
university-logo

Specification and Analysis of Contracts
Lecture 2

Components, Services and Contracts

Gerardo Schneider
gerardo@ifi.uio.no

http://folk.uio.no/gerardo/

Department of Informatics,
University of Oslo

SEFM School, Oct. 27 - Nov. 7, 2008
Cape Town, South Africa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 1 / 28



university-logo

Plan of the Course

1 Introduction
2 Components, Services and Contracts
3 Background: Modal Logics 1
4 Background: Modal Logics 2
5 Deontic Logic
6 Challenges in Defining a Good Contract language
7 Specification of ’Deontic’ Contracts (CL)
8 Verification of ’Deontic’ Contracts
9 Conflict Analysis of ’Deontic’ Contracts
10 Other Analysis of ’Deontic’ Contracts and Summary

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 2 / 28



university-logo

Plan

1 Components

2 Service-Oriented Computing

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 3 / 28



university-logo

Plan

1 Components

2 Service-Oriented Computing

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 28



university-logo

What is a Component?

We will concentrate only on software components

Definition (?!)
A component has to be a unit of deployment

It has to be an executable deliverable for a (virtual) machine
A component has to be a unit of versioning and replacement

It has to remain invariant in different contexts
It lives at the level of packages, modules, or classes, and not at the
level of objects

It is useful to see software components as a collection of modules and
resources

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 28



university-logo

What is a Component?
What is Deployment?

1 Acquisition is the process of obtaining a software component
2 Deployment is the process of readying the component for installation

in a specific environment
3 Installation is the process of making the component available in the

specific environment
4 Loading is the process of enabling an installed component in a

particular runtime context

Deployment is not a development activity: it does not happen at the
supplier’s site

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 6 / 28



university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves

2 A component may contain many objects which are encapsulated and
thus are not accessible from the outer of the components

If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28



university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves
2 A component may contain many objects which are encapsulated and

thus are not accessible from the outer of the components
If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28



university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves
2 A component may contain many objects which are encapsulated and

thus are not accessible from the outer of the components
If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28



university-logo

Components Vs. Objects

1 Components are supposed to be self-contained units, platform
independent, and independently deployable.

Objects are usually not executable by themselves
2 A component may contain many objects which are encapsulated and

thus are not accessible from the outer of the components
If an object creates another object inside a component, this new object
is not visible from the outside unless explicitly allowed by the interface

3 Components are unique and cannot be copied within one system
There might exists many copies of an object

4 Components are static entities representing the main elements of the
run-time structure

Classes can be instantiated dynamically in any number
A purely class-oriented program does not identify the main elements of
a system

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28



university-logo

Why Components?

Four main “levels” of reasons:
1 “Make and buy”

Balance between purpose-built software and standard software
2 Reuse partial design and implementation fragments across multiple

solutions or products
3 Use components from multiple sources, and integrate them on site

(i.e., not part of the software build process)
The integration is called deployment
The matching components are called deployable components

4 Achieve highly dynamic servicing, upgrading, extension, and
integration of deployed systems

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 8 / 28



university-logo

Challenges

Practical use of components stop in the third reason above
Truly dynamic components needs to address correctness, robustness
and efficiency

Components can be combined in many ways
No possibility to perform exhaustive and final integration tests at the
component supplier’s site
Verification of component properties are crucial
A compositional reasoning at all levels is required

Remark
A correct component is 100% reliable

A component with a very slight defect is 100% unreliable!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 28



university-logo

Challenges

Practical use of components stop in the third reason above
Truly dynamic components needs to address correctness, robustness
and efficiency

Components can be combined in many ways
No possibility to perform exhaustive and final integration tests at the
component supplier’s site
Verification of component properties are crucial
A compositional reasoning at all levels is required

Remark
A correct component is 100% reliable

A component with a very slight defect is 100% unreliable!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 28



university-logo

Components and Contracts I

In “traditional” component-based development, contracts are
understood as specification attached to interfaces

Behavioral interfaces instead of static interfaces
A four-level approach for contract awareness has been proposed in
[BJP+99]

1 Basic contracts
2 Behavioral contracts
3 Synchronization contracts
4 Quality-of-service contracts

[BJP+99] A. Beugnard, J.-M. Jézequel, N. Plouzeau and D. Watkins. “Making Components

Contract Aware”.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 28



university-logo

Components and Contracts I
1. Basic Contracts

These basic contracts specify static behavior
It determines the signature or the interface

The designer specify
The operations a component can perform
The input and output parameters
Possible exceptions raised during operation

