
A Formal Privacy Policy Framework for Social
Networks?

Raúl Pardo1 and Gerardo Schneider2

1 Dept. of Computer Science and Engineering, Chalmers, Sweden.
2 Dept. of Computer Science and Engineering, University of Gothenburg, Sweden

{pardo@chalmers.se, gerardo@cse.gu.se}

Abstract. Social networks (SN) provide a great opportunity to help
people interact with each other in different ways depending on the kind
of relationship that links them. One of the aims of SN is to be flexible
in the way one shares information, being as permissive as possible in
how people communicate and disseminate information. While preserving
the spirit of SN, users would like to be sure that their privacy is not
compromised. One way to do so is by providing users with means to define
their own privacy policies and give guarantees that they will be respected.
In this paper we present a privacy policy framework for SN, consisting
of a formal model of SN, a knowledge-based logic, and a formal privacy
policy language. The framework may be tailored by providing suitable
instantiations of the different relationships, the events, the propositions
representing what is to be known, and the additional facts or rules a
particular social network should satisfy. Besides, models of Facebook and
Twitter are instantiated in our formalism, and we provide instantiations
of a number of richer privacy policies.

1 Introduction

A social network is a structure made up of a set of agents (individuals or or-
ganisations), which are connected via different kinds of relationships. People
and organisations use social networks (SN) to interact on a peer-to-peer manner
and also to broadcast information related to themselves or others with selected
subgroups of other agents. Users expect that social network services (SNS) pro-
vide flexibility and easy-to-use interfaces for achieving the intended objectives
in a fast and reliable manner. This flexibility, however, comes with the potential
problem of compromising organisations’ and individuals’ privacy.

Privacy in SN may be compromised in different ways: from direct observa-
tion of what is posted (seen by non-allowed agents), by inferring properties of
data (metadata privacy leakages), indirectly from the topology of the SN (e.g.,
knowing who our friends are), to more elaborate intentional attackers such as
sniffers or harvesters [6]. In this paper we are mainly concerned with the first

? Supported by the Swedish funding agency SSF under the grant Data Driven Secure
Business Intelligence.

2 R. Pardo and G. Schneider

3 kinds of privacy issues. In order to tackle them, we look into the problem
of defining a formal language for writing rich privacy policies in the context of
social networks. We aim at defining a privacy policy language able to express
at least the following (kinds of) policies: i) All privacy policies currently sup-
ported by existing SN like Facebook; ii) Privacy policies describing properties on
attributes, i.e. not only coarse-grained properties as the fact that someone has
post something, but about the content of the post itself; iii) Conditional privacy
policies, which depend on the amount of current knowledge or permissions in the
SN; iv) Privacy policies based on knowledge in a group of agents and distributed
knowledge among several agents.

In order to achieve the above we propose a solution based on the definition of
a rather general privacy policy framework that may be specialised for concrete
SN instances. More concretely, our contributions are:

1. We propose a formal privacy policy framework consisting of: i) a generic
model for social networks, formalised as a combination of hyper-graphs and
Kripke structures; ii) the syntax and semantics of a knowledge-based logic to
reason about the social network and privacy policies; iii) a formal language
to describe privacy policies (based on the logic mentioned above), together
with a conformance relation to be able to state whether a certain social
network satisfies a given policy. (Section 2.)

2. We specify how the above privacy policy framework may be instantiated in
order to be used in practice. (Section 3.)

3. Our definition of instantiated privacy policy framework allows us to model
not only existing SN with their corresponding privacy policies, but also richer
ones. We show the expressiveness of our approach by presenting instantia-
tions of Twitter, Facebook, and richer privacy policies. (Section 4.)

2 Privacy Policy Framework

In this section we define PPF , a formal privacy policy framework for social
networks. The framework is not only able to deal with explicit disclosure of
information, but it also is equipped with internal machinery for detecting implicit
knowledge.

Definition 1. The tuple 〈SN ,KBLSN , |=,PPLSN , |=C〉 is a privacy policy frame-
work (denoted by PPF), where

– SN is a social network model;
– KBLSN is a knowledge-based logic;
– |= is a satisfaction relation defined for KBLSN ;
– PPLSN is a privacy policy language;
– |=C is a conformance relation defined for PPLSN . ut

In what follows we define in more detail each of the components of PPF .

A Formal Privacy Policy Framework for Social Networks 3

2.1 The Social Network Model SN

SN is a generic model for social networks representing the topology of the social
network, modelling the different connections between agents, their knowledge,
and the actions they are allowed to perform.

Preliminaries. Before providing the definition of SN let us define Ag to be a
finite and nonempty set of agents, C a finite and nonempty set of connections,
representing the relations between agents (e.g. friendship, colleague, blocked,
restricted), and Σ a finite and nonempty set of actions, representing what is
allowed to be performed by the agents (e.g. posting, looking up an agent). Also,
let Π be a finite set of privacy policies defined by

Π = {JψjKi | i ∈ Ag, j ∈ {1, 2, . . . , ni} and ψj ∈ PPLSN }

containing all the privacy policies for each agent i (there are ni privacy policies
for each agent i, if ni = 0 then there is no privacy policy associated with agent
i).

