Specification and Analysis of Contracts Lectures 3 and 4 Background: Modal Logics

Gerardo Schneider

gerardo@ifi.uio.no

http://folk.uio.no/gerardo/

Department of Informatics, University of Oslo

SEFM School, Oct. 27 - Nov. 7, 2008 Cape Town, South Africa

- Introduction
- Omponents, Services and Contracts
- Background: Modal Logics 1
- Background: Modal Logics 2
- Oeontic Logic
- O Challenges in Defining a Good Contract language
- Specification of 'Deontic' Contracts (CL)
- Verification of 'Deontic' Contracts
- Onflict Analysis of 'Deontic' Contracts
- Other Analysis of 'Deontic' Contracts and Summary

Modal Logics

- Modal logic is the logic of possibility and necessity
 - $\Box \varphi$: φ is necessarily true.
 - $\diamond \varphi$: φ is possibly true.
- Not a single system but many different systems depending on application
- Good to reason about causality and situations with incomplete information
- Different interpretation for the modalities: belief, knowledge, provability, etc.

Modal Logics

- Modal logic is the logic of possibility and necessity
 - $\Box \varphi$: φ is necessarily true.
 - $\diamond \varphi$: φ is possibly true.
- Not a single system but many different systems depending on application
- Good to reason about causality and situations with incomplete information
- Different interpretation for the modalities: belief, knowledge, provability, etc.
- Depending on the semantics, we can interpret $\Box \varphi$ differently

temporal	arphi will always hold
doxastic	I believe $arphi$
epistemic	l know $arphi$
deontic	It ought to be the case that $arphi$

- Modal logic is good to reason in dynamic situations
 - Truth values may vary over time (classical logic is *static*)
- Sentences in classical logic are interpreted over a single structure or world
- In modal logic, interpretation consists of a collection K of possible worlds or states
 - If states change, then truth values can also change
- Dynamic interpretation of modal logic
 - Temporal logic
 - Linear time
 - Branching time
 - Dynamic logic

- Modal logic is good to reason in dynamic situations
 - Truth values may vary over time (classical logic is *static*)
- Sentences in classical logic are interpreted over a single structure or world
- In modal logic, interpretation consists of a collection K of possible worlds or states
 - If states change, then truth values can also change
- Dynamic interpretation of modal logic
 - Temporal logic
 - Linear time
 - Branching time
 - Dynamic logic

We will see

In the rest of this and next lecture (2 hours):

- Temporal logic
- Propositional modal logic
- Multimodal logic
- Dynamic logic
- μ -calculus
- Real-time logics

In the following lecture (1 hour):

Deontic logic

Temporal Logic

- Propositional Modal Logic
- 3 Multimodal Logic
 - 4 Dynamic Logic
- 5 Mu-calculus
- 6 Real-Time Logics

э

1 Temporal Logic

- Propositional Modal Logic
- 3 Multimodal Logic
- Dynamic Logic
- 5 Mu-calculus
- 6 Real-Time Logics

э

- Temporal logic is the logic of time
- There are different ways of modeling time
 - linear time vs. branching time
 - time instances vs. time intervals
 - discrete time vs. continuous time
 - past and future vs. future only

In Linear Temporal Logic (LTL) we can describe such properties as, if i is *now*,

- p holds in i and every following point (the future)
- *p* holds in *i* and every preceding point (the past)

We will only be concerned with the future

In Linear Temporal Logic (LTL) we can describe such properties as, if i is *now*,

- p holds in i and every following point (the future)
- p holds in i and every preceding point (the past)

We will only be concerned with the future

In Linear Temporal Logic (LTL) we can describe such properties as, if i is *now*,

- p holds in i and every following point (the future)
- *p* holds in *i* and every preceding point (the past) We will only be concerned with the future

We extend the first-order language \mathcal{L} to a temporal language \mathcal{L}_{T} by adding the temporal operators \Box , \diamond , \bigcirc , U, R and W.

Interpretation		
$\Box \varphi$	arphi will <i>always</i> (in every state) hold	
$\diamond \varphi$	arphi will <i>eventually</i> (ins some state) hold	
$\bigcirc \varphi$	φ will hold at the <i>next</i> point in time	
$arphi \mathcal{U} \psi$	ψ will eventually hold, and <i>until</i> that point φ will hold	
$arphi {m {\cal R}}\psi$	ψ holds until (incl.) the point (if any) where $arphi$ holds (<i>release</i>)	
$\varphi \mathit{W} \psi$	$arphi$ will hold until ψ holds (<i>weak until</i> or <i>waiting for</i>)	

We define LTL formulae as follows:

- $\mathcal{L} \subseteq \mathcal{L}_T$: first-order formulae are also LTL formulae
- If φ is an LTL formulae, so are

 $\Box \, \varphi \text{, } \diamondsuit \varphi \text{, } \bigcirc \varphi \text{ and } \neg \varphi$

• If φ and ψ are LTL formulae, so are

 $\varphi \, \mathcal{U} \, \psi, \, \varphi \, \mathsf{R} \, \psi, \, \varphi \, \mathsf{W} \, \psi, \, \varphi \lor \psi, \, \varphi \land \psi, \, \varphi \Rightarrow \, \psi \text{ and } \varphi \equiv \psi$

• A path is an infinite sequence of states

 $\sigma = s_0, s_1, s_2, \ldots$

•
$$\sigma^k$$
 denotes the *path* $s_k, s_{k+1}, s_{k+2}, \ldots$

- σ_k denotes the state s_k
- All computations are paths, but not vice versa

э

Linear Temporal Logic Semantics

Definition

We define the notion that an LTL formula φ is true (false) relative to a path σ , written $\sigma \models \varphi$ ($\sigma \not\models \varphi$) as follows.

$$\begin{array}{ll}
\sigma \models \varphi & \text{iff} & \sigma_0 \models \varphi \text{ when } \varphi \in \mathcal{L} \\
\sigma \models \neg \varphi & \text{iff} & \sigma \not\models \varphi \\
\sigma \models \varphi \lor \psi & \text{iff} & \sigma \models \varphi \text{ or } \sigma \models \psi
\end{array}$$

$$\begin{split} \sigma &\models \Box \varphi & \text{iff} \quad \sigma^k \models \varphi \text{ for all } k \ge 0 \\ \sigma &\models \diamond \varphi & \text{iff} \quad \sigma^k \models \varphi \text{ for some } k \ge 0 \\ \sigma &\models \bigcirc \varphi & \text{iff} \quad \sigma^1 \models \varphi \end{split}$$

(cont.)