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 11 / 28



university-logo

Components and Contracts I
2. Behavioral Contracts

Contract on static properties are limited and it does not deal with
dynamic interactions
Behavioral contracts use invariants, pre- and post-conditions, as in the
“design-by-contract” approach
The contract carries mutual obligations and benefits for both provider
and user of a routine/method
The behavioral specification could be seen as the contract itself

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 12 / 28



university-logo

Components and Contracts I
3. Synchronization Contracts

Level 2 (behavioral) contracts assume interactions are atomic or
executed as transactions
Synchronization contracts specify global behavior of components

In terms of synchronizations between method calls
It describes dependencies: sequence, parallelism, etc

In a (concurrent) multi-client setting, the contract guarantees that
whatever is requested it will be executed correctly

It requires a synchronization policy
E.g. when mutual exclusion is necessary

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 28



university-logo

Components and Contracts I
4. Quality-of-Service Contracts

The previous levels allow to qualify behavioral contractual properties
Quality-of-Service Contracts allows to specify quantitative contractual
issues
Examples of quality-of-service parameters

Maximum response delay
Average response
Precision of quality of a result
Statistics

The problem is how to enforce such contracts
“Observing” such quantitative issues may involve the use of monitors
affecting the behavior

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 28



university-logo

Components and Contracts II

What we have seen was a hierarchical classification of contracts
There is no mention of how to analyze such contracts

Our Proposal

We propose the use of ’deontic’ e-contracts to help verification of and
reasoning about components

To be used both at the development and deployment phases

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 28



university-logo

Components and Contracts II
Development Phase

Development: Associate one or
more contracts to each component,
specifying the obligations,
permissions, and prohibitions in the
component’s interacting behavior

Static Analysis: The contract is
formally analyzed to guarantee that
it is contradiction free. Static
conformance between the
component and its contract is also
proved.

Testing/Simulation: Simulate and
test each component separately
and its interaction with other
components being developed

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 28



university-logo

Components and Contracts II
Development Phase

Development: Associate one or
more contracts to each component,
specifying the obligations,
permissions, and prohibitions in the
component’s interacting behavior

Static Analysis: The contract is
formally analyzed to guarantee that
it is contradiction free. Static
conformance between the
component and its contract is also
proved.

Testing/Simulation: Simulate and
test each component separately
and its interaction with other
components being developed

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 28



university-logo

Components and Contracts II
Development Phase

Development: Associate one or
more contracts to each component,
specifying the obligations,
permissions, and prohibitions in the
component’s interacting behavior

Static Analysis: The contract is
formally analyzed to guarantee that
it is contradiction free. Static
conformance between the
component and its contract is also
proved.

Testing/Simulation: Simulate and
test each component separately
and its interaction with other
components being developed

Conformance

Co1
Cc1

Cc1
Co1

Static Analysis Testing/Simulation (Maude)

Co1
Cc1

Con
Ccn

CcnCc1

Compatibitliy/Conflict−free

Con
Ccn

Development (Creol)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 28



university-logo

Components and Contracts II
Deployment Phase

Pre-execution Analysis:
– Before composition the contracts are
checked to guarantee compatibility
– If disagreement: a phase of negotiation
may start, or the component is simply
rejected
– Kind of static analysis on the side of the
execution platform

Execution:
– If accepted, component is deployed
– A monitor guarantees that the
components behave according to the
contract
– In case of contract violation, the monitor
acts as stipulated in the contract, or cancel
the contract and disable the component

Coi

Cci
Coi

Con
Ccn

Pre−execution Analysis

Co1
Cc1

Con
Ccn

Executing Platform

Co1
Cc1

Monitor

Cci

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 28



university-logo

Components and Contracts II
Deployment Phase

Pre-execution Analysis:
– Before composition the contracts are
checked to guarantee compatibility
– If disagreement: a phase of negotiation
may start, or the component is simply
rejected
– Kind of static analysis on the side of the
execution platform

Execution:
– If accepted, component is deployed
– A monitor guarantees that the
components behave according to the
contract
– In case of contract violation, the monitor
acts as stipulated in the contract, or cancel
the contract and disable the component

Coi

Cci
Coi

Con
Ccn

Pre−execution Analysis

Co1
Cc1

Con
Ccn

Executing Platform

Co1
Cc1

Monitor

Cci

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 28



university-logo

Plan

1 Components

2 Service-Oriented Computing

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 28



university-logo

What is a Service?