Definition 2. Given a nonempty set of propositions P, we define a social net-
work model SN to be a hypergraph of the form 〈W, {Ri}i∈C , {Ai}i∈Σ , ν,KB, π〉,
where

– W is a nonempty set of possible worlds. Every world represents one of the
agents defined in the set Ag.

– {Ri}i∈C is a family of binary relations Ri ⊆W ×W , indexed by connections.
Given agents x, y ∈W , we write xRiy iff (x, y) ∈ Ri.

– {Ai}i∈Σ is a family of binary relations Ai ⊆ W ×W , indexed by actions.
Given agents x, y ∈W , we write xAiy iff (x, y) ∈ Ai.

– ν is a valuation function returning the set of propositions which are true in
a given world (i.e. ν : W → 2P).

– KB is a function giving the set of accumulated non-trivial knowledge for
each agent, stored in what we call the knowledge base of the agent. 3

– π is a function returning the set of privacy policies defined for a given agent
(i.e. π : W → 2Π). ut

We define a bijective function between agents and worlds AW : Ag → W ;
hereafter we will interchangeably refer to elements of W as worlds or agents. We
will sometimes use the indexes to denote the corresponding connections. So, given
C to be the set {Friendship, Colleague}, then instead of writing RFriendship and
RColleague we will write Friendship and Colleague respectively. In addition we
define SN |c to be the projection over the connection c ∈ C for a given social
network model SN , as the graph SN |c = 〈W,Rc〉, where W is the set of worlds
of SN and Rc is the binary relation defined in SN for the connection c. Finally,
given a set of agents G ⊆ Ag and a projection SN |c, we define the following
predicate clique(SN |c, G) iff ∀i, j ∈ G. iRcj ∧ jRci.
3 We will formally define this function in subsection 2.2, since its definition requires a

formal specification of KBLSN subformulae.

4 R. Pardo and G. Schneider

p
1

p
1

p
3

p
4

p
7

p
2
 p

4

 p
6

A B

DC

c
1

c
1

c
2

c
2 c 3

a
1

a
2

(a) Example of a generic SN

c.location
c.location
a.birthday

a.post
a.street

c.like
a.post
b.street

Alice Bob

Daniel
Charlie

Friendship

Friendship

Colleague

Colleague

Blo
cked

lookup

friendRequest

(b) PPFI of a Facebook-like SN

Fig. 1: Examples of social network models

Example 1. We illustrate how a small fragment of a generic social network could
be modelled according to definition 2. The SN consists of: i) 4 agents, Ag =
{A,B,C,D}; ii) a set of 3 connections, C = {c1, c2, c3}; iii) the set Σ = {a1, a2},
representing the actions allowed among users.

A graphical representation of the defined social network is given in Fig. 1a.
The dashed line and the plain line represent the c1 and c2 relations, respectively.
They are not directed because we assume these relations are symmetric. On the
other hand, the c3 relation (represented by a dotted line) relates only B and C,
and it is directed.

The allowed actions are represented by the dashed and dotted directed ar-
rows. Actions represent interaction between 2 agents. In the example, action a1
has D as source and B as target. Associated to each world there is a set of
propositions over {p1, p2, . . . , p7} ⊆ P explicitly representing basic knowledge of
the agent. For instance, in Fig. 1a it is shown that agent C knows p4 and p7. ut

2.2 The knowledge-based logic for social networks KBLSN

We define here a logic for representing and reasoning about knowledge. We give
semantics to the logic KBLSN over a knowledge-based representation built on
top of the social network model SN .

Definition 3. Given i, j ∈ Ag, a ∈ Σ, p ∈ P, and G ⊆ Ag, the knowledge-based
logic KBLSN is inductively defined as:

γ ::= ¬γ | γ ∧ γ | ψ | φ
ψ ::= P ji a | GP

j
Ga | SP

j
Ga

φ ::= p | φ ∧ φ | ¬φ | Kiφ | EGφ | SGφ | DGφ.

The intuitive meaning of the modalities is as follows.
– Kiφ (Basic knowledge): Agent i knows φ.

