic
- Syntactically, each program gives rise to a modality of a multimodal logic
- $\langle\alpha\rangle \varphi$: it is possible to execute α and halt in a state satisfying φ
- $[\alpha] \varphi$: whenever α halts, it does so in a state satisfying φ
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
- It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

Propositional Dynamic Logic (PDL)

- The dynamic aspect of modal logic fits well the framework of program execution
- K : universe of all possible execution states of a program
- With any program α, define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
- "possible" since programs may be non-deterministic
- Syntactically, each program gives rise to a modality of a multimodal logic
- $\langle\alpha\rangle \varphi$: it is possible to execute α and halt in a state satisfying φ
- $[\alpha] \varphi$: whenever α halts, it does so in a state satisfying φ
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
- It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

Propositional Dynamic Logic Syntax

- PDL contains syntax constructs from:
- Propositional logic
- Modal logic
- Algebra of regular expressions
- Expressions are of two sorts
- Propositions and formulas: φ, ψ, \ldots
- Programs: $\alpha, \beta, \gamma, \ldots$

Propositional Dynamic Logic

 Syntax
Definition

Programs and propositions of regular PDL are built inductively using the following operators

- Propositional operators

\rightarrow	implication
0	falsity

- Program operators

$;$	composition
\cup	choice
$*$	iteration

- Mixed operators

[]	necessity
$?$	test

Propositional Dynamic Logic

Intuitive Meaning

- $[\alpha] \varphi$: It is necessary that after executing α, φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- α : β : Execute α, then execute β (concatenation, sequencing)
- α^{*} : Execute α a non-deterministically chosen finite of times -zero or more (Kleene star)
- φ ?: Test φ; proceed if true, fail if false (test)

Propositional Dynamic Logic

Intuitive Meaning

- [$\alpha] \varphi$: It is necessary that after executing α, φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha ; \beta$: Execute α, then execute β (concatenation, sequencing)
- α^{*} : Execute α a non-deterministically chosen finite of times -zero or more (Kleene star)
- φ ?: Test φ; proceed if true, fail if false (test)
- We define $\langle\alpha\rangle \varphi \stackrel{\text { def }}{=} \neg[\alpha] \neg \varphi$

Propositional Dynamic Logic

 Intuitive Meaning- $[\alpha] \varphi$: It is necessary that after executing α, φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha ; \beta$: Execute α, then execute β (concatenation, sequencing)
- α^{*} : Execute α a non-deterministically chosen finite of times -zero or more (Kleene star)
- φ ?: Test φ; proceed if true, fail if false (test)
- We define $\langle\alpha\rangle \varphi \stackrel{\text { def }}{=} \neg[\alpha] \neg \varphi$

Propositional Dynamic Logic

 Intuitive Meaning- $[\alpha] \varphi$: It is necessary that after executing α, φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha ; \beta$: Execute α, then execute β (concatenation, sequencing)
- α^{*} : Execute α a non-deterministically chosen finite of times -zero or more (Kleene star)
- φ ?: Test φ; proceed if true, fail if false (test)
- We define $\langle\alpha\rangle \varphi \stackrel{\text { def }}{=} \neg[\alpha] \neg \varphi$

Propositional Dynamic Logic

- $[\alpha] \varphi$: It is necessary that after executing α, φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha ; \beta$: Execute α, then execute β (concatenation, sequencing)
- α^{*} : Execute α a non-deterministically chosen finite of times -zero or more (Kleene star)
- φ ?: Test φ; proceed if true, fail if false (test)
- We define $\langle\alpha\rangle \varphi \stackrel{\text { def }}{=} \neg[\alpha] \neg \varphi$

Propositional Dynamic Logic

- $[\alpha] \varphi$: It is necessary that after executing α, φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha ; \beta$: Execute α, then execute β (concatenation, sequencing)
- α^{*} : Execute α a non-deterministically chosen finite of times -zero or more (Kleene star)
- φ ?: Test φ; proceed if true, fail if false (test)
- We define $\langle\alpha\rangle \varphi \stackrel{\text { def }}{=} \neg[\alpha] \neg \varphi$