(cont.)

$$\begin{split} \sigma \models \varphi \, \mathcal{U} \, \psi & \quad \text{iff} \quad \sigma^k \models \psi \text{ for some } k \geq 0 \text{, and} \\ \sigma^i \models \varphi \text{ for every } i \text{ such that } 0 \leq i < k \end{split}$$

$$\begin{split} \sigma \models \varphi \, R \, \psi & \quad \text{iff} \quad \text{ for every } j \geq 0, \\ & \quad \text{ if for every } i < j \, \sigma^i \not\models \varphi \text{ then } \sigma^j \models \psi \end{split}$$

 $\sigma \models \varphi \, W \, \psi \quad \text{ iff } \quad \sigma \models \varphi \, \mathcal{U} \, \psi \text{ or } \sigma \models \Box \, \varphi$

Image: Image:

표 문 문

If σ ⊨ φ for all paths σ, we say that φ is (temporally) valid and write ⊨ φ (Validity)
If ⊨ φ ≡ ψ (ie. σ ⊨ φ iff σ ⊨ ψ, for all σ), we say that φ and ψ are equivalent and write

$$\varphi \sim \psi$$

(Equivalence)

• If $\sigma \models \varphi$ for all paths σ , we say that φ is (temporally) valid and write

$$\varphi$$
 (Validity)

• If $\models \varphi \equiv \psi$ (ie. $\sigma \models \varphi$ iff $\sigma \models \psi$, for all σ), we say that φ and ψ are equivalent and write

 $\varphi \sim \psi$ (Equivalence)

 $\sigma \models \Box p$

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\sigma \models \Box p$

Ξ.

∃ →

 $\sigma \models \Box p$

 $\sigma \models p \mathcal{U} q$ – The sequence of *p* is finite

Ξ.

∃ >

IN I NOR

 $\sigma \models p \mathcal{U} q$ – The sequence of p is finite $\sigma \models p R q$ – The sequence of q may be infinite $\sigma \models p W q$ – The sequence of p may be infinite $(p W q \equiv (p U q) \lor \Box p)$ p p q• • • • • · · · p_{-} 1 2 3 4 0 IN I NOR Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 56

Example (Response)

 $\Box(\varphi \Rightarrow \Diamond \psi)$

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 56

æ

∃ ⊳

Example (Response)

 $\Box(\varphi \Rightarrow \Diamond \psi)$ Every φ -position coincides with or is followed by a ψ -position

3

Example (Response)

 $\Box(\varphi \Rightarrow \Diamond \psi)$ Every φ -position coincides with or is followed by a ψ -position

This formula will also hold in every path where φ never holds

Example How does one formalize the informal requirement " φ implies ψ "? • $\varphi \Rightarrow \psi$? • $\Box(\varphi \Rightarrow \psi)$? • $\varphi \Rightarrow \diamond \psi$? • $\Box(\varphi \Rightarrow \Diamond \psi)$?

э

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \Rightarrow \psi$?
- $\Box(\varphi \Rightarrow \psi)$?
- $\varphi \Rightarrow \diamondsuit \psi$?
- $\Box(\varphi \Rightarrow \Diamond \psi)?$

э

Example

How does one formalize the informal requirement " φ implies ψ "?

•
$$\Box(\varphi \Rightarrow \psi)$$
?

•
$$\varphi \Rightarrow \diamondsuit \psi$$
?

•
$$\Box(\varphi \Rightarrow \Diamond \psi)?$$

Example

How does one formalize the informal requirement " φ implies ψ "?

•
$$\Box(\varphi \Rightarrow \psi)$$
?

•
$$\varphi \Rightarrow \diamondsuit \psi$$
?

•
$$\Box(\varphi \Rightarrow \Diamond \psi)?$$

Example

How does one formalize the informal requirement " φ implies ψ "?

•
$$\Box(\varphi \Rightarrow \psi)$$
? $\varphi \Rightarrow \psi$ holds in every state

•
$$\varphi \Rightarrow \diamondsuit \psi$$
?

•
$$\Box(\varphi \Rightarrow \Diamond \psi)?$$

Example

How does one formalize the informal requirement " φ implies ψ "?

•
$$\Box(\varphi \Rightarrow \psi)$$
? $\varphi \Rightarrow \psi$ holds in every state

•
$$\varphi \Rightarrow \diamondsuit \psi$$
?

•
$$\Box(\varphi \Rightarrow \Diamond \psi)?$$

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \, \Rightarrow \, \psi ? \, \varphi \, \Rightarrow \, \psi$ holds in the initial state
- $\Box(\varphi \Rightarrow \psi)$? $\varphi \Rightarrow \psi$ holds in every state
- $\varphi \Rightarrow \Diamond \psi$? If φ holds in the initial state, ψ will hold in some state • $\Box(\varphi \Rightarrow \Diamond \psi)$?
It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \, \Rightarrow \, \psi ? \, \varphi \, \Rightarrow \, \psi$ holds in the initial state
- $\Box(\varphi \Rightarrow \psi)$? $\varphi \Rightarrow \psi$ holds in every state
- $\varphi \, \Rightarrow \, \Diamond \, \psi ?$ If φ holds in the initial state, ψ will hold in some state
- $\Box(\varphi \Rightarrow \Diamond \psi)?$

It can be difficult to correctly formalize informally stated requirements in temporal logic

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \, \Rightarrow \, \psi ? \, \varphi \, \Rightarrow \, \psi$ holds in the initial state
- $\Box(\varphi \Rightarrow \psi)$? $\varphi \Rightarrow \psi$ holds in every state
- $\varphi \, \Rightarrow \, \Diamond \, \psi ?$ If φ holds in the initial state, ψ will hold in some state
- $\Box(\varphi \Rightarrow \Diamond \psi)$? As above, but iteratively

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of \Box ?
- Any other?