A Formal Privacy Policy Framework for Social Networks 5

SN, u |= ¬p iff ¬p ∈ ν(u)
SN, u |= p iff p ∈ ν(u)

SN, u |= ¬φ iff SN, u 6|= φ
SN, u |= φ ∧ ψ iff SN, u |= φ and SN, u |= ψ

SN, u |= Kiδ iff

{
δ ∈ KB(i) if δ = Kjδ

′,where j ∈ Ag
SN, i |= δ otherwise

SN, u |= P j
i a iff (i, j) ∈ Aa

SN, u |= GP j
Ga iff (n, j) ∈ Aa for all n ∈ G

SN, u |= SP j
Ga iff there exits n ∈ G such that (n, j) ∈ Aa

SN, u |= SGδ iff there exits i ∈ G such that SN, i |= Kiδ
SN, u |= EGδ iff SN, i |= Kiδ for all i ∈ G

SN, u |= DGδ iff

{
SN, u |= SGδ

′ and SN, u |= SGδ
′′ if δ = δ′ ∧ δ′′

SN, u |= SGδ otherwise

Table 1: KBLSN satisfiability relation

– EGφ (Everyone knows): Every agent in the group G knows φ.
– SGφ (Someone knows): At least one agent in the group G knows φ.
– DGφ (Distributed knowledge): φ is distributed knowledge in the group of

agents G (i.e. the combination of individual knowledge of the agents in G).
– P ji a (Permission): Agent i is allowed to perform action a to agent j.

– GP jGa (Global Permission): All agents specified in G are allowed to perform
action a to agent j.

– SP jGa (Someone is Permitted): At least one agent specified in G is allowed
to perform action a to agent j.

We will denote with FKBL the set of all well-formed formulae of KBLSN as
defined by the grammar given in above definition. Similarly, FK

KBL will denote
those defined by the syntactic category φ and FP

KBL will denote the subformu-
lae of the logic defined by the syntactic category ψ. The function giving the
knowledge base of an agent, informally described in section 2.1, has the follow-

ing type KB : Ag → 2F
K
KBL . We define in what follows the satisfaction relation

for KBLSN formulae.

Definition 4. Given a SN = 〈W, {Ri}i∈C , {Ai}i∈Σ , ν,KB, π〉, the agents i, j, u
∈ Ag, a finite set of agents G ⊆ Ag, an action a ∈ Σ, δ ∈ FK

KBL, and φ, ψ ∈
FKBL, the satisfiability relation |= is defined as shown in Table 1. ut

Note that we explicitly add the negation of a proposition. It represents knowing
the negation of a fact (e.g Ki¬p) which is different than not knowing it (i.e.
¬Kip). Moreover, it is important to point out that KBLSN is not minimal as

6 R. Pardo and G. Schneider

the last 5 modalities can be defined in terms of more basic cases as follows:
SGδ ,

∨
i∈GKiδ, EGδ ,

∧
i∈GKiδ, GP

j
Ga ,

∧
i∈G P

j
i a, SP jGa ,

∨
i∈G P

j
i a and

DGδ is already defined in terms of SG as shown in its semantical definition. Note
that as the set G is finite, so are the disjunction and the conjunction for SG,
EG, GP jG and SP jG.

Example 2. KBLSN enables the possibility of reasoning about epistemic and
deontic properties. As stated in SN showed in Example 1, D is allowed to
execute a1, which will affect B. In KBLSN we can formally check the previous
statement by checking satisfiability of the following judgement: SN,B |= PBD a1.

We can also build more complex expressions in which we actually leverage
the reasoning power of KBLSN . For instance, we can check whether the following
holds for agent A:

SN,A |= ¬KB p1 ∧ ¬KCKA p1 =⇒ ¬SPA{B,C} a1,

which means that if agent B does not know p1 and agent C does not know that
agent A knows p1 then it is not permitted for any of the agents B and C to
execute the action a1 to the agent A. ut

Apart from checking properties in the model, KBLSN also permits to reason
about certain properties that hold in general. Given a social network SN , i, j ∈
Ag, and formulae φ, ψ ∈ FK

KBL, we can state and prove the following lemma on
the influence of the individuals knowledge and their combination as distributed
knowledge.

Lemma 1. SN, i |= Kiφ ∧Kjψ =⇒ D{i,j}φ ∧ ψ. ut

2.3 The privacy policy language for social networks PPLSN

KBLSN is an expressive language for specifying and reasoning about epistemic
and deontic properties of agents in SN models. However, the language is not
completely suitable for writing privacy policies, and thus a different language
is needed for this purpose. Privacy policies in social networks can be seen as
explicit statements in which agents specify what cannot be known about them or
what is not permitted to be executed. The syntax of the privacy policy language
PPLSN is based on that of KBLSN , but adapted to express privacy policies.

