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ABSTRACTA polygonal hybrid system (SPDIs) is a planar hybrid sys-tem, whose dynamis is de�ned by onstant di�erential in-lusions, for whih the reahability problem is deidable.The deidability result is based, among other things, onthe fat that a trajetory annot enter and leave a givenregion through the same edge. SPDIs without suh an as-sumption are alled Generalized SPDIs (GSPDIs). In thispaper we show that in general it is not possible to redueGSPDI reahability to SPDI reahability. Furthermore, weprovide a terminating algorithm implementing a semi-testfor GSPDI reahability, based on that for SPDIs.
Categories and Subject DescriptorsD.2.4 [Software℄: Software/Program Veri�ation
General TermsVeri�ation
KeywordsHybrid systems, veri�ation, reahability, deidability, GSPDI.
1. INTRODUCTIONSystems ombining disrete and ontinuous behaviors, asfor instane robots and hemial proesses, are alled hybridsystems. Though hybrid automata [1℄ have gained popular-ity as a spei�ation formalism for hybrid systems, theiranalysis remains a big hallenge as most problems are un-deidable. An interesting and still deidable (w.r.t reah-ability) lass of hybrid systems is the so-alled PolygonalHybrid System (SPDI for short, [5, 7℄) whih is a sublassof hybrid systems on the plane whose dynamis is de�ned byonstant di�erential inlusions. SPDIs are a generalizationof PCDs (deterministi systems with Piee-wise ConstantDerivatives) for whih it has been shown that the reahabil-ity problem is deidable for the planar ase but undeidablefor three and higher dimensions [2℄.
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Figure 1: Example of an SPDI.Informally, an SPDI onsists of a partition of the planeinto polygonal regions where in eah region the dynamis isgiven by two vetors determining the possible diretions atrajetory might take; a simple SPDI, and a typial traje-tory segment, are depited in Fig. 1. The onstrutive prooffor deiding reahability on SPDIs given in [5℄ relies, amongother things, on the fat that the SPDI has the goodnessproperty, i.e. the dynamis of any region does not allow atrajetory to traverse any edge of the polygon de�ning theregion in both diretions. We say that an SPDI without thegoodness assumption is a Generalized SPDI �or GSPDI forshort. The frontier between deidable and undeidable low-dimensional hybrid systems has been studied in [4, 9℄. Inthose papers, a wide are of lasses was established for whihthe deidability/undeidability issue is still open. To date,it is not known whether reahability for GPSDIs is deidableor not.In this paper we show that there is no struture-preservingredution from GSPDI reahability to SPDI reahability.However, the SPDI algorithm reveals to be very useful togive an algorithm implementing a semi-test (that gives YES/don't know answers) for GSPDI reahability. We provesoundness and termination of the algorithm.The paper is organized as follows. In next setion we ex-plain informally the problems arising when relaxing good-ness while in Setion 3 we give some preliminaries on SPDIs.In Setion 4 we present GSPDIs, whereas Setion 5 is on-erned with GSPDI reahability analysis. We onlude inthe last setion.
2. ON GOODNESSOne of the key onepts of SPDI reahability is that ofgoodness. In Fig. 2 we an see a good region (isolated fromthe rest of the SPDI), where the two vetors a and b de-termine the impossibility of a trajetory to enter and leavethe region P through the same edge of the polygon delim-iting the region. On the other hand, the �gure on the right
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Figure 2: a) A good region. b) A bad region.shows a �bad� region: Both e2 and e5 an be rossed in bothdiretions by a trajetory entering and leaving P .Why Goodness is Good? The algorithm presented in[5, 7℄ for deiding reahability on SPDI heavily depends onthe pre-proessing of trajetory segments to guarantee thatit is possible to list all the possible sets of signatures, i.e.,those sequenes of edges of the SPDI traversed by all thepossible trajetories between two points. This is of oursenot possible in general as there are in�nitely many suhtrajetories. However, a qualitative analysis allows to provethat indeed there is a �nite number of abstrat signatures(alled types of signatures) preserving reahability.The above is ahieved by performing the following steps.1) Simpli�ation of trajetory segments: straightening themand removing self-rossings. Given an arbitrary trajetorysegment from one point to another, it is possible to geta pieewise onstant derivative trajetory segment withoutself-rossing. 2) Abstration of trajetory segments into sig-natures, onsidering the sequene of traversed edges. Thisresult is based on the Poinaré map [8℄, that relates n-dimontinuous-time systems with (n−1)-dim disrete-time sys-tems. 3) Fatorization of signatures in a onvenient way,having only sequenes of edges and simple yles. This fa-torization allows to have a nie representation of signatures.4) Abstration of fatorized signatures into types of signa-tures, that are signatures without taking into aount thenumber of times eah simple yle is iterated.Many of the lemmas for proving that the above providesa �nite number of types signatures ritially depend on thegoodness assumption, a�eting the onstrutive proof givenfor deiding reahability of SPDIs.Why Relaxing Goodness is not so Good? The mainquestion now is, how muh do we need to depend on thegoodness assumption to prove deidability of reahability ofSPDIs? In other words, let us onsider SPDIs without thegoodness assumptions (GSPDIs). Is reahability still deid-able? We have two alternatives: a) Redue GSPDI reaha-bility to SPDI reahability. This would imply to restate theproofs to make them independent of the goodness assump-tion. b) Provide a ompletely new deidability proof forGSPDI. This will probably need to use di�erent tehniquesand results than the ones used for SPDIs. The �rst alterna-tive above seems the most straightforward and easy to do.However, as we show in this paper it is not possible to redueGSPDI reahability to SPDI reahability with a struture-preserving transformation (a more preise de�nition of suha redution will be given in Setion 5.1). This is done byproving that it is not possible, in general, to simplify ertaintrajetories entering and leaving a given region through thesame edge, to trajetories behaving as in SPDIs. One ofthe main problems when relaxing goodness is that a regionannot be bi-partitioned anymore into two semi-planes wereall the edges in one semi-plane an be traversed only in onediretion, w.r.t. the region, and all the edges in the other
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Figure 3: Ordering of edges on an SPDI.semi-plane an be traversed only in the other diretion. Asshown in Fig. 3 the goodness assumption determines a er-tain �ontiguity� of entry-only edges (In) and exit-only edges(Out) belonging to two disjoint sub-regions. Some lemmasand proofs of soundness of the SPDI reahability algorithmdepend on this ontiguity. If we relax goodness, we shouldbe able to re-prove all suh results without assuming theontiguity of entry-only and exit-only edges.This let us with the seond alternative. Unfortunately, todate there is no proof of deidability (nor of undeidability)to the reahability problem on GSPDIs. On the other hand,we will show that we an relax the goodness assumption asto give a terminating proedure for GPSDI reahability thatwhenever gives YES, the answer is orret, and otherwise theanswer is not known.
3. PRELIMINARIESThis setion is more tehnial, realling the main de�-nitions and onepts needed to understand the rest of thepaper. For a more detailed presentation see [7℄.Let a = (a1, a2),x = (x1, x2) ∈ R