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of \Box ?
- Any other?

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of \Box ? And of \diamond ?
- Any other?

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of \Box ? And of \diamond ?

• Any other?

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of □? And of ◊?
- \Box and \diamond are duals: $\neg \Box \varphi \sim \diamond \neg \varphi$, $\neg \diamond \varphi \sim \Box \neg \varphi$

• Any other?

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of □? And of ◊?
- \Box and \diamond are duals: $\neg \Box \varphi \sim \diamond \neg \varphi$, $\neg \diamond \varphi \sim \Box \neg \varphi$
- Any other?

- For a binary boolean connective ∘ (such as ∧), a binary boolean connective is its dual if ¬(φ ∘ ψ) is equivalent to (¬φ ¬ψ)
- Duality is symmetrical; if is the dual of then is the dual of ●, thus we may refer to two connectives as dual
- \wedge and \vee are duals; $\neg(\varphi \land \psi)$ is equivalent to $(\neg \varphi \lor \neg \psi)$
- ¬ is its own dual
- What is the dual of □? And of ◊?
- \Box and \diamond are duals: $\neg \Box \varphi \sim \diamond \neg \varphi$, $\neg \diamond \varphi \sim \Box \neg \varphi$
- Any other?
- U and R are duals:

$$\neg(\varphi \mathcal{U} \psi) \sim (\neg \varphi) R (\neg \psi)$$
$$\neg(\varphi R \psi) \sim (\neg \varphi) \mathcal{U} (\neg \psi)$$

We can classify a number of properties expressible in LTL:

$\Box \varphi$
$\Diamond \varphi$
$\Box\varphi\lor\diamondsuit\psi$
$\Box \diamondsuit \varphi$
$\diamondsuit \Box \varphi$
$\Box \diamondsuit \varphi \lor \diamondsuit \Box$

We can classify a number of properties expressible in LTL:

safety	$\Box\varphi$
	$\Diamond \varphi$
	$\Box\varphi\lor\diamondsuit\psi$
	$\Box \diamondsuit \varphi$
	$\diamondsuit \Box \varphi$
	$\Box \diamondsuit \varphi \lor \diamondsuit \Box$

We can classify a number of properties expressible in LTL:

safety	$\Box\varphi$
liveness	$\diamondsuit \varphi$
	$\Box\varphi\lor\diamondsuit\psi$
	$\Box \diamondsuit \varphi$
	$\diamondsuit \Box \varphi$
	$\Box \diamondsuit \varphi \lor \diamondsuit \Box$

We can classify a number of properties expressible in LTL:

safety $\Box \varphi$ liveness $\diamond \varphi$ obligation $\Box \varphi \lor \diamond \psi$ recurrence $\Box \diamond \varphi$ persistence $\diamond \Box \varphi$ reactivity $\Box \diamond \varphi \lor \diamond \Box$

3. 3

< □ ▶ < /₽

We can classify a number of properties expressible in LTL:

safety	$\Box\varphi$
liveness	$\diamondsuit \varphi$
obligation	$\Box\varphi\lor\diamondsuit\psi$
recurrence	$\Box \diamondsuit \varphi$
	$\diamondsuit \Box \varphi$
	$\Box \diamondsuit \varphi \lor \diamondsuit \Box$

We can classify a number of properties expressible in LTL:

safety	$\Box\varphi$
liveness	$\Diamond \varphi$
obligation	$\Box\varphi\lor\diamondsuit\psi$
recurrence	$\Box \diamondsuit \varphi$
persistence	$\Diamond\Box\varphi$

We can classify a number of properties expressible in LTL:

safety	$\Box\varphi$
liveness	$\Diamond \varphi$
obligation	$\Box\varphi\lor\diamondsuit\psi$
recurrence	$\Box \diamondsuit \varphi$
persistence	$\diamondsuit \Box \varphi$
reactivity	$\Box \diamondsuit \varphi \lor \diamondsuit \Box \psi$

Temporal Logic

- Propositional Modal Logic
 - 3 Multimodal Logic
 - Dynamic Logic
 - 5 Mu-calculus
- 6 Real-Time Logics

- The logic of possibility and necessity
 - $\Box\,\varphi \!:\,\varphi$ is "necessarily true", or " φ holds in all possible worlds"
 - $\diamond \varphi$: φ is "possibly true", or "there is a possible world that realizes φ "
- The modalities are dual
 - $\diamond \varphi \stackrel{\text{def}}{=} \neg \Box \neg \varphi$

Definition

A Kripke frame \mathcal{M} is a structure (W, R, ν) where

- W is a finite non-empty set of states (or worlds) −W is called the universe of M
- $R \subseteq W \times W$ is an accessibility relation between states (transition relation)
- $\nu: \mathbb{P} \longrightarrow 2^K$ determines the truth assignment to the atomic propositional variables in each state

Definition

We define the notion that a modal formula φ is true in the world w in the model \mathcal{M} , written $\mathcal{M}, w \models \varphi$ as follows:

$$\begin{array}{lll} \mathcal{M},w\models p & \text{iff} & w\in\nu(p) \\ \\ \mathcal{M},w\models\neg\varphi & \text{iff} & \mathcal{M},w\not\models\varphi \\ \mathcal{M},w\models\varphi_1\vee\varphi_2 & \text{iff} & \mathcal{M},w\models\varphi_1 \text{ or } \mathcal{M},w\models\varphi_2 \\ \\ \\ \mathcal{M},w\models\Box\varphi & \text{iff} & \mathcal{M},w'\models\varphi \text{ for all } w' \text{ such that } (w,w')\in R \\ \\ \mathcal{M},w\models\Diamond\varphi & \text{iff} & \mathcal{M},w'\models\varphi \text{ for some } w' \text{ such that } (w,w')\in R \\ \end{array}$$