Definition 5. Given the agents i, j ∈ Ag and a nonempty set of agents G ⊆
Ag, the syntax of the privacy policy language PPLSN is inductively defined as
follows:

δ ::= δ ∧ δ | Jφ =⇒ ¬ψKi | J¬ψKi
φ ::= ψ | ¬ψ | φ ∧ φ
ψ ::= EGγ | SGγ | DGγ | Kiγ | GP j

Ga | SP j
Ga | P j

i a | ψ ∧ ψ.
γ ::= p | γ ∧ γ

A Formal Privacy Policy Framework for Social Networks 7

SN |=C τ1 ∧ τ2 iff SN |=C τ1 ∧ SN |=C τ2
SN |=C J¬ψKi iff SN, i |= ¬ψ
SN |=C Jφ =⇒ ¬ψKi iff SN, i |= φ then SN |=C J¬ψKi

Table 2: PPLSN conformance relation

PPLSN may be seen as formed by a subset of formulae definable in KBLSN
wrapped with the J Ki operator, specifying which agent has defined the privacy
policy. As before, we define FPPL to be the set of PPLSN well-formed formulae
defined as given by the grammar in the above definition. A basic privacy policy
for an agent i, given by δ in definition 5, is either a direct restriction (J¬ψKi) or a
conditional restriction (Jφ =⇒ ¬ψKi). FC

PPL will denote sbuformulae belonging
to the syntactic category φ (conditions) and FR

PPL subformulae of the syntactic
category ψ (restrictions). Instead of defining a satisfaction relation for PPLSN ,
we define the following conformance relation to determine when a SN respects
a given privacy policy.

Definition 6. Given a SN = 〈W, {Ri}i∈C , {Ai}i∈Σ , ν,KB, π〉, an agent i ∈ Ag,
φ ∈ FC

PPL, ψ ∈ FR
PPL and τ1, τ2 ∈ FPPL; the conformance relation |=C is

defined as shown in Table 2. ut

Example 3. The following are the privacy policies for agent A (cf. Example 1):
π(A) = {J¬S{B,C,D} p1KA, JKB p1 =⇒ ¬PAB a1KA}. The intuitive meaning of
the first policy is that nobody can know p1 (apart from A who is the only agent
left in the SN). The second one means that if agent B knows p1 then she is not
permitted to execute the action a1 to A. ut

3 PPF instantiation

In the previous section we have presented a generic framework for defining pri-
vacy policies in social networks. In order to be usable, the framework needs to
be instantiated, as specified in the following definition.

Definition 7. We say that a PPF is an instantiated privacy policy framework
iff an instantiation for the following is provided:

– The set of agents Ag;
– The set of propositions P (p ∈ P may be given a structure);
– The set of connections C;
– The set of auxiliary functions over the above connections;
– The set of actions Σ;
– A set of properties written in KBLSN (these properties may be seen as as-

sumptions on the social network);
– A set of constraints over the policies defined in the language PPLSN . ut

We write PPFName for the instantiation of a PPF on a specific social net-
work Name. In what follows we show an example of instantiation.

8 R. Pardo and G. Schneider

Example 4. We present here PPFFBook-like, an instantiation of the privacy policy
framework given in Example 1 for a Facebook-like social network. (Fig. 1b shows
the SN for the instantiated PPF.)
Agents We redefine the set of agents to be Ag = {Alice,Bob, Charlie,Daniel}.
Propositions We define a structure for the propositions, by requiring them to

be of the form owner.attribute (e.g. Alice.street).
Connections. In this particular instantiation we consider only the following

connections: C = {Friendship, Colleague,Blocked}.
Auxiliary functions. The following auxiliary functions (from Ag to 2Ag) will

help to retrieve the corresponding sets associated to the above defined con-
nections: friends(i) = {u | iRFriendshipu and uRFriendshipi}; colleagues(i) =
{u | iRColleagueu and uRColleaguei}; blocked(i) = {u | iRBlockedu}; These
functions are notably useful when writing formulae (both in KBLSN and
PPLSN), since it allows to refer to groups of agents defined by their rela-
tionships.

Actions. The set of actions is instantiated as Σ = {sendRequest, lookup}.
Assumptions on the SN . Different social networks are characterised by dif-

ferent properties. We use KBLSN for defining these properties (or assump-
tions). In a Facebook-like social network some attributes are a composition
of others. We introduce here the notion of record, that is a complex attribute
composed by others. We assume that the attribute location of an agent is
composed by the following attributes: street, country, and city. Given agents
u, i, j, h ∈ Ag and the group G = {i, j, h} we assume the following property
holds:

SN, i |= SG u.country ∧ SG u.city ∧ SG u.street =⇒ DG u.location (1)

moreover if i = j = h we can derive the following property:

SN, i |= Ki(u.country ∧ u.city ∧ u.street) =⇒ Ki u.location (2)

In addition we can also model facts that we assume to be true in the so-
cial network. For example, we could assume that if some information is
distributed knowledge among users who are friends, then this information
becomes known to all of them individually. Formally we say that given a set
of agents G ⊆ Ag, an agent u ∈ Ag and a formula φ ∈ FK

KBL, for all i ∈ G
the following holds:

if SN, u |= DGφ and clique(SN |Friendship, G) then SN, i |= Kiφ. (3)

