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Plan of the Course
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Modal Logics

Modal logic is the logic of possibility and necessity
@ϕ: ϕ is necessarily true.
3ϕ: ϕ is possibly true.

Not a single system but many different systems depending on
application
Good to reason about causality and situations with incomplete
information
Different interpretation for the modalities: belief, knowledge,
provability, etc.

Depending on the semantics, we can interpret @ϕ differently
temporal ϕ will always hold
doxastic I believe ϕ
epistemic I know ϕ
deontic It ought to be the case that ϕ
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Modal Logic
Dynamic Aspect of Modal Logic

Modal logic is good to reason in dynamic situations
Truth values may vary over time (classical logic is static)

Sentences in classical logic are interpreted over a single structure or
world
In modal logic, interpretation consists of a collection K of possible
worlds or states

If states change, then truth values can also change
Dynamic interpretation of modal logic

Temporal logic
Linear time
Branching time

Dynamic logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 56



university-logo

Modal Logic
Dynamic Aspect of Modal Logic

Modal logic is good to reason in dynamic situations
Truth values may vary over time (classical logic is static)

Sentences in classical logic are interpreted over a single structure or
world
In modal logic, interpretation consists of a collection K of possible
worlds or states

If states change, then truth values can also change
Dynamic interpretation of modal logic

Temporal logic
Linear time
Branching time

Dynamic logic

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 56



university-logo

Modal Logics

We will see
In the rest of this and next lecture (2 hours):

Temporal logic
Propositional modal logic
Multimodal logic
Dynamic logic
µ-calculus
Real-time logics

In the following lecture (1 hour):

Deontic logic
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Plan

1 Temporal Logic

2 Propositional Modal Logic

3 Multimodal Logic

4 Dynamic Logic

5 Mu-calculus

6 Real-Time Logics
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3 Multimodal Logic

4 Dynamic Logic
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Temporal Logic
Introduction

Temporal logic is the logic of time

There are different ways of modeling time
linear time vs. branching time
time instances vs. time intervals
discrete time vs. continuous time
past and future vs. future only
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Temporal Logic
Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is
now,

p holds in i and every following point (the future)
p holds in i and every preceding point (the past)

We will only be concerned with the future

. . .
i−1i−2 i+1

. . .
i+3i+2i

p p p p

. . .
i−1i−2 i+1

. . .
i+3i+2i

ppp
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Temporal Logic
Introduction

We extend the first-order language L to a temporal language LT by adding
the temporal operators @, 3, ©, U, R and W .

Interpretation
@ϕ ϕ will always (in every state) hold
3ϕ ϕ will eventually (ins some state) hold
©ϕ ϕ will hold at the next point in time
ϕU ψ ψ will eventually hold, and until that point ϕ will hold
ϕR ψ ψ holds until (incl.) the point (if any) where ϕ holds (release)
ϕW ψ ϕ will hold until ψ holds (weak until or waiting for)
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Temporal Logic
Introduction

Definition
We define LTL formulae as follows:
L ⊆ LT: first-order formulae are also LTL formulae
If ϕ is an LTL formulae, so are

@ϕ, 3ϕ, ©ϕ and ¬ϕ
If ϕ and ψ are LTL formulae, so are

ϕU ψ, ϕR ψ, ϕW ψ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ ⇒ ψ and ϕ ≡ ψ
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university-logo

Temporal Logic
Semantics

Definition
A path is an infinite sequence of states

σ = s0, s1, s2, . . .

σk denotes the path sk , sk+1, sk+2, . . .

σk denotes the state sk
All computations are paths, but not vice versa
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Linear Temporal Logic
Semantics

Definition
We define the notion that an LTL formula ϕ is true (false) relative to a
path σ, written σ |= ϕ (σ 6|= ϕ) as follows.

σ |= ϕ iff σ0 |= ϕ when ϕ ∈ L
σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ

σ |= @ϕ iff σk |= ϕ for all k ≥ 0

σ |= 3ϕ iff σk |= ϕ for some k ≥ 0

σ |=©ϕ iff σ1 |= ϕ

(cont.)
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Linear Temporal Logic
Semantics

Definition
(cont.)