< □ ▶ < /₽

Propositional Modal Logic Examples

Example (Logic T)

- R reflexive
- $M, w \models \Box \neg p$

Propositional Modal Logic Examples

Example (Logic T)

- R reflexive
- $M, w \models \Box \neg p$

Example (Logic S4)

• R reflexive and transitive

•
$$M, w \models \Box \neg p$$

Propositional Modal Logic Semantics: Kripke Frames

Remarks

- The semantics is alternatively called relational semantics, frame semantics, world semantics, possible world semantics, Kripke semantics/frame/structure
- There are different variations of the definition of Kripke semantics
- Sometimes a Kripke frame is defined to be a structure (W, R), and then the triple (W, R, ν) is called a Kripke model
- The Kripke model may be defined as (W, R, \models) instead
- Sometimes a set of starting states $W_0 \subseteq W$ is added to the definition
- In other cases a valuation function $V: K \to 2^{\mathbb{P}}$ is given instead of u
- The semantics of \Box and \diamond depend on the properties of *R*
 - R can be reflexive, transitive, euclidean, etc
 - Axioms and theorems will be determined by R (or vice-versa!)

SEFM, 3-7 Nov 2008

Propositional Modal Logic Semantics: Kripke Frames

Remarks

- The semantics is alternatively called relational semantics, frame semantics, world semantics, possible world semantics, Kripke semantics/frame/structure
- There are different variations of the definition of Kripke semantics
- Sometimes a Kripke frame is defined to be a structure (W, R), and then the triple (W, R, ν) is called a Kripke model
- The Kripke model may be defined as (W, R, \models) instead
- \bullet Sometimes a set of starting states ${\it W}_0\subseteq {\it W}$ is added to the definition
- In other cases a valuation function $V: \mathcal{K} \to 2^\mathbb{P}$ is given instead of u
- The semantics of \Box and \diamondsuit depend on the properties of R
 - R can be reflexive, transitive, euclidean, etc
 - Axioms and theorems will be determined by R (or vice-versa!)

Gerardo Schneider (UiO)

SEFM, 3-7 Nov 2008

Propositional Modal Logic Semantics: Kripke Frames

Remarks

- The semantics is alternatively called relational semantics, frame semantics, world semantics, possible world semantics, Kripke semantics/frame/structure
- There are different variations of the definition of Kripke semantics
- Sometimes a Kripke frame is defined to be a structure (W, R), and then the triple (W, R, ν) is called a Kripke model
- The Kripke model may be defined as (W, R, \models) instead
- \bullet Sometimes a set of starting states ${\it W}_0\subseteq {\it W}$ is added to the definition
- In other cases a valuation function $V: \mathcal{K} \to 2^\mathbb{P}$ is given instead of u
- The semantics of \Box and \diamondsuit depend on the properties of *R*
 - R can be reflexive, transitive, euclidean, etc
 - Axioms and theorems will be determined by R (or vice-versa!)

SEFM, 3-7 Nov 2008

Temporal Logic

- Propositional Modal Logic
- 3 Multimodal Logic
 - Dynamic Logic
 - 5 Mu-calculus
- 6 Real-Time Logics

- A multimodal logic contains a set $A = \{a, \ldots\}$ of modalities
- We can augment propositional logic with one modality for each $a \in A$
 - If φ is a formula and $a \in A$, then $[a]\varphi$ is a formula
- We also define $\langle a \rangle \varphi \stackrel{\mathrm{def}}{=} \neg [a] \neg \varphi$
- The semantics of $\langle a \rangle$ and [a] are defined as for $\Diamond a$ and $\Box a$, but "labelling" the transition with a

Definition

A Kripke frame now is a structure $\mathcal{M} = (W, R, \nu)$ where

- W is a finite non-empty set of states (or worlds) −W is called the universe of M
- R(a) ⊆ W × W is the accessibility relation between states (transition relation), associating each modality in a ∈ A to a transition
 - We get a labelled Kripke frame
- $\nu: \mathbb{P} \longrightarrow 2^K$ determines the truth assignment to the atomic propositional variables in each state

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$?
- What about $M, w_2 \models [b] \neg p$?

3.5 3

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$?
- What about $M, w_2 \models [b] \neg p$?

31 / 56

3 . 3

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$?
- What about $M, w_2 \models [b] \neg p$?

Image: A matrix

э

31 / 56

∃ ⊳

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$?
- What about $M, w_2 \models [b] \neg p$?

Image: A matrix

э

31 / 56

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$? NO
- What about $M, w_2 \models [b] \neg p$?

Image: A matrix

э

31 / 56

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$? NO
- What about $M, w_2 \models [b] \neg p$?

Image: A matrix

31 / 56

э

∃ ⊳

Examples

Example

- $M, w_1 \models [a]p$
- $M, w_1 \models \langle a \rangle p$
- $M, w_1 \models \langle b \rangle p$, and also $M, w_1 \models [b]p$
- What about $M, w_2 \models \langle b \rangle \neg p$? NO
- What about $M, w_2 \models [b] \neg p$? YES

Image: A matrix

31 / 56

э

∃ ⊳

Temporal Logic

- Propositional Modal Logic
- 3 Multimodal Logic
- 4 Dynamic Logic
- 5 Mu-calculus
- 6 Real-Time Logics
- The dynamic aspect of modal logic fits well the framework of program execution
 - K: universe of all possible execution states of a program
 - With any program α , define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
 - "possible" since programs may be *non-deterministic*
- Syntactically, each program gives rise to a modality of a multimodal logic
 - $\langle \alpha \rangle \varphi$: it is possible to execute α and halt in a state satisfying φ
 - $[\alpha]\varphi$: whenever α halts, it does so in a state satisfying φ
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
 - It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