Constraints over privacy policies. A common constraint in social networks
is that agents can only write policies about their own data. In PPLSN it is
possible to write J¬Kj u.attributeKi where i, j, u ∈ Ag and i 6= j 6= u. This
policy, defined by agent i, forbids agent j to know attribute from agent u.
Agent i is thus constraining the accessibility of certain information about an
agent other than herself. To solve this we could add the following constraint:
Given an agent i ∈ Ag and her privacy policies,

∧
j∈1,...,n τj ∈ π(i), where

A Formal Privacy Policy Framework for Social Networks 9

τj = JφKi, if φ = ¬φ′ or φ = φ′′ =⇒ ¬φ′ then it is not permitted that
u.attribute ∈ φ′ for any u ∈ Ag. u 6= i, meaning that agents can only define
policies about their own data. Likewise, users should not be able to write
permission restrictions over other users. In order to address this issue we
extend the previous restriction with the following: given an agent j ∈ Ag,
an action a ∈ Σ and the set G ⊆ Ag, it is not the case for i 6= j that P jua,
SP jGa or GP jGa ∈ φ′. ut

For a given instantiation we could prove more properties besides the ones
given as assumptions. The following lemma exemplifies the kind of properties
we can prove about instantiated privacy policy frameworks in general and for
PPFFBook-like in particular.

Lemma 2. Given u ∈ Ag, if SN, u |= DG (u.country ∧ u.city ∧ u.street),
and assuming the group of agents G ⊆ Ag are all friends to each other (i.e.
clique(SN |Friendship, G)), then SN 6|=C J¬S{Ag\{u}}u.locationKu. ut

4 Case Studies

PPF may be instantiated for various social networks. We show here how to
instantiate Twitter and Facebook. Though our formalisation is expressive enough
to fully instantiate the social networks under consideration, due to lack of space
we will only show minimal instantiations which allow us to represent all the
existing privacy policies in the mentioned social networks.

Before going into the details of our instantiation, we describe some prelimi-
naries. In the rest of the section we will use i, j, u to denote agents (i, j, u ∈ Ag),
and G to denote a finite subset of agents (G ⊆ Ag), where Ag is the set of agents
registered in the instantiated social network. Given an attribute att of an agent
u (denoted by u.att), we will sometimes need to distinguish between different oc-
currences of such an attribute. In that case we will write u.attη (η ∈ {1, . . . , nu},
with nu being the maximum number of occurrences of the attribute; by conven-
tion, if there are no occurrence of u.att, we have that nu = 0). For example, if we
assume that agent u’s location changes and we want to refer to these different
locations we will write u.locationη.

4.1 Twitter privacy policies

Twitter is a microblogging social network. Users share information according to
the connections established by the follower relationship, which permits (depend-
ing on the privacy policies) a user to access the tweets posted (or tweeted) from
the followed user. Users interact by posting (or tweeting) 140 characters long
messages called tweets. Let us define the instantiation PPFTwitter as follows.
Propositions. The proposition in PPFTwitter are defined by the set

P = {owner.email, owner.locationi, owner.tweetj , owner.retweettweetRef}
where owner ∈ Ag, and attributes are the following: email, is the user’s
email; locationη represents a location of a given user ; tweetη the tweets a

10 R. Pardo and G. Schneider

given user has tweeted; and retweettweetRef representing the fact or retweet-
ing (or sharing a tweet already tweeted by another user) where tweetRef is
the reference to the original tweet.

Connections. The set of connections only includes the follower relationship,
C = {Follower}.

Auxiliary functions. We define the function
– followers(i) = {u | u ∈ Ag ∧ iRFolloweru}

which returns all the agents u who i is following.
Actions. Actions are defined as Σ = {tweet, lookup, sendAd}, where tweet

represents tweeting (posting a tweet), lookup represents the possibility of
reaching a user’s profile and sendAd sending an advertisement to a user.

Twitter does not have a large amount of privacy policies since the aim is to make
information accessible to as many people as possible. Yet there are important
considerations concerning privacy. These policies are specified in PPFTwitter as
follows.
– Protect my Tweets: Two cases: i) Only those in u’s group of followers can

see her tweets: J¬S{Ag\followers(u)\{u}} u.tweetηKu; ii) Only u’s followers may
see her retweets: J¬S{Ag\followers(u)\{u}}u.retweettweetRef Ku.

– Add my location to my tweets: Twitter provides the option of adding the
agents’ location to their tweets. The following policy specifies that nobody
can see the user’s locations: J¬S{Ag\{u}} u.locationηKu.

– Let others find me by my email address: J¬Ki u.email =⇒ ¬Pui lookupKu,
meaning that if an agent i does not know u’s email, then she is not allowed
to find u by looking her up.

– Tailor ads based on information shared by ad partners: Assuming G to be
the group of ads partners, the policy is defined as J¬SPuG sendAdKu, meaning
that none of the advertisement companies taking part in the system is able
to send advertisements to user u.