Propositional Dynamic Logic

Additional Programs

$$
\begin{aligned}
\text { skip } & \stackrel{\text { def }}{=} 1 ? \\
\text { fail } & \stackrel{\text { def }}{=} 0 ? \\
\text { if } \varphi_{1} \rightarrow \alpha_{1}|\ldots| \varphi_{n} \rightarrow \alpha_{n} \mathbf{f i} & \stackrel{\text { def }}{=} \varphi_{1} ? ; \alpha_{1} \cup \ldots \cup \varphi_{n} ? ; \alpha_{n} \\
\text { do } \varphi_{1} \rightarrow \alpha_{1}|\ldots| \varphi_{n} \rightarrow \alpha_{n} \text { od } & \stackrel{\text { def }}{=}\left(\varphi_{1} ? ; \alpha_{1} \cup \ldots \cup \varphi_{n} ? ; \alpha_{n}\right)^{*} ;\left(\neg \varphi_{1} \wedge \ldots \wedge \neg \varphi_{n}\right) \\
\text { if } \varphi \text { then } \alpha \text { else } \beta & \stackrel{\text { def }}{=} \text { if } \varphi \rightarrow \alpha \mid \neg \varphi \rightarrow \beta \mathbf{f i} \\
& =\varphi ? ; \alpha \cup \neg \varphi ? ; \beta \\
\text { while } \varphi \text { do } \alpha & \stackrel{\text { def }}{=} \text { do } \varphi \rightarrow \alpha \text { od } \\
& =(\varphi ? ; \alpha)^{*} ; \neg \varphi \text { ? } \\
\text { repeat } \alpha \text { until } \varphi & \stackrel{\text { def }}{=} \alpha ; \mathbf{w h i l e} \neg \varphi \text { do } \alpha \text { od } \\
& =\alpha ;(\neg \varphi ? ; \alpha)^{*} ; \varphi ? \\
\{\varphi\} \alpha\{\psi\} & \stackrel{\text { def }}{=} \varphi \rightarrow[\alpha] \psi
\end{aligned}
$$

Propositional Dynamic Logic

Remark

- It is possible to reason about programs by using PDF proof system
- We will not see the semantics here
- The semantics of PDL comes from that from modal logic
- Kripke frames
- We will see its application in our contract language

Plan

(1) Temporal Logic

(2) Propositional Modal Logic
(3) Multimodal Logic

4 Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

μ-calculus

- μ-calculus is a powerful language to express properties of transition systems by using least and greatest fixpoint operators
- ν is the greatest fixpoint meaning looping
- μ is the least fixpoint meaning finite looping
- Many temporal and program logics can be encoded into the μ-calculus
- Efficient model checking algorithms
- Formulas are interpreted relative to a transition system
- The Kripke structure needs to be slightly modified

μ-calculus: Syntax

- Let $\operatorname{Var}=\{Z, Y, \ldots\}$ be an (infinite) set of variable names
- Let Prop $=\{P, Q, \ldots\}$ be a set of atomic propositions
- Let $L=\{a, b, \ldots\}$ be a set of labels (or actions)

Definition

The set of μ-calculus formulae (w.r.t. (Var, Prop, L)) is defined as follows:

- P is a formula
- Z is a formula
- If ϕ_{1} and ϕ_{2} are formulae, so is $\phi_{1} \wedge \phi_{2}$
- If ϕ is a formula, so is [a] ϕ
- If ϕ is a formula, so is $\neg \phi$
- If ϕ is a formula, then $\nu Z . \phi$ is a formula
- Provided every free occurrence of Z in ϕ occurs positively (within the scope of an even number of negations)
- ν is the only binding operator

μ-calculus: Syntax

- If $\phi(Z)$, then the subsequent writing $\phi(\psi)$ means ϕ with ψ substituted for all free occurrences of Z
- The positivity requirement syntactically guarantees monotonicity in Z - Unique minimal and maximal fixpoint
- Derived operators