σ |= ϕU ψ iff σk |= ψ for some k ≥ 0, and

σi |= ϕ for every i such that 0 ≤ i < k

σ |= ϕR ψ iff for every j ≥ 0,
if for every i < j σi 6|= ϕ then σj |= ψ

σ |= ϕW ψ iff σ |= ϕU ψ or σ |= @ϕ
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Temporal Logic
Semantics

Definition
If σ |= ϕ for all paths σ, we say that ϕ is (temporally) valid and write

|= ϕ (Validity)

If |= ϕ ≡ ψ (ie. σ |= ϕ iff σ |= ψ, for all σ), we say that ϕ and ψ are
equivalent and write

ϕ ∼ ψ (Equivalence)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 56
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Temporal Logic
Semantics

σ |= @ p

10 3 42
. . .

ppp p p

σ |= 3 p

10 3 42
. . .

p

σ |=© p

10 3 42
. . .

p
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Temporal Logic
Semantics

σ |= p U q – The sequence of p is finite

10 3 42
. . .

pp p q

σ |= p R q – The sequence of q may be infinite

10 3 42
. . .

qq q q, p

σ |= p W q – The sequence of p may be infinite (p W q ≡ (p U q) ∨2p)

10 3 42
. . .

pp p q
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Temporal Logic
Examples

Example (Response)
@(ϕ ⇒ 3ψ)

Every ϕ-position coincides with or is followed by a ψ-position

10 3 42
. . .

5 6

ϕ ψ ϕ, ψ

This formula will also hold in every path where ϕ never holds

10 3 42
. . .

¬ϕ¬ϕ ¬ϕ ¬ϕ ¬ϕ
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Temporal Logic
Formalization

It can be difficult to correctly formalize informally stated requirements in
temporal logic

Example
How does one formalize the informal requirement “ϕ implies ψ”?

ϕ ⇒ ψ?

ϕ ⇒ ψ holds in the initial state

@(ϕ ⇒ ψ)?

ϕ ⇒ ψ holds in every state

ϕ ⇒ 3ψ?

If ϕ holds in the initial state, ψ will hold in some state

@(ϕ ⇒ 3ψ)?

As above, but iteratively

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 56
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Temporal Logic
Duals

For a binary boolean connective ◦ (such as ∧), a binary boolean
connective • is its dual if ¬(ϕ ◦ ψ) is equivalent to (¬ϕ • ¬ψ)
Similarly for unary connectives; • is the dual of ◦ if ¬ ◦ ϕ is equivalent
to •¬ϕ.
Duality is symmetrical; if • is the dual of ◦ then ◦ is the dual of •,
thus we may refer to two connectives as dual
∧ and ∨ are duals; ¬(ϕ ∧ ψ) is equivalent to (¬ϕ ∨ ¬ψ)
¬ is its own dual
What is the dual of @?

And of 3?
@ and 3 are duals: ¬@ϕ ∼ 3¬ϕ, ¬3ϕ ∼ @¬ϕ

Any other?

U and R are duals:

¬(ϕU ψ) ∼ (¬ϕ) R (¬ψ)

¬(ϕR ψ) ∼ (¬ϕ)U (¬ψ)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 56
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Temporal Logic
Classification of Properties

Classification
We can classify a number of properties expressible in LTL:

safety @ϕ
liveness 3ϕ

obligation @ϕ ∨3ψ

recurrence @ 3ϕ

persistence 3 @ϕ
reactivity @ 3ϕ ∨3 @ψ
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Propositional Modal Logic

The logic of possibility and necessity
@ϕ: ϕ is “necessarily true”, or “ϕ holds in all possible worlds”
3ϕ: ϕ is “possibly true”, or “there is a possible world that realizes ϕ”

The modalities are dual
3ϕ

def
= ¬@¬ϕ
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Propositional Modal Logic
Semantics: Kripke Frames

Definition
A Kripke frameM is a structure (W ,R, ν) where

W is a finite non-empty set of states (or worlds) –W is called the
universe ofM
R ⊆W ×W is an accessibility relation between states (transition
relation)
ν : P −→ 2K determines the truth assignment to the atomic
propositional variables in each state
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Propositional Modal Logic
Semantics: Kripke Frames

Definition
We define the notion that a modal formula ϕ is true in the world w in the
modelM, writtenM,w |= ϕ as follows:

M,w |= p iff w ∈ ν(p)

M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 orM,w |= ϕ2

M,w |= @ϕ iff M,w ′ |= ϕ for all w ′ such that (w ,w ′) ∈ R
M,w |= 3ϕ iff M,w ′ |= ϕ for some w ′ such that (w ,w ′) ∈ R
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Propositional Modal Logic
Examples