4.2 Facebook privacy policies

Facebook is a social network system in which people share information by means
of posts. Each user owns a timeline which contains all her posts and information
about the main events which can be handled by the social network (e.g. birthday,
new relationships, attendance to events). The main connection between users is
friendship, though it is possible to create special relations.

We show here the instantiation PPFFacebook. Since we are modelling just
the parts of Facebook relevant for defining privacy policies, we borrow the set
C from the instantiation presented in Example 4. We also borrow the set of
auxiliary functions and we add friends2(i) =

⋃
j∈friends(i) friends(j); it allows

us to write formulae about friends of friends. We extend the set Σ with the
action postT imeline (representing posting on a user’s timeline), and the actions
inviteEvent, inviteGroup and tag, which represent sending an invitation to join
an event or a group and being tagged on a picture. As for the structure of the
propositions, we define the set P = {owner.postjη, owner.likeη, owner.location,
owner.phone, owner.email} where owner ∈ Ag, owner.postjη represents the posts

A Formal Privacy Policy Framework for Social Networks 11

owner posted on the j’s timeline (e.g. Alice.postBob1 is the first post of Alice in
Bob’s timeline), owner.likeη are the posts owner has liked and owner.location,
owner.phone and owner.email are, respectively, the actual location, phone and
the email attributes of owner. Similarly to PPFTwitter, we do not specify prop-
erties for the SN nor restrictions over policies.

Privacy Settings and Tools In what follows we go through all privacy policies
a user can define in the section ”Privacy and Tools” of Facebook, and we provide
their formalisation in PPFFacebook. The policies are defined depending on the
set of users which they affect.

Who can see my stuff? In the first section Facebook enables users to set a
default audience for their posts. In PPFFacebook we can formally specify these
restrictions as follows: [Public] no policy since everyone is able to access the posts;
[Friends] J¬S{Ag\friends(u)\{u}}u.post

j
nKu; [Only me] J¬S{Ag\{u}}u.post

j
nKu; [Cus-

tom] J¬S{G}u.post
j
nKu. The intuition behind these policies is specifying the group

of agents who are not allowed to know the information about u’s posts.

Who can contact me? In a second section users are provided with the possibility
of deciding who can send them friend requests: [Everyone] No need of privacy
policy; [Friends of Friends] J¬SPu{Ag\friends2(u)}requestKu; note that we specify
who cannot send the friend request, which in this case are the agents who are
not in the group of friends of friends.

Who can look me up? Finally, a user can be looked up by its email address or
phone number. Given a ∈ {phone, email}, specified as [Everyone] No privacy
policy is needed since; [Friends of Friends] J(¬Ki u.a =⇒ ¬Pui lookup)Ku ∧
J(¬SPu{Ag\friends2(u)\{u}}lookup)Ku, where i ∈ friends2(u); [Friends] J¬Ki u.a =⇒
¬Pui lookupKu ∧ J¬SPu{Ag\friends(u)\{u}}lookupKu, where i ∈ friends(u).

Timeline and Tagging Besides the previous policies, Facebook allows to define
a set of policies related with who can post on our wall and how to manage our
tags. We show now their formalisation in PPFFacebook.

Who can post on my timeline. Facebook offers the possibility of controlling the
people allowed to write in a user’s wall: [Only me] J¬SPu{Ag\{u}}postT imelineKu;

[Friends] J¬SPu{Ag\friends(u)\{u}}postT imelineKu.

Who can see things on my timeline? In Facebook it is possible to establish
a bounded audience for the posts located in a user’s wall. We formally de-
fine the privacy policies as: [Everyone] No privacy policy needed; [Friends of
friends (implicitly includes friends)] J¬S{Ag\friends(u)\friends2(u)\{u}}i.post

u
nKu;

[Friends] J¬S{Ag\friends(u)\{u}}i.post
u
nKu; [Only me] J¬S{Ag\{u}}i.post

u
nKu; [Cus-

tom] J¬S{Ag\G\{u}}i.post
u
nKu.

12 R. Pardo and G. Schneider

Manage blocking Facebook offers the possibility of restricting or blocking the
access to our information to a predefined set of users. It also allows to block
users from doing more concrete actions as sending apps invitations, events in-
vitations or apps. This is done by defining blocked and restricted users. Since
these policies are similar, we define only the policies related with blocked users.
Facebook defines blocking as ”Once you block someone, that person can no
longer see things you post on your timeline, tag you, invite you to events or
groups, start a conversation with you, or add you as a friend” we formally
define the previous statement in PPFFacebook with the following set of pri-
vacy policies. A blocked user cannot: i) see things you post on your time line:
J¬SBlocked(u) u.postuηKu; ii) tag you: J¬SPuBlocked(u) tagKu; iii) invite to events or

to join groups: J¬SPuBlocked(u) inviteEventKu ∧ J¬SPuBlocked(u) inviteGroupKu;

iv) send a friend request: J¬SPuBlocked(u) sendRequestKu.