μ-calculus: Syntax

- If $\phi(Z)$, then the subsequent writing $\phi(\psi)$ means ϕ with ψ substituted for all free occurrences of Z
- The positivity requirement syntactically guarantees monotonicity in Z
- Unique minimal and maximal fixpoint
- Derived operators

μ-calculus: Syntax

- If $\phi(Z)$, then the subsequent writing $\phi(\psi)$ means ϕ with ψ substituted for all free occurrences of Z
- The positivity requirement syntactically guarantees monotonicity in Z
- Unique minimal and maximal fixpoint
- Derived operators
- $\phi_{1} \vee \phi_{2} \stackrel{\text { def }}{=} \neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right)$
- $\langle a\rangle \phi \stackrel{\text { def }}{=} \neg[a] \neg \phi$
- $\mu Z . \phi(Z) \stackrel{\text { def }}{=} \neg \nu Z . \neg \phi(\neg Z)$

μ-calculus: Semantics

Definition

A labelled transition system (LTS) is a triple $M=(\mathcal{S}, T, L)$, where:

- \mathcal{S} is a nonempty set of states
- L is a set of labels (actions) as defined before
- $T \subseteq \mathcal{S} \times L \times \mathcal{S}$ is a transition relation

A modal μ-calculus structure \mathcal{T} (over Prop and L) is a $\operatorname{LTS}(\mathcal{S}, T, L)$ together with an interpretation $\mathcal{V}_{\text {Prop }}: \operatorname{Prop} \rightarrow 2^{\mathcal{S}}$ for the atomic propositions

μ-calculus

Semantics

Definition

Given a structure \mathcal{T} and an interpretation $\mathcal{V}: \operatorname{Var} \rightarrow 2^{\mathcal{S}}$ of the variables, the set $\|\phi\|_{\mathcal{V}}^{\mathcal{T}}$ is defined as follows:

$$
\begin{aligned}
\|P\|_{\mathcal{V}}^{\mathcal{T}} & =\mathcal{V}_{\text {Prop }}(P) \\
\|Z\|_{\mathcal{V}}^{\mathcal{V}} & =\mathcal{V}(Z) \\
\|\neg \phi\|_{\mathcal{V}}^{\mathcal{T}} & =\mathcal{S}-\|\phi\|_{\mathcal{V}}^{\mathcal{T}} \\
\left\|\phi_{1} \wedge \phi_{2}\right\|_{\mathcal{V}}^{\mathcal{T}} & =\left\|\phi_{1}\right\|_{\mathcal{V}}^{\mathcal{T}} \cap\left\|\phi_{2}\right\|_{\mathcal{V}}^{\mathcal{T}} \\
\|[a] \phi\|_{\mathcal{V}}^{\mathcal{T}} & =\left\{s \mid \forall t .(s, a, t) \in T \Rightarrow t \in\|\phi\|_{\mathcal{V}}^{\mathcal{T}}\right\} \\
\|\nu Z . \phi\|_{\mathcal{V}}^{\mathcal{T}} & =\bigcup\left\{S \subseteq \mathcal{S} \mid S \subseteq\|\phi\|_{\mathcal{V}[Z:=S]}^{\mathcal{T}}\right\}
\end{aligned}
$$

where $\mathcal{V}[Z:=S]$ is the valuation mapping Z to S and otherwise agrees with \mathcal{V}

μ-calculus

Semantics

If we consider only positive formulae, we may add the following derived operators

Interpretation

$$
\begin{aligned}
\left\|\phi_{1} \vee \phi_{2}\right\|_{\mathcal{V}}^{\mathcal{T}} & =\left\|\phi_{1}\right\|_{\mathcal{V}}^{\mathcal{T}} \cup\left\|\phi_{2}\right\|_{\mathcal{V}}^{\mathcal{V}} \\
\|\langle a\rangle \phi\|_{\mathcal{V}}^{\mathcal{T}} & =\left\{s \mid \exists t .(s, a, t) \in T \wedge t \in\|\phi\|_{\mathcal{V}}^{\mathcal{T}}\right. \\
\|\mu Z . \phi\|_{\mathcal{V}}^{\mathcal{T}} & =\bigcap\left\{S \subseteq \mathcal{S} \mid S \supseteq\|\phi\|_{\mathcal{V}[Z:=S]}^{\mathcal{T}}\right\}
\end{aligned}
$$