Example (Logic T)
R reflexive
M,w |= @¬p

�¬p ¬p

Example (Logic S4)
R reflexive and transitive
M,w |= @¬p

�¬p ¬p ¬p
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Propositional Modal Logic
Semantics: Kripke Frames

Remarks
The semantics is alternatively called relational semantics, frame
semantics, world semantics, possible world semantics, Kripke
semantics/frame/structure
There are different variations of the definition of Kripke semantics
Sometimes a Kripke frame is defined to be a structure (W ,R), and
then the triple (W ,R, ν) is called a Kripke model
The Kripke model may be defined as (W ,R, |=) instead
Sometimes a set of starting states W0 ⊆W is added to the definition
In other cases a valuation function V : K → 2P is given instead of ν
The semantics of @ and 3 depend on the properties of R

R can be reflexive, transitive, euclidean, etc
Axioms and theorems will be determined by R (or vice-versa!)
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Multimodal Logic

A multimodal logic contains a set A = {a, . . .} of modalities
We can augment propositional logic with one modality for each a ∈ A

If ϕ is a formula and a ∈ A, then [a]ϕ is a formula

We also define 〈a〉ϕ def
= ¬[a]¬ϕ

The semantics of 〈a〉 and [a] are defined as for 3 a and @ a, but
“labelling” the transition with a
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Multimodal Logic

Definition
A Kripke frame now is a structureM = (W ,R, ν) where

W is a finite non-empty set of states (or worlds) –W is called the
universe ofM
R(a) ⊆W ×W is the accessibility relation between states (transition
relation), associating each modality in a ∈ A to a transition

We get a labelled Kripke frame

ν : P −→ 2K determines the truth assignment to the atomic
propositional variables in each state
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Multimodal Logic
Examples

Example

¬p p p

a

b

a

a

w1 w2 w3

M,w1 |= [a]p
M,w1 |= 〈a〉p
M,w1 |= 〈b〉p, and also M,w1 |= [b]p
What about M,w2 |= 〈b〉¬p?

NO

What about M,w2 |= [b]¬p?

YES
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Propositional Dynamic Logic (PDL)

The dynamic aspect of modal logic fits well the framework of program
execution

K : universe of all possible execution states of a program
With any program α, define a relation R over K s.t. (s, t) ∈ R iff t is a
possible final state of the program α with initial state s

“possible” since programs may be non-deterministic

Syntactically, each program gives rise to a modality of a multimodal
logic

〈α〉ϕ: it is possible to execute α and halt in a state satisfying ϕ
[α]ϕ: whenever α halts, it does so in a state satisfying ϕ

Dynamic logic (PDL) is more than just multimodal logic applied to
programs

It uses various calculi of programs, together with predicate logic, giving
rise to a reasoning system for interacting programs

Dynamic logic subsumes Hoare logic
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Propositional Dynamic Logic
Syntax

PDL contains syntax constructs from:
Propositional logic
Modal logic
Algebra of regular expressions

Expressions are of two sorts
Propositions and formulas: ϕ,ψ, . . .
Programs: α, β, γ, . . .
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Propositional Dynamic Logic
Syntax

Definition
Programs and propositions of regular PDL are built inductively using the
following operators

Propositional operators

→ implication

0 falsity

Program operators

; composition

∪ choice

∗ iteration

Mixed operators

[ ] necessity

? test
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Propositional Dynamic Logic
Intuitive Meaning

[α]ϕ: It is necessary that after executing α, ϕ is true (necessity)
α ∪ β: Choose either α or β non-deterministically and execute it
(choice)
α;β: Execute α, then execute β (concatenation, sequencing)
α∗: Execute α a non-deterministically chosen finite of times –zero or
more (Kleene star)
ϕ?: Test ϕ; proceed if true, fail if false (test)

We define 〈α〉ϕ def
= ¬[α]¬ϕ
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Propositional Dynamic Logic
Additional Programs

skip def
= 1?

fail def
= 0?

if ϕ1 → α1 | . . . | ϕn → αn fi def
= ϕ1?;α1 ∪ . . . ∪ ϕn?;αn

do ϕ1 → α1 | . . . | ϕn → αn od def
= (ϕ1?;α1 ∪ . . . ∪ ϕn?;αn)∗; (¬ϕ1 ∧ . . . ∧ ¬ϕn)?

if ϕ then α else β def
= if ϕ→ α | ¬ϕ→ β fi
= ϕ?;α ∪ ¬ϕ?;β

while ϕ do α def
= do ϕ→ α od
= (ϕ?;α)∗;¬ϕ?

repeat α until ϕ def
= α;while ¬ϕ do α od
= α; (¬ϕ?;α)∗;ϕ?