- The dynamic aspect of modal logic fits well the framework of program execution
 - K: universe of all possible execution states of a program
 - With any program α , define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
 - "possible" since programs may be *non-deterministic*
- Syntactically, each program gives rise to a modality of a multimodal logic
 - $\langle \alpha \rangle \varphi$: it is possible to execute α and halt in a state satisfying φ
 - $[\alpha] \varphi$: whenever α halts, it does so in a state satisfying φ
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
 - It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

- The dynamic aspect of modal logic fits well the framework of program execution
 - K: universe of all possible execution states of a program
 - With any program α , define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
 - "possible" since programs may be *non-deterministic*
- Syntactically, each program gives rise to a modality of a multimodal logic
 - $\langle \alpha \rangle \varphi :$ it is possible to execute α and halt in a state satisfying φ
 - $[\alpha] \varphi$: whenever α halts, it does so in a state satisfying φ
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
 - It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

- The dynamic aspect of modal logic fits well the framework of program execution
 - K: universe of all possible execution states of a program
 - With any program α , define a relation R over K s.t. $(s, t) \in R$ iff t is a possible final state of the program α with initial state s
 - "possible" since programs may be *non-deterministic*
- Syntactically, each program gives rise to a modality of a multimodal logic
 - $\langle \alpha \rangle \varphi$: it is possible to execute α and halt in a state satisfying φ
 - $[\alpha] \varphi$: whenever α halts, it does so in a state satisfying φ
- Dynamic logic (PDL) is more than just multimodal logic applied to programs
 - It uses various calculi of programs, together with predicate logic, giving rise to a reasoning system for interacting programs
- Dynamic logic subsumes Hoare logic

Propositional Dynamic Logic _{Syntax}

• PDL contains syntax constructs from:

- Propositional logic
- Modal logic
- Algebra of regular expressions

• Expressions are of two sorts

- Propositions and formulas: φ, ψ, \ldots
- Programs: $\alpha, \beta, \gamma, \ldots$

Propositional Dynamic Logic

Syntax

Definition

Programs and propositions of regular PDL are built inductively using the following operators

Propositional operators

Gerardo Schneider (UiO)	Specification and Analysis of e-Contracts		SEFM, 3-7 Nov 2008	35 / 56
	?	test		
	[]	necessity		
• Witted operators				
Mixed operators				
	*	iteration		
	U	choice		
	;	composition		
Program operators				
	0	falsity		
	\rightarrow	implication		

- $[\alpha]\varphi$: It is necessary that after executing α , φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- α ; β : Execute α , then execute β (concatenation, sequencing)
- α^* : Execute α a non-deterministically chosen finite of times –zero or more (Kleene star)
- φ ?: Test φ ; proceed if true, fail if false (test)

• We define $\langle \alpha \rangle \varphi \stackrel{\text{def}}{=} \neg [\alpha] \neg \varphi$

- $[\alpha]\varphi$: It is necessary that after executing α , φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha; \beta$: Execute α , then execute β (concatenation, sequencing)
- α^* : Execute α a non-deterministically chosen finite of times –zero or more (Kleene star)
- φ ?: Test φ ; proceed if true, fail if false (test)

• We define $\langle \alpha \rangle \varphi \stackrel{\text{def}}{=} \neg [\alpha] \neg \varphi$

- $[\alpha]\varphi$: It is necessary that after executing α , φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- $\alpha; \beta$: Execute α , then execute β (concatenation, sequencing)
- α^{*}: Execute α a non-deterministically chosen finite of times –zero or more (Kleene star)
- φ ?: Test φ ; proceed if true, fail if false (test)

• We define $\langle \alpha \rangle \varphi \stackrel{\text{def}}{=} \neg [\alpha] \neg \varphi$

- $[\alpha]\varphi$: It is necessary that after executing α , φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- α ; β : Execute α , then execute β (concatenation, sequencing)
- α^* : Execute α a non-deterministically chosen finite of times –zero or more (Kleene star)
- φ ?: Test φ ; proceed if true, fail if false (test)

• We define $\langle \alpha \rangle \varphi \stackrel{\text{def}}{=} \neg[\alpha] \neg \varphi$

- $[\alpha]\varphi$: It is necessary that after executing α , φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- α ; β : Execute α , then execute β (concatenation, sequencing)
- α^* : Execute α a non-deterministically chosen finite of times –zero or more (Kleene star)
- φ ?: Test φ ; proceed if true, fail if false (test)
- We define $\langle \alpha \rangle \varphi \stackrel{\text{def}}{=} \neg [\alpha] \neg \varphi$

- $[\alpha]\varphi$: It is necessary that after executing α , φ is true (necessity)
- $\alpha \cup \beta$: Choose either α or β non-deterministically and execute it (choice)
- α ; β : Execute α , then execute β (concatenation, sequencing)
- α^* : Execute α a non-deterministically chosen finite of times –zero or more (Kleene star)
- φ ?: Test φ ; proceed if true, fail if false (test)

• We define
$$\langle \alpha \rangle \varphi \stackrel{\text{def}}{=} \neg [\alpha] \neg \varphi$$

Propositional Dynamic Logic Additional Programs

$$\begin{aligned} & \mathsf{skip} \quad \stackrel{\mathrm{def}}{=} \quad 1? \\ & \mathsf{fail} \quad \stackrel{\mathrm{def}}{=} \quad 0? \\ & \mathsf{if} \ \varphi_1 \to \alpha_1 \ | \dots | \ \varphi_n \to \alpha_n \ \mathsf{fi} \quad \stackrel{\mathrm{def}}{=} \quad \varphi_1?; \alpha_1 \cup \dots \cup \varphi_n?; \alpha_n \\ & \mathsf{do} \ \varphi_1 \to \alpha_1 \ | \dots | \ \varphi_n \to \alpha_n \ \mathsf{od} \quad \stackrel{\mathrm{def}}{=} \quad (\varphi_1?; \alpha_1 \cup \dots \cup \varphi_n?; \alpha_n)^*; (\neg \varphi_1 \land \dots \land \neg \varphi_n) \\ & \mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta \quad \stackrel{\mathrm{def}}{=} \quad \mathsf{if} \ \varphi \to \alpha \ | \ \neg \varphi \to \beta \ \mathsf{fi} \\ & = \quad \varphi?; \alpha \cup \neg \varphi?; \beta \\ & \mathsf{while} \ \varphi \ \mathsf{do} \ \alpha \quad \stackrel{\mathrm{def}}{=} \quad \mathsf{do} \ \varphi \to \alpha \ \mathsf{od} \\ & = \quad (\varphi?; \alpha)^*; \neg \varphi? \\ & \mathsf{repeat} \ \alpha \ \mathsf{until} \ \varphi \quad \stackrel{\mathrm{def}}{=} \quad \alpha; \mathsf{while} \ \neg \varphi \ \mathsf{do} \ \alpha \ \mathsf{od} \\ & = \quad \alpha; (\neg \varphi?; \alpha)^*; \varphi? \\ & \{\varphi\} \ \alpha \ \{\psi\} \quad \stackrel{\mathrm{def}}{=} \quad \varphi \to [\alpha] \psi \end{aligned}$$