μ-calculus

Example

- μ is liveness
- "On all length a-path, P eventually holds"

$$
\mu Z .(P \vee[a] Z)
$$

- "On some a-path, P holds until Q holds"

$$
\mu Z .(Q \vee(P \wedge\langle a\rangle Z)
$$

- ν is safety
- " P is true along every a-path"

$$
\nu Z .(P \wedge[a] Z)
$$

- "On every a-path P holds while Q fails"

$$
\nu Z .(Q \vee(P \wedge[a] Z))
$$

Plan

(1) Temporal Logic
(2) Propositional Modal Logic
(3) Multimodal Logic

4 Dynamic Logic
(5) Mu-calculus
(6) Real-Time Logics

Real-time Logics

- Temporal logic (TL) is concerned with the qualitative aspect of temporal system requirements
- Invariance, responsiveness, etc
- TL cannot refer to metric time: Not suitable for the specification of quantitative temporal requirements
- There are many wavs to extend a temporal logic with real-time
(1) Replace the unrestricted temporal operators with time-bounded versions
(2) Extend temporal logic with explicit references to the times of temporal contexts (freeze quantification)
(3) Add an explicit clock variable

Real-time Logics

- Temporal logic (TL) is concerned with the qualitative aspect of temporal system requirements
- Invariance, responsiveness, etc
- TL cannot refer to metric time: Not suitable for the specification of quantitative temporal requirements
- There are many ways to extend a temporal logic with real-time
(1) Replace the unrestricted temporal operators with time-bounded versions
(2) Extend temporal logic with explicit references to the times of temporal
contexts (freeze quantification)
(3) Add an explicit clock variable

Real-time Logics

- Temporal logic (TL) is concerned with the qualitative aspect of temporal system requirements
- Invariance, responsiveness, etc
- TL cannot refer to metric time: Not suitable for the specification of quantitative temporal requirements
- There are many ways to extend a temporal logic with real-time
(1) Replace the unrestricted temporal operators with time-bounded versions
(2) Extend temporal logic with explicit references to the times of temporal contexts (freeze quantification)
(3) Add an explicit clock variable

Real-time Logics

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$
\varphi:=p|\neg \varphi| \varphi \wedge \varphi \mid \varphi \mathcal{U}_{l} \varphi
$$

where p is a propositional variable, and I is a rational interval

- Informally, $\varphi_{1} \mathcal{U}_{1} \varphi_{2}$ holds at time t in a timed observation sequence iff - There is a later time $t^{\prime} \in t+I$ s.t. φ_{2} holds at time t^{\prime} and φ_{1} holds through the interval $\left(t, t^{\prime}\right)$
- Derived operators

$$
\begin{aligned}
& 0 \diamond_{I} \varphi \stackrel{\text { def }}{=} \text { true } \mathcal{U}_{I} \varphi: \text { time-bounded eventually } \\
& \square_{I} \varphi \stackrel{\text { def }}{=} \neg \diamond_{I} \neg \varphi: \text { time-bounded always }
\end{aligned}
$$

Real-time Logics

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$
\varphi:=p|\neg \varphi| \varphi \wedge \varphi \mid \varphi \mathcal{U}_{l} \varphi
$$

where p is a propositional variable, and I is a rational interval

- Informally, $\varphi_{1} \mathcal{U}_{1} \varphi_{2}$ holds at time t in a timed observation sequence iff
- There is a later time $t^{\prime} \in t+I$ s.t. φ_{2} holds at time t^{\prime} and φ_{1} holds through the interval $\left(t, t^{\prime}\right)$
- Derived operators
- $\nabla_{I \varphi} \stackrel{\text { def }}{=}$ true $\mathcal{U}_{I} \varphi:$ time-bounded eventually
- $\square_{1 \odot} \stackrel{\text { def }}{=} \neg_{1} \neg_{\bullet}$: time-bounded alwavs