{ϕ} α {ψ} def
= ϕ→ [α]ψ
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Propositional Dynamic Logic

Remark
It is possible to reason about programs by using PDF proof system
We will not see the semantics here
The semantics of PDL comes from that from modal logic

Kripke frames

We will see its application in our contract language
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µ-calculus

µ-calculus is a powerful language to express properties of transition
systems by using least and greatest fixpoint operators

ν is the greatest fixpoint meaning looping
µ is the least fixpoint meaning finite looping

Many temporal and program logics can be encoded into the µ-calculus
Efficient model checking algorithms
Formulas are interpreted relative to a transition system

The Kripke structure needs to be slightly modified
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µ-calculus: Syntax

Let Var = {Z ,Y , . . .} be an (infinite) set of variable names
Let Prop = {P,Q, . . .} be a set of atomic propositions
Let L = {a, b, . . .} be a set of labels (or actions)

Definition
The set of µ-calculus formulae (w.r.t. (Var ,Prop, L)) is defined as follows:

P is a formula
Z is a formula
If φ1 and φ2 are formulae, so is φ1 ∧ φ2
If φ is a formula, so is [a]φ

If φ is a formula, so is ¬φ
If φ is a formula, then νZ .φ is a formula

Provided every free occurrence of Z in φ occurs positively (within the
scope of an even number of negations)
ν is the only binding operator
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µ-calculus: Syntax

If φ(Z ), then the subsequent writing φ(ψ) means φ with ψ substituted
for all free occurrences of Z
The positivity requirement syntactically guarantees monotonicity in Z

Unique minimal and maximal fixpoint
Derived operators

φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2)

〈a〉φ def
= ¬[a]¬φ

µZ .φ(Z )
def
= ¬νZ .¬φ(¬Z )
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µ-calculus: Semantics

Definition
A labelled transition system (LTS) is a triple M = (S,T , L), where:
S is a nonempty set of states
L is a set of labels (actions) as defined before
T ⊆ S × L× S is a transition relation

A modal µ-calculus structure T (over Prop and L) is a LTS (S,T , L)
together with an interpretation VProp : Prop → 2S for the atomic
propositions
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µ-calculus
Semantics

Definition
Given a structure T and an interpretation V : Var → 2S of the variables,
the set ‖φ‖TV is defined as follows:

‖P‖TV = VProp(P)

‖Z‖TV = V(Z )

‖¬φ‖TV = S − ‖φ‖TV
‖φ1 ∧ φ2‖TV = ‖φ1‖TV ∩ ‖φ2‖TV
‖[a]φ‖TV = {s | ∀t.(s, a, t) ∈ T ⇒ t ∈ ‖φ‖TV }
‖νZ .φ‖TV =

⋃
{S ⊆ S | S ⊆ ‖φ‖TV[Z :=S]}

where V[Z := S ] is the valuation mapping Z to S and otherwise agrees
with V
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µ-calculus
Semantics

If we consider only positive formulae, we may add the following derived
operators

Interpretation

‖φ1 ∨ φ2‖TV = ‖φ1‖TV ∪ ‖φ2‖TV
‖〈a〉φ‖TV = {s | ∃t.(s, a, t) ∈ T ∧ t ∈ ‖φ‖TV
‖µZ .φ‖TV =

⋂
{S ⊆ S | S ⊇ ‖φ‖TV[Z :=S]}
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µ-calculus

Example
µ is liveness

“On all length a-path, P eventually holds”

µZ .(P ∨ [a]Z )

“On some a-path, P holds until Q holds”

µZ .(Q ∨ (P ∧ 〈a〉Z )

ν is safety
“P is true along every a-path”

νZ .(P ∧ [a]Z )

“On every a-path P holds while Q fails”

νZ .(Q ∨ (P ∧ [a]Z ))
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Real-time Logics

Temporal logic (TL) is concerned with the qualitative aspect of
temporal system requirements

Invariance, responsiveness, etc

TL cannot refer to metric time: Not suitable for the specification of
quantitative temporal requirements
There are many ways to extend a temporal logic with real-time