4.3 More complex policies

We have shown how to specify all the privacy policies of Twitter and Facebook.
We show here how to express other policies, which the aforementioned SN do
not offer.

A more expressive language One of the advantages of PPF is its flexibil-
ity when defining the structure of the propositions. It allows us to talk about
any information related to the users, which is present in the system. For in-
stance, as it has been seen in the Facebook privacy policies, the user cannot
control any information about what she likes. The normal behaviour is to as-
sign the same audience of the post she liked (clicking the ”like” button on the
post). In order to express policies about it, we can leverage the structure of the
propositions of PPFFacebook by using the attribute likeη. The privacy policy
J¬S{Ag\friends(u)} u.likeηKu means that only u’s friends can know what u liked.

Similar to retweet, in Facebook one can share a given post. Similarly to
liking, sharing is available to the same audience as the post, but sharing entails
the consequence of expanding the audience of the post. Specifically, all people
included in the audience of posts of the user who is sharing will be added to
the original audience of the re-shared post. In PPFFacebook we could prevent
this by explicitly restricting the audience of our posts as we did in Who can
see my stuff? or by writing (assuming Σ to be extended with the action share)
J¬SPufriends(u)shareKu, where explicitly is stated who could share my posts but
without limiting their audience.

We have seen in Lemma 2 how distributed knowledge could be used to make
some inference on the knowledge of certain agents. Its use for defining privacy
policies would allow social network users to control information which could be
inferred by a group of agents. For instance, an agent u ∈ Ag could define the
policy JKi u.location =⇒ ¬D{friends(u)\{i}} u.locationKu for a given agent
i ∈ friends(u), meaning that if one of u’s friends already know u’s location then
the distributed knowledge between the rest of u’s friends is not allowed. This
example also exposes the usefulness of conditional privacy policies.

A Formal Privacy Policy Framework for Social Networks 13

Interaction among several social networks SN usually focusses on one
particular kind of leisure. For instance, Twitter and Facebook both focus on
sharing information among followers and friends, while others have a completely
different focus, e.g. Spotify (music), Instagram (photos), and Youtube (videos).
We have so far shown how to formalise single SN. We discuss in what follow
some examples of privacy policies involving more than one social network.

For example, in Twitter it is possible to connect the account to a Facebook
account. If a user enables it, she can choose to post her tweets and retweets on
her Facebook timeline. The idea is that permissions should be set allowing or
disallowing Twitter to post on a user’s Facebook timeline. Due to the expressivity
of PPF we can create an instantiation being the composition of Facebook and
Twitter. For instance, if we combine PPFTwitter and PPFFacebook, assuming a
common set of agents Ag, and the union of the connections, auxiliary functions,
actions, assumptions and restrictions over policies of both SN, we can write the
following privacy policy: J¬S{Ag\(friends(u)∩Followers(u))\{u}} u.locationKu. That
is, only agents who are followers of u in Twitter, and friends in Facebook are
allowed to know u’s location. More complex properties of this kind could be
formalised in PPF .

5 Related Work

The approach we have followed in this paper has been to formally define privacy
policies based on a variant of of epistemic logic [4], where it is possible to express
the knowledge of multi-agent systems (MAS). One way to give semantics to the
logic is to use possible worlds semantics (also known as Kripke models), where it
is not explicitly represented what the agents know, but rather the uncertainty in
their knowledge. This has the advantage of allowing to represent complex formu-
lae about who knows what (including nesting of knowledge and other operators
generalising the notion). Another way to give semantics to epistemic logic is
to use interpreted systems which represents agent’s knowledge as a set of runs
(computational paths). Both ways of giving semantics come with advantages and
disadvantages: Kripke models come with a heritage of fundamental techniques
allowing to prove properties about the specification, while interpreted systems
are quite intuitive to model MAS [8]. The common key in both approaches is
modelling the uncertainty of the agent by using an equivalence relation. If one
thinks about all the worlds that a given agent could consider possible in a social
network system, it is easy to see that modelling them would lead to creating an
enormous state space. Instead of modelling uncertainty we explicitly store what
the agents know. This allows a more concise representation of the individuals’
knowledge. Unlike previous work on epistemic logic, in our formalism worlds
represent agents.

Moreover we explicitly model a restricted version of permission, i.e. our model
explicitly shows which actions are allowed to be executed by the agents. Aucher
et al. [1] show a different way of combining epistemic and deontic aspects in logic.
They preserve the equivalence relation for epistemic properties and use an extra

14 R. Pardo and G. Schneider

equivalence relation for representing permission. The logic is quite expressive
but it suffers from the aforementioned state explosion problem. Furthermore the
framework is defined as a mono agent system not being suitable for SN. We took
their idea of combining epistemic and deontic operators in one language, but we
restricted the semantic model according to the needs of SN.