Real-time Logics

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$
\varphi:=p|\neg \varphi| \varphi \wedge \varphi \mid \varphi \mathcal{U}_{l} \varphi
$$

where p is a propositional variable, and I is a rational interval

- Informally, $\varphi_{1} \mathcal{U}_{1} \varphi_{2}$ holds at time t in a timed observation sequence iff
- There is a later time $t^{\prime} \in t+I$ s.t. φ_{2} holds at time t^{\prime} and φ_{1} holds through the interval $\left(t, t^{\prime}\right)$
- Derived operators
- $\diamond_{I} \varphi \stackrel{\text { def }}{=}$ true $\mathcal{U}_{1} \varphi$: time-bounded eventually
- $\square_{ノ} \varphi \stackrel{\text { def }}{=} \neg \diamond_{\Omega} \neg \varphi$: time-bounded always

Real-time Logics

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$
\varphi:=p|\neg \varphi| \varphi \wedge \varphi \mid \varphi \mathcal{U}_{1} \varphi
$$

where p is a propositional variable, and I is a rational interval

- Informally, $\varphi_{1} \mathcal{U}_{1} \varphi_{2}$ holds at time t in a timed observation sequence iff
- There is a later time $t^{\prime} \in t+I$ s.t. φ_{2} holds at time t^{\prime} and φ_{1} holds through the interval $\left(t, t^{\prime}\right)$
- Derived operators
- $\diamond_{I} \varphi \stackrel{\text { def }}{=}$ true $\mathcal{U}_{1} \varphi$: time-bounded eventually
- $\square_{\Omega} \varphi \stackrel{\text { def }}{=} \neg \diamond_{\Omega} \neg \varphi$: time-bounded always

Example

- $\square_{[2,4]} p$ means " p holds at all times within 2 to 4 time units"
- $\square\left(p \Rightarrow \diamond_{[0,3]} q\right)$: "every stimulus p is followed by a response q within 3 time units"

Real-time Logics

2. Freeze Quantification

- Bounded-operator cannot express non-local timing requirements
- Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of $p^{\prime \prime}$
- Need to have explicit references to time of temporal contexts
- The freeze quantifier x. binds x to the time of the current temporal context
- $x . \varphi(x)$ holds at time t iff $\varphi(t)$ does
- A logic with freeze quantifier is called half-order

Real-time Logics

2. Freeze Quantification

- Bounded-operator cannot express non-local timing requirements
- Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p "
- Need to have explicit references to time of temporal contexts
- The freeze quantifier x. binds x to the time of the current temporal context
- $x . \varphi(x)$ holds at time t iff $\varphi(t)$ does
- A logic with freeze quantifier is called half-order

Real-time Logics

2. Freeze Quantification

- Bounded-operator cannot express non-local timing requirements
- Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of $p^{\prime \prime}$
- Need to have explicit references to time of temporal contexts
- The freeze quantifier x. binds x to the time of the current temporal context
- x. $\varphi(x)$ holds at time t iff $\varphi(t)$ does
- A logic with freeze quantifier is called half-order

Real-time Logics

2. Freeze Quantification

- Bounded-operator cannot express non-local timing requirements
- Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p "
- Need to have explicit references to time of temporal contexts
- The freeze quantifier x. binds x to the time of the current temporal context
- x. $\varphi(x)$ holds at time t iff $\varphi(t)$ does
- A logic with freeze quantifier is called half-order

Example of a R-T logic with freeze quantification

$$
\varphi:=p|\pi| \neg \varphi|\varphi \wedge \varphi| \varphi \mathcal{U} \varphi \mid x . \varphi
$$

- V is a set of time variables
- $\pi \in \Pi(V)$ represents atomic timing constraints with free variables from V (e.g., $z \leq x+3$)