1 Replace the unrestricted temporal operators with time-bounded versions
2 Extend temporal logic with explicit references to the times of temporal

contexts (freeze quantification)
3 Add an explicit clock variable
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Real-time Logics
1. Bounded Temporal Operators

Example of a R-T logic with bounded temporal operators

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

where p is a propositional variable, and I is a rational interval

Informally, ϕ1 UI ϕ2 holds at time t in a timed observation sequence iff
There is a later time t ′ ∈ t + I s.t. ϕ2 holds at time t ′ and ϕ1 holds
through the interval (t, t ′)

Derived operators
3Iϕ

def
= true UI ϕ: time-bounded eventually

2Iϕ
def
= ¬3I¬ϕ: time-bounded always

Example
2[2,4]p means “p holds at all times within 2 to 4 time units”
2(p ⇒ 3[0,3]q): “every stimulus p is followed by a response q within
3 time units”
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Real-time Logics
2. Freeze Quantification

Bounded-operator cannot express non-local timing requirements
Ex: “every stimulus p is followed by a response q, followed by another
response r , such that r is within 3 time units of p”

Need to have explicit references to time of temporal contexts
The freeze quantifier x . binds x to the time of the current temporal
context

x .ϕ(x) holds at time t iff ϕ(t) does
A logic with freeze quantifier is called half-order

Example of a R-T logic with freeze quantification

ϕ := p | π | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ | x .ϕ

V is a set of time variables
π ∈ Π(V ) represents atomic timing constraints with free variables
from V (e.g., z ≤ x + 3)
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Real-time Logics
2. Freeze Quantification

Example
“Every stimulus p is followed by a response q within 3 time units”

2x .(p ⇒ 3y .(q ∧ y ≤ x + 3))

“Every stimulus p is followed by a response q, followed by another
response r , such that r is within 3 time units of p”

2x .(p ⇒ 3(q ∧3z .(r ∧ z ≤ x + 3)))
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Real-time Logics
3. Explicit Clock Variable

It uses a dynamic state variable T (the clock variable), and
A first-order quantification for global (rigid) variables over time

Example of a R-T logic with explicit clocks

ϕ := p | π | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ | ∃x .ϕ

x ∈ V , with V a set of (global) time variables
π ∈ Π(V ∪ {T}) represents atomic timing constraints over the
variables from V ∪ {T}) (e.g., T ≤ x + 3)

The freeze quantifier x .ϕ is equivalent to ∃x .(T = x ∧ ϕ)

Example
“Every stimulus p is followed by a response q within 3 time units”

∀x .2((p ∧ T = x) ⇒ 3(q ∧ T ≤ x + 3))
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Real-time Logics
Examples of Real-Time Logics

Linear-time:
MTL (metric temporal logic)

A propositional bounded-operator logic
TPTL (timed temporal logic)

A propositional half-order logic using only the future operators until
and next

RTTL (real-time temporal logic)
A first-order explicit-clock logic

XCTL (explicit-clock temporal logic)
A propositional explicit-clock logic with a rich timing constraints
(comparison and addition)
Does not allow explicit quantification over time variables (implicit
universal quantification)

MITL (metric interval temporal logic)
A propositional linear-time with an interval-based strictly-monotonic
real-time semantics
Does not allow equality constraints
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Real-time Logics
Examples of Real-Time Logics

Branching-time:
RTCTL (real-time computation tree logic)

A propositional branching-time logic for synchronouys systems
Bounded-operator extension of CTL with a point-based
strictly-monotonic integer-time semantics

TCTL (timed computation tree logic)
A propositional branching-time logic with less restricted semantics
Bounded-operator extension of CTL with an interval-based
strictly-monotonic real-time semantics
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Final Remarks

Remarks
For most of the presented logics, there is an axiomatic system, and/or
a Natural Deduction system
Though important, it is not needed for the rest of the tutorial

Our contract language will use the syntax of some of the presented
logics
We will focus on the semantics (Kripke models, semantic encoding into
other logic)
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Further Reading

Modal and Temporal Logics
M. Fitting. Basic Modal Logic. Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 1, 1993
C. Stirling. Modal and Temporal Logics. Handbook of Logic in
Computer Science, vol. 2, 1992

Dynamic Logic
D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT, 2003

µ-calculus:
J. Bradfield and C. Stirling. Modal logics and µ-calculi: an
introduction

Real-time logics:
R. Alur and T. Henzinger. Logics and Models of Real time: A
Survey. LNCS 600, pp. 74-106, 1992
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