3

∃ →

Remark

- It is possible to reason about programs by using PDF proof system
- We will not see the semantics here
- The semantics of PDL comes from that from modal logic
 - Kripke frames
- We will see its application in our contract language

Temporal Logic

- Propositional Modal Logic
- 3 Multimodal Logic
- Dynamic Logic
- 5 Mu-calculus

6 Real-Time Logics

э

- μ -calculus is a powerful language to express properties of transition systems by using least and greatest fixpoint operators
 - ν is the greatest fixpoint meaning ${\rm looping}$
 - μ is the least fixpoint meaning finite looping
- Many temporal and program logics can be encoded into the μ -calculus
- Efficient model checking algorithms
- Formulas are interpreted relative to a transition system
 - The Kripke structure needs to be slightly modified

μ -calculus: Syntax

- Let $Var = \{Z, Y, \ldots\}$ be an (infinite) set of variable names
- Let $Prop = \{P, Q, \ldots\}$ be a set of *atomic propositions*
- Let $L = \{a, b, \ldots\}$ be a set of *labels* (or *actions*)

Definition

The set of μ -calculus formulae (w.r.t. (Var, Prop, L)) is defined as follows:

- P is a formula
- Z is a formula
- If ϕ_1 and ϕ_2 are formulae, so is $\phi_1 \wedge \phi_2$
- If ϕ is a formula, so is $[a]\phi$
- If ϕ is a formula, so is $\neg \phi$
- If ϕ is a formula, then $\nu Z.\phi$ is a formula
 - Provided every *free* occurrence of Z in ϕ occurs positively (within the scope of an even number of negations)
 - ν is the only binding operator

- If $\phi(Z)$, then the subsequent writing $\phi(\psi)$ means ϕ with ψ substituted for all free occurrences of Z
- The positivity requirement syntactically guarantees monotonicity in Z
 Unique minimal and maximal fixpoint
- Derived operators
 - $\phi_1 \lor \phi_2 \stackrel{\text{def}}{=} \neg (\neg \phi_1 \land \neg \phi_2)$
 - $\langle a \rangle \phi \stackrel{\text{def}}{=} \neg [a] \neg \phi$
 - $\mu Z.\phi(Z) \stackrel{\text{def}}{=} \neg \nu Z.\neg \phi(\neg Z)$

- If φ(Z), then the subsequent writing φ(ψ) means φ with ψ substituted for all free occurrences of Z
- The positivity requirement syntactically guarantees monotonicity in Z
 - Unique minimal and maximal fixpoint
- Derived operators
 - $\phi_1 \lor \phi_2 \stackrel{\text{def}}{=} \neg (\neg \phi_1 \land \neg \phi_2)$
 - $\langle a \rangle \phi \stackrel{\text{def}}{=} \neg [a] \neg \phi$
 - $\mu Z.\phi(Z) \stackrel{\text{def}}{=} \neg \nu Z.\neg \phi(\neg Z)$

- If φ(Z), then the subsequent writing φ(ψ) means φ with ψ substituted for all free occurrences of Z
- The positivity requirement syntactically guarantees monotonicity in Z
 - Unique minimal and maximal fixpoint
- Derived operators

•
$$\phi_1 \lor \phi_2 \stackrel{\text{def}}{=} \neg (\neg \phi_1 \land \neg \phi_2)$$

•
$$\langle a \rangle \phi \stackrel{\text{def}}{=} \neg [a] \neg \phi$$

• $\mu Z.\phi(Z) \stackrel{\text{def}}{=} \neg \nu Z.\neg \phi(\neg Z)$

Definition

A labelled transition system (LTS) is a triple M = (S, T, L), where:

- \mathcal{S} is a nonempty set of states
- L is a set of labels (actions) as defined before
- $T \subseteq S \times L \times S$ is a transition relation

A modal μ -calculus structure \mathcal{T} (over *Prop* and *L*) is a LTS ($\mathcal{S}, \mathcal{T}, L$) together with an interpretation $\mathcal{V}_{Prop} : Prop \to 2^{\mathcal{S}}$ for the atomic propositions

Definition

Given a structure \mathcal{T} and an interpretation $\mathcal{V} : Var \to 2^{\mathcal{S}}$ of the variables, the set $\|\phi\|_{\mathcal{V}}^{\mathcal{T}}$ is defined as follows:

$$\begin{split} \|P\|_{\mathcal{V}}^{\mathcal{T}} &= \mathcal{V}_{Prop}(P) \\ \|Z\|_{\mathcal{V}}^{\mathcal{T}} &= \mathcal{V}(Z) \\ \|\neg \phi\|_{\mathcal{V}}^{\mathcal{T}} &= \mathcal{S} - \|\phi\|_{\mathcal{V}}^{\mathcal{T}} \\ \|\phi_1 \wedge \phi_2\|_{\mathcal{V}}^{\mathcal{T}} &= \|\phi_1\|_{\mathcal{V}}^{\mathcal{T}} \cap \|\phi_2\|_{\mathcal{V}}^{\mathcal{T}} \\ \|[a]\phi\|_{\mathcal{V}}^{\mathcal{T}} &= \{s \mid \forall t.(s, a, t) \in \mathcal{T} \Rightarrow t \in \|\phi\|_{\mathcal{V}}^{\mathcal{T}}\} \\ \|\nu Z.\phi\|_{\mathcal{V}}^{\mathcal{T}} &= \bigcup \{S \subseteq \mathcal{S} \mid S \subseteq \|\phi\|_{\mathcal{V}[Z:=S]}^{\mathcal{T}}\} \end{split}$$

where $\mathcal{V}[Z:=S]$ is the valuation mapping Z to S and otherwise agrees with $\mathcal V$