2 and α, β ∈ R. Theinner produt of two vetors a = (a1, a2) and x = (x1, x2) isde�ned as a · x = a1x1 + a2x2. We denote by x̂ the vetor
(x2,−x1) obtained from x by rotating lokwise by the angle
π/2. Notie that x · x̂ = 0.An angle ∠

b

a on the plane, de�ned by two non-zero vetors
a,b is the set of all positive linear ombinations x = α a +
β b, with α, β ≥ 0, and α + β > 0. We an always assumethat b is situated in the ounter-lokwise diretion from a.Definition 1. A polygonal hybrid system (SPDI) is apair H = 〈P, φ〉, where P is a �nite partition of the plane(with eah P ∈ P being a onvex polygon), alled the regionsof the SPDI, and φ is a funtion whih assoiates a pairof vetors to eah polygon: φ(P ) = (aP ,bP ). In an SPDIevery point on the plane has its dynamis de�ned aordingto whih polygon it belongs to: if x ∈ P , then ẋ ∈ ∠

bP
aP

.Let E(P ) be the set of edges of P . We say that e ∈ E(P )is an entry-only of P if for all x ∈ e and for all c ∈ φ(P ),
x + cǫ ∈ P for some ǫ > 0. We say that e is an exit-only of
P if the same ondition holds for some ǫ < 0. We denote byIn(P ) ⊆ E(P ) the set of all entry-only edges of P and byOut(P ) ⊆ E(P ) the set of all exit-only edges of P .Assumption 1. All the edges in E(P ) are either entry-only or exit-only, that is, E(P ) = In(P ) ∪Out(P ). We saythen that all the regions in an SPDI are good or that theyhave the goodness property.In SPDIs, sliding on an edge is not allowed. That meansthat a trajetory segment reahing an edge being exit-onlyto two adjaent regions will blok.