Definition
A service is a self-describing, platform-independent computational
element

It supports rapid, low-cost composition of distributed applications
It allows to offer competences over intra-nets or the Internet using
standard languages (e.g., XML-based) and protocols

Services must be
Technology neutral: Invocation mechanisms should comply with
standards
Loosely coupled: Not require any knowledge, internal structure, nor
context at the client or service side
Locally transparent: Have their definition and local information stored
in repositories accessible independent of their location

Services may be
Simple
Composite

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28



university-logo

What is a Service?

Definition
A service is a self-describing, platform-independent computational
element

It supports rapid, low-cost composition of distributed applications
It allows to offer competences over intra-nets or the Internet using
standard languages (e.g., XML-based) and protocols

Services must be
Technology neutral: Invocation mechanisms should comply with
standards
Loosely coupled: Not require any knowledge, internal structure, nor
context at the client or service side
Locally transparent: Have their definition and local information stored
in repositories accessible independent of their location

Services may be
Simple
Composite

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28



university-logo

What is a Service?

Definition
A service is a self-describing, platform-independent computational
element

It supports rapid, low-cost composition of distributed applications
It allows to offer competences over intra-nets or the Internet using
standard languages (e.g., XML-based) and protocols

Services must be
Technology neutral: Invocation mechanisms should comply with
standards
Loosely coupled: Not require any knowledge, internal structure, nor
context at the client or service side
Locally transparent: Have their definition and local information stored
in repositories accessible independent of their location

Services may be
Simple
Composite

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28



university-logo

Service-Oriented Computing

Definition
“Service-Oriented Computing (SOC) is the computing paradigm that
utilizes services as fundamental elements for developing applications /

solutions.”

“To build the service model, SOC relies on the Service-Oriented
Architecture (SOA), which is a way of reorganizing software applications

and infrastructure into a set of interacting services.”

(*) From “Service-Oriented Computing: Concepts, Characteristics and Directions”, by Mike P.

Papazoglou

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 28



university-logo

Services vs. Components

Services and Components

Payment of services is on execution basis (per-use value) for the
delivery of the service

In components, there is a one-time payment for the implementation of
the software

Services may be a non-component implementation
A deployed component may offer one or more services

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 28



university-logo

A Taxonomy of SOA Contract Specification Languages

We will follow the taxonomy proposed in [OR08]
Services seen abstractly as Mealy machines

Three broad families of languages and standards to deal with service
contracts —Those dealing with:

1 Web services
2 Semantic Web services
3 Electronic business

Some Preliminaries:

Definition
An ontology is a formal representation of a set of concepts within a domain
and the relationships between those concepts. It is used to reason about
the properties of that domain, and may be used to define the domain

[OR08] J.C. Okika and A.P. Ravn. A Taxonomy of SOA Contract Specification

Languages.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 28



university-logo

A Taxonomy of SOA Contract Specification Languages

We will follow the taxonomy proposed in [OR08]
Services seen abstractly as Mealy machines

Three broad families of languages and standards to deal with service
contracts —Those dealing with:

1 Web services
2 Semantic Web services
3 Electronic business

Some Preliminaries:

Definition
An ontology is a formal representation of a set of concepts within a domain
and the relationships between those concepts. It is used to reason about
the properties of that domain, and may be used to define the domain

[OR08] J.C. Okika and A.P. Ravn. A Taxonomy of SOA Contract Specification

Languages.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 28



university-logo

A Taxonomy of SOA Contract Specification Languages

Examples of the three families: (1) Web services; (2) Semantic Web
services; (3) Electronic business

Example
1 Web Service Definition Language (WSDL)

An XML-based language
Describes capabilities of WS through its interface description
Others: WS-BPEL, WS-CDL, WS-Security, WSLA, WS-Policy

2 Semantic Markup for Web Services (OWL-S)
Built on top of the Ontology Web Language (OWL)
An ontology of services for to discover, invoke, compose, and monitor
Web resources offering particular services

3 Business Process Specification Schema (BPSS)
A framework to support execution of business collaborations consisting
of business transactions
It supports the specification of business transactions
Other examples: ebXML, CPP, CPA

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 23 / 28



university-logo

A Taxonomy of SOA Contract Specification Languages
Aspects of Services

Interface: Defines the (syntactic) interaction between services (or
between a service provider and consumer)
Functionality: What the service can do for a user
Preconditions: What must be true when the service is called
Post-conditions: Which guarantees hold when the service is done
Protocol: Describes the input events, the response of the service to
those events, signals and messages
Security: Techniques and practices ensuring confidentiality properties
for a service
Extra functional properties

Performance: Measure in terms of:
Throughput: Nr. of requests served a at a given time period
Latency: Round-trip time between sending-receiving

Reliability: Capability of keeping the service in operation (and service
quality)
Availability: Whether the service is ready for immediate use