In [10] Seligman et al. present a language based on epistemic logic, with the
traditional Kripke semantics for the logic extended with a friendship relationship.
By doing that they are able to reason about knowledge and friendship. Moreover
they model a set of events using general dynamic dynamic logic (GDDL) by
defining an update operation over the mentioned Kripke model. This enables
the possibility of update the model as the events in the social network occur.
Using GDDL they implement the concept of public and private announcement,
which appear regularly in the communications among the agents. Although this
approach is quite expressive, its focus is not on privacy or security issues, but
in reasoning about the general knowledge of the agents. As mentioned before
it comes with the price of having a immense state space and it complicates
a practical implementation and the definition of an efficient (computationally
speaking) model checking algorithm. Ruan and Thielscher [9] present a very
similar formalism, but only public announcement is defined. Their focus is not
on privacy either, but in the analysis of the “revolt or stay at home” effect, i.e.
how the knowledge is spread among the agents.

There are other approaches for privacy not based on epistemic logic. One of
the most interesting is Relationship-based access control (REBAC) [5]. The main
difference with epistemic logic is that in REBAC the reasoning is focused on the
resources own by the agents of the system. This approach is highly suitable for
a practical implementation of a policy checking algorithm. On the other hand
their approach would not detect certain kind of implicit knowledge flow. For
instance, certain information about a user can be known after a friend of her is
posting some information about both. The formalism is equipped with a formal
language based on hybrid logic [2].

Datta et al. present in [3] the logic PrivacyLFP for defining privacy poli-
cies based on a restricted version of first-order logic (the restriction concerns
that quantification over infinite values is avoided by considering only relevant
instances of variables). The logic is quite expressive as it can represent things
others than the kind of policies we are aiming at in this paper (their applica-
tion domain being medical data). Though promising as a formalism for SN, the
authors write that the logic might need to be adapted in order to be used for
online social networks. To the best of our knowledge this has not been done.

6 Final Discussion

We have presented in this paper a framework for writing privacy policies for
social networks. Our approach allows for the instantiation of the framework to
formalise existing social networks, and other more complex privacy policies. One

A Formal Privacy Policy Framework for Social Networks 15

particularity of our approach is that worlds represent agents, closely following
the structure of real social networks.

This paper is a first step towards a full formalisation of privacy policies for
social networks. Our current and future work includes: Adding real-time: So
far we cannot express policies with deadlines. This might be interesting in case
policies are transient (e.g., “nobody is permitted to know my location during
the first two weeks of May”). Modeling dynamic networks: The model we
have of social networks is static, as well as the conformance relation between
policies and the network. In practice the social network evolves, new friends
come into place, others are blocked, etc. We aim at extending our formal model
to capture such temporal aspect. Adding roles and ontologies: Agents in
the SN could play different roles, e.g. individuals, companies, advertisement,
etc. Providing PPF with the ability of detecting these roles would enhance its
expressivity. Developing an enforcing mechanism: We have not mentioned
how the policies might be enforced at runtime. We will explore how to extract a
runtime monitor from the policy. Finally, we would like to explore the application
of privacy-by-design [7] to a formalisation of social networks.

Acknowledgment Thanks to Bart van Delft, Pablo Buiras, and the anonymous
reviewers for their useful comments on a preliminary version of this paper.

References

1. G. Aucher, G. Boella, and L. Torre. A dynamic logic for privacy compliance.
Artificial Intelligence and Law, 19(2-3):187–231, 2011.

2. G. Bruns, P. W. Fong, I. Siahaan, and M. Huth. Relationship-based access control:
its expression and enforcement through hybrid logic. In CODASPY’12, pages 117–
124. ACM, 2012.

3. A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and
A. Sinha. Understanding and protecting privacy: Formal semantics and principled
audit mechanisms. In ICISS, volume 7093 of LNCS, pages 1–27. Springer, 2011.

4. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge,
volume 4. MIT press Cambridge, 1995.

5. P. W. Fong. Relationship-based access control: Protection model and policy lan-
guage. In CODASPY’11, pages 191–202. ACM, 2011.

6. B. Greschbach, G. Kreitz, and S. Buchegger. The devil is in the metadata - new
privacy challenges in decentralised online social networks. In PerCom Workshops,
pages 333–339. IEEE, 2012.

7. D. Le Métayer. Privacy by design: A formal framework for the analysis of archi-
tectural choices. In CODASPY’13, pages 95–104. ACM, 2013.

8. A. Lomuscio and M. Ryan. On the relation between interpreted systems and
kripke models. In Agents and Multi-Agent Systems Formalisms, Methodologies,
and Applications, volume 1441 of LNCS, pages 46–59. Springer, 1997.

9. J. Ruan and M. Thielscher. A logic for knowledge flow in social networks. In AI
2011: Advances in Artificial Intelligence, pages 511–520. Springer, 2011.

10. J. Seligman, F. Liu, and P. Girard. Facebook and the epistemic logic of friendship.
In TARK’13, 2013.