Real-time Logics

2. Freeze Quantification

Example

- "Every stimulus p is followed by a response q within 3 time units"

$$
\square x \cdot(p \Rightarrow \diamond y \cdot(q \wedge y \leq x+3))
$$

Real-time Logics

2. Freeze Quantification

Example

- "Every stimulus p is followed by a response q within 3 time units"

$$
\square x \cdot(p \Rightarrow \diamond y \cdot(q \wedge y \leq x+3))
$$

- "Every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of $p^{\prime \prime}$

$$
\square x .(p \Rightarrow \diamond(q \wedge \diamond z .(r \wedge z \leq x+3)))
$$

Real-time Logics

3. Explicit Clock Variable

- It uses a dynamic state variable T (the clock variable), and
- A first-order quantification for global (rigid) variables over time

Real-time Logics

3. Explicit Clock Variable

- It uses a dynamic state variable T (the clock variable), and
- A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

$$
\varphi:=p|\pi| \neg \varphi|\varphi \wedge \varphi| \varphi \mathcal{U} \varphi \mid \exists x . \varphi
$$

- $x \in V$, with V a set of (global) time variables
- $\pi \in \Pi(V \cup\{T\})$ represents atomic timing constraints over the variables from $V \cup\{T\}$) (e.g., $T \leq x+3$)
The freeze quantifier $x . \varphi$ is equivalent to $\exists x .(T=x \wedge \varphi)$

Real-time Logics

3. Explicit Clock Variable

- It uses a dynamic state variable T (the clock variable), and
- A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

$$
\varphi:=p|\pi| \neg \varphi|\varphi \wedge \varphi| \varphi \mathcal{U} \varphi \mid \exists x . \varphi
$$

- $x \in V$, with V a set of (global) time variables
- $\pi \in \Pi(V \cup\{T\})$ represents atomic timing constraints over the variables from $V \cup\{T\}$) (e.g., $T \leq x+3$)
The freeze quantifier $x . \varphi$ is equivalent to $\exists x .(T=x \wedge \varphi)$

Example

- "Every stimulus p is followed by a response q within 3 time units"

$$
\forall x . \square((p \wedge T=x) \Rightarrow \diamond(q \wedge T \leq x+3))
$$

Real-time Logics

Examples of Real-Time Logics

Linear-time:

- MTL (metric temporal logic)
- A propositional bounded-operator logic
- TPTL (timed temporal logic)
- A propositional half-order logic using only the future operators until and next
- RTTL (real-time temporal logic)
- A first-order explicit-clock logic
- XCTL (explicit-clock temporal logic)
- A propositional explicit-clock logic with a rich timing constraints (comparison and addition)
- Does not allow explicit quantification over time variables (implicit universal quantification)
- MITL (metric interval temporal logic)
- A propositional linear-time with an interval-based strictly-monotonic real-time semantics
- Does not allow equality constraints

Real-time Logics

```
Examples of Real-Time Logics
```

Branching-time:

- RTCTL (real-time computation tree logic)
- A propositional branching-time logic for synchronouys systems
- Bounded-operator extension of CTL with a point-based strictly-monotonic integer-time semantics
- TCTL (timed computation tree logic)
- A propositional branching-time logic with less restricted semantics
- Bounded-operator extension of CTL with an interval-based strictly-monotonic real-time semantics

Final Remarks

Remarks

- For most of the presented logics, there is an axiomatic system, and/or a Natural Deduction system
- Though important, it is not needed for the rest of the tutorial
- Our contract language will use the syntax of some of the presented logics
- We will focus on the semantics (Kripke models, semantic encoding into other logic)

Further Reading

Modal and Temporal Logics

- M. Fitting. Basic Modal Logic. Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 1, 1993
- C. Stirling. Modal and Temporal Logics. Handbook of Logic in Computer Science, vol. 2, 1992
Dynamic Logic
- D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT, 2003 μ-calculus:
- J. Bradfield and C. Stirling. Modal logics and μ-calculi: an introduction

Real-time logics:

- R. Alur and T. Henzinger. Logics and Models of Real time: A Survey. LNCS 600, pp. 74-106, 1992