Image: Image:

If we consider only positive formulae, we may add the following derived operators

Interpretation

$$\begin{aligned} \|\phi_1 \vee \phi_2\|_{\mathcal{V}}^{\mathcal{T}} &= \|\phi_1\|_{\mathcal{V}}^{\mathcal{T}} \cup \|\phi_2\|_{\mathcal{V}}^{\mathcal{T}} \\ \|\langle \mathbf{a} \rangle \phi\|_{\mathcal{V}}^{\mathcal{T}} &= \{\mathbf{s} \mid \exists t.(\mathbf{s}, \mathbf{a}, t) \in \mathcal{T} \land t \in \|\phi\|_{\mathcal{V}}^{\mathcal{T}} \\ \|\mu Z.\phi\|_{\mathcal{V}}^{\mathcal{T}} &= \bigcap \{S \subseteq \mathcal{S} \mid S \supseteq \|\phi\|_{\mathcal{V}[Z:=S]}^{\mathcal{T}} \} \end{aligned}$$

< □ > < A

3

μ -calculus

Example

• μ is liveness

• "On all length a-path, P eventually holds"

 $\mu Z.(P \vee [a]Z)$

• "On some a-path, P holds until Q holds"

 $\mu Z.(Q \lor (P \land \langle a \rangle Z))$

• ν is safety

• "P is true along every a-path"

 $\nu Z.(P \wedge [a]Z)$

• "On every a-path P holds while Q fails"

$$\nu Z.(Q \lor (P \land [a]Z))$$

56

Temporal Logic

- Propositional Modal Logic
- 3 Multimodal Logic
- Oynamic Logic
- 5 Mu-calculus

• Temporal logic (TL) is concerned with the **qualitative** aspect of temporal system requirements

- Invariance, responsiveness, etc
- TL cannot refer to metric time: Not suitable for the specification of **quantitative** temporal requirements
- There are many ways to extend a temporal logic with real-time
 - Replace the unrestricted temporal operators with time-bounded versions
 - 2 Extend temporal logic with explicit references to the times of temporal contexts (freeze quantification)
 - Add an explicit clock variable

- Temporal logic (TL) is concerned with the **qualitative** aspect of temporal system requirements
 - Invariance, responsiveness, etc
- TL cannot refer to metric time: Not suitable for the specification of **quantitative** temporal requirements
- There are many ways to extend a temporal logic with real-time
 - I Replace the unrestricted temporal operators with time-bounded versions
 - Extend temporal logic with explicit references to the times of temporal contexts (freeze quantification)
 - 3 Add an explicit clock variable

- Temporal logic (TL) is concerned with the **qualitative** aspect of temporal system requirements
 - Invariance, responsiveness, etc
- TL cannot refer to metric time: Not suitable for the specification of quantitative temporal requirements
- There are many ways to extend a temporal logic with real-time
 - **(**) Replace the unrestricted temporal operators with time-bounded versions
 - Extend temporal logic with explicit references to the times of temporal contexts (freeze quantification)
 - 3 Add an explicit clock variable

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$\varphi := \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U}_{\mathbf{I}} \varphi$$

where p is a propositional variable, and I is a rational interval

- Informally, φ₁ U_I φ₂ holds at time t in a timed observation sequence iff
 There is a later time t' ∈ t + I s.t. φ₂ holds at time t' and φ₁ holds through the interval (t, t')
- Derived operators
 - $\diamond_I \varphi \stackrel{\text{def}}{=} true \mathcal{U}_I \varphi$: time-bounded eventually
 - $\Box_I \varphi \stackrel{\text{def}}{=} \neg \Diamond_I \neg \varphi$: time-bounded always

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$\varphi := \boldsymbol{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U}_{\boldsymbol{I}} \varphi$$

where p is a propositional variable, and I is a rational interval

- Informally, φ₁ U_I φ₂ holds at time t in a timed observation sequence iff
 There is a later time t' ∈ t + I s.t. φ₂ holds at time t' and φ₁ holds through the interval (t, t')
- Derived operators
 - $\diamond_I \varphi \stackrel{\text{def}}{=} true \mathcal{U}_I \varphi$: time-bounded eventually
 - $\Box_I \varphi \stackrel{\text{def}}{=} \neg \Diamond_I \neg \varphi$: time-bounded always

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$\varphi := \boldsymbol{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U}_{\boldsymbol{I}} \varphi$$

where p is a propositional variable, and I is a rational interval

- Informally, φ₁ U_I φ₂ holds at time t in a timed observation sequence iff
 There is a later time t' ∈ t + I s.t. φ₂ holds at time t' and φ₁ holds
 - through the interval (t,t')
- Derived operators
 - $\diamond_I \varphi \stackrel{\text{def}}{=} true \mathcal{U}_I \varphi$: time-bounded eventually
 - $\Box_I \varphi \stackrel{\text{def}}{=} \neg \Diamond_I \neg \varphi$: time-bounded always

1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

$$\varphi := \boldsymbol{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U}_{\boldsymbol{I}} \varphi$$

where p is a propositional variable, and I is a rational interval

- Informally, φ₁ U_I φ₂ holds at time t in a timed observation sequence iff
 There is a later time t' ∈ t + I s.t. φ₂ holds at time t' and φ₁ holds
 - through the interval (t, t')
- Derived operators
 - $\diamond_I \varphi \stackrel{\text{def}}{=} true \mathcal{U}_I \varphi$: time-bounded eventually
 - $\Box_I \varphi \stackrel{\text{def}}{=} \neg \Diamond_I \neg \varphi$: time-bounded always