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 24 / 28



university-logo

A Taxonomy of SOA Contract Specification Languages

Web Services Semantic Web Electronic Business

Interface WSDL OWL-S ebBSI

Functionality WS-BPEL, WSOL OWL-S, WSMO ebBPSS

Protocol WS-BPEL, WS-CDL OWL-S, WSMO ebBPSS

Security WS-Security OWL-S ebCPA

Policy WS-Policy OWL-S
Trust WS-Trust ebCPP (XMLDSIG)
Availability WSOL
Performance WSLA, WSOL WSMO, WSML ebCPA
Response Time
Throughput

[OR08] J.C. Okika and A.P. Ravn. A Taxonomy of SOA Contract Specification

Languages.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 25 / 28



university-logo

Services and Contracts

In the above taxonomy languages were classified according to many
aspects
None of them covers all the aspects

Challenges
How to obtain a general language for describing service contracts
How to reason about service contracts
How to address (automatic) negotiation
How to enforce the fulfillment of the contract
How to describe normal and exceptional behavior

Observation
We propose the use of ’deontic’ e-contracts to help specification of and

reasoning about services
Such contracts may also be useful in the negotiation process

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 28



university-logo

Services and Contracts

In the above taxonomy languages were classified according to many
aspects
None of them covers all the aspects

Challenges
How to obtain a general language for describing service contracts
How to reason about service contracts
How to address (automatic) negotiation
How to enforce the fulfillment of the contract
How to describe normal and exceptional behavior

Observation
We propose the use of ’deontic’ e-contracts to help specification of and

reasoning about services
Such contracts may also be useful in the negotiation process

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 28



university-logo

Services and Contracts

In the above taxonomy languages were classified according to many
aspects
None of them covers all the aspects

Challenges
How to obtain a general language for describing service contracts
How to reason about service contracts
How to address (automatic) negotiation
How to enforce the fulfillment of the contract
How to describe normal and exceptional behavior

Observation
We propose the use of ’deontic’ e-contracts to help specification of and

reasoning about services
Such contracts may also be useful in the negotiation process

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 28



university-logo

Services and Contracts

1 Translate the informal contract into
a formal language

2 Verify the contract (e-g-, that it is
contradiction-free)

3 Negotiate the contract

4 After negotiation verify the
contract again

5 Obtain the final contract and “sign”
it

6 Monitor/enforce contract
fulfillment

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28



university-logo

Services and Contracts

1 Translate the informal contract into
a formal language

2 Verify the contract (e-g-, that it is
contradiction-free)

3 Negotiate the contract

4 After negotiation verify the
contract again

5 Obtain the final contract and “sign”
it

6 Monitor/enforce contract
fulfillment

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28



university-logo

Services and Contracts

1 Translate the informal contract into
a formal language

2 Verify the contract (e-g-, that it is
contradiction-free)

3 Negotiate the contract

4 After negotiation verify the
contract again

5 Obtain the final contract and “sign”
it

6 Monitor/enforce contract
fulfillment

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28



university-logo

Services and Contracts

1 Translate the informal contract into
a formal language

2 Verify the contract (e-g-, that it is
contradiction-free)

3 Negotiate the contract

4 After negotiation verify the
contract again

5 Obtain the final contract and “sign”
it

6 Monitor/enforce contract
fulfillment

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28



university-logo

Services and Contracts

1 Translate the informal contract into
a formal language

2 Verify the contract (e-g-, that it is
contradiction-free)

3 Negotiate the contract

4 After negotiation verify the
contract again

5 Obtain the final contract and “sign”
it

6 Monitor/enforce contract
fulfillment

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28



university-logo

Services and Contracts

1 Translate the informal contract into
a formal language

2 Verify the contract (e-g-, that it is
contradiction-free)

3 Negotiate the contract

4 After negotiation verify the
contract again

5 Obtain the final contract and “sign”
it

6 Monitor/enforce contract
fulfillment

(6)

(1)

(3)

(2) (4)

(5)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28



university-logo

Further Reading

C. Szyperski. Component Technology - What, Where, and How?
A. Beugnard, J.-M. Jézequel, N. Plouzeau and D. Watkins. Making
Components Contract Aware
M. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions
O. Owe, G. Schneider and M. Steffen. Objects, Components and
Contracts
J.C. Okika and A.P. Ravn. A Taxonomy of SOA Contract
Specification Languages
COSoDIS project: http://www.ifi.uio.no/cosodis

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 28 / 28

http://www.ifi.uio.no/cosodis

	Components
	Service-Oriented Computing