Example

- $\square_{[2,4]}p$ means "p holds at all times within 2 to 4 time units"
- $\Box(p \Rightarrow \Diamond_{[0,3]}q)$: "every stimulus p is followed by a response q within 3 time units"

- 2. Freeze Quantification
 - Bounded-operator cannot express non-local timing requirements
 - Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p"
 - Need to have explicit references to time of temporal contexts
 - The freeze quantifier x. binds x to the time of the current temporal context
 - $x.\varphi(x)$ holds at time t iff $\varphi(t)$ does
 - A logic with freeze quantifier is called half-order

- 2. Freeze Quantification
 - Bounded-operator cannot express non-local timing requirements
 - Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p"
 - Need to have explicit references to time of temporal contexts
 - The freeze quantifier x. binds x to the time of the current temporal context
 - $x.\varphi(x)$ holds at time t iff $\varphi(t)$ does
 - A logic with freeze quantifier is called half-order

- 2. Freeze Quantification
 - Bounded-operator cannot express non-local timing requirements
 - Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p"
 - Need to have explicit references to time of temporal contexts
 - The freeze quantifier x. binds x to the time of the current temporal context
 - $x.\varphi(x)$ holds at time t iff $\varphi(t)$ does
 - A logic with freeze quantifier is called half-order

- 2. Freeze Quantification
 - Bounded-operator cannot express non-local timing requirements
 - Ex: "every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p"
 - Need to have explicit references to time of temporal contexts
 - The freeze quantifier x. binds x to the time of the current temporal context
 - $x.\varphi(x)$ holds at time t iff $\varphi(t)$ does
 - A logic with freeze quantifier is called half-order

Example of a R-T logic with freeze quantification

$$\varphi := \mathbf{p} \mid \pi \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U} \varphi \mid \mathbf{x}.\varphi$$

- V is a set of time variables
- π ∈ Π(V) represents atomic timing constraints with free variables from V (e.g., z ≤ x + 3)
Example

• "Every stimulus p is followed by a response q within 3 time units"

$$\Box x.(p \Rightarrow \Diamond y.(q \land y \le x+3))$$

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 51 / 56

э

Example

• "Every stimulus p is followed by a response q within 3 time units"

$$\Box x.(p \Rightarrow \Diamond y.(q \land y \le x+3))$$

• "Every stimulus p is followed by a response q, followed by another response r, such that r is within 3 time units of p"

$$\Box x.(p \Rightarrow \Diamond (q \land \Diamond z.(r \land z \le x+3)))$$

Real-time Logics

- 3. Explicit Clock Variable
 - It uses a dynamic state variable T (the clock variable), and
 - A first-order quantification for global (rigid) variables over time

Real-time Logics

- 3. Explicit Clock Variable
 - It uses a dynamic state variable T (the clock variable), and
 - A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

$$\varphi := p \mid \pi \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U} \varphi \mid \exists x. \varphi$$

- $x \in V$, with V a set of (global) time variables
- π ∈ Π(V ∪ {T}) represents atomic timing constraints over the variables from V ∪ {T}) (e.g., T ≤ x + 3)

The freeze quantifier $x.\varphi$ is equivalent to $\exists x.(T = x \land \varphi)$

Real-time Logics

- 3. Explicit Clock Variable
 - It uses a dynamic state variable T (the clock variable), and
 - A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

$$\varphi := p \mid \pi \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U} \varphi \mid \exists x. \varphi$$

- $x \in V$, with V a set of (global) time variables
- π ∈ Π(V ∪ {T}) represents atomic timing constraints over the variables from V ∪ {T}) (e.g., T ≤ x + 3)

The freeze quantifier $x.\varphi$ is equivalent to $\exists x.(T = x \land \varphi)$

Example

• "Every stimulus p is followed by a response q within 3 time units"

$$\forall x. \Box ((p \land T = x) \Rightarrow \Diamond (q \land T \leq x + 3))$$

Real-time Logics Examples of Real-Time Logics

Linear-time:

- MTL (metric temporal logic)
 - A propositional bounded-operator logic
- TPTL (timed temporal logic)
 - A propositional half-order logic using only the future operators *until* and *next*
- RTTL (real-time temporal logic)
 - A first-order explicit-clock logic
- XCTL (explicit-clock temporal logic)
 - A propositional explicit-clock logic with a rich timing constraints (comparison and addition)
 - Does not allow explicit quantification over time variables (implicit universal quantification)
- MITL (metric interval temporal logic)
 - A propositional linear-time with an interval-based strictly-monotonic real-time semantics

Image: A mathematical states and a mathem

• Does not allow equality constraints

Branching-time:

- RTCTL (real-time computation tree logic)
 - A propositional branching-time logic for synchronouys systems
 - Bounded-operator extension of CTL with a point-based strictly-monotonic integer-time semantics
- TCTL (timed computation tree logic)
 - A propositional branching-time logic with less restricted semantics
 - Bounded-operator extension of CTL with an interval-based strictly-monotonic real-time semantics

Remarks

- For most of the presented logics, there is an axiomatic system, and/or a Natural Deduction system
- Though important, it is not needed for the rest of the tutorial
 - Our contract language will use the syntax of some of the presented logics
 - We will focus on the semantics (Kripke models, semantic encoding into other logic)

Modal and Temporal Logics

- M. Fitting. Basic Modal Logic. Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 1, 1993
- C. Stirling. Modal and Temporal Logics. Handbook of Logic in Computer Science, vol. 2, 1992

Dynamic Logic

• D. Harel, D. Kozen and J. Tiuryn. **Dynamic Logic.** MIT, 2003 μ -calculus:

• J. Bradfield and C. Stirling. Modal logics and μ -calculi: an introduction

Real-time logics:

 R. Alur and T. Henzinger. Logics and Models of Real time: A Survey. LNCS 600, pp. 74-106, 1992