Example 1. In Fig. 2-(a), region P (with φ(P ) = (a,b))is good, sine all are entry-only or exit-only edges. Fig. 2-(b) shows a region that is not good: edges e2 and e5 are notin In(P ) ∪Out(P ).A trajetory segment of an SPDI is a ontinuous funtion
ξ : [0, T ] → R

2 whih is smooth everywhere exept in adisrete set of points, and suh that for all t ∈ [0, T ], if
ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). The signature,denoted Sig(ξ), is the ordered sequene of edges traversed bythe trajetory segment, that is, e1, e2, . . ., where ξ(ti) ∈ eiand ti < ti+1. If T = ∞, a trajetory segment is alled atrajetory.Example 2. The SPDI illustrated in Fig. 1 ontains 8regions R1, . . . , R8. To eah region Ri we assoiate a pair ofvetors (ai,bi) meaning that ẋ belongs to their positive hull:
a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2
), a3 = (−1, 11

60
) and

b3 = (−1,− 1

4
), a4 = b4 = (−1,−1), a5 = b5 = (0,−1),

a6 = b6 = (1,−1), a7 = b7 = (1, 0), a8 = b8 = (1, 1).
3.1 Successors and predecessorsGiven an SPDI, we �x a one-dimensional oordinate sys-tem on eah edge to represent points lying on edges. Fornotational onveniene, we will use e to denote both theedge and its one-dimensional representation. Aordingly,we write x ∈ e or x ∈ e, to mean �point x in edge e withoordinate x in the one-dimensional oordinate system of e�.The same onvention is applied to sets of points of e repre-sented as intervals (e.g., x ∈ I or x ∈ I , where I ⊆ e) andto trajetories (e.g., �ξ starting in x� or �ξ starting in x�).Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e,
Succee′(I) is the set of all points in e′ reahable from somepoint in I by a trajetory segment ξ : [0, t] → R

2 in P(i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Given I = [l, u],
Succee′(I) = F (I ∩See′ )∩ Jee′ , where See′ ∈ e and Jee′ ∈ e′are intervals1, F ([l, u]) = 〈fl(l), fu(u)〉2 and fl and fu area�ne funtions (a funtion f : R → R is a�ne i� f(x) =
ax + b with a > 0).
3.2 Qualitative analysis of simple edge-cyclesLet σ = e1 · · · eke1 be a simple edge-yle, i.e., ei 6= ejfor all 1 ≤ i 6= j ≤ k. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with
F = 〈fl, fu〉.Given a simple yle σ, let l∗ and u∗ be the �x-points3 of
fl and fu, respetively, and 〈L, U〉 = Sσ ∩ Jσ. Any simpleyle an be of one of the following kinds. STAY: The yleis not abandoned neither by the leftmost nor the rightmosttrajetory, that is, L ≤ l∗ ≤ u∗ ≤ U . DIE: The rightmosttrajetory exits the yle through the left (onsequently theleftmost one also exits) or the leftmost trajetory exits theyle through the right (onsequently the rightmost one alsoexits), that is, (u∗ < L) ∨ (l∗ > U). EXIT-BOTH: Theleftmost trajetory exits the yle through the left and therightmost one through the right, that is, (l∗ < L) ∧ (u∗ >1The intervals See′ and Jee′ intuitively `trunate' the domainand o-doamin of the suessor funtion. See [7℄ for a moredetailed presentation.2〈·, ·〉 denotes an interval. For notational onveniene, wedo not make expliit whether intervals are open, losed, left-open or right-open, unless required for omprehension.3The �x-point x∗ is omputed by solving a linear equation
f(x∗) = x∗, whih an be �nite or in�nite.

U). EXIT-LEFT: The leftmost trajetory exits the yle(through the left) but the rightmost one stays inside, that is,
l∗ < L ≤ u∗ ≤ U . EXIT-RIGHT: The rightmost trajetoryexits the yle (through the right) but the leftmost one staysinside, that is, L ≤ l∗ ≤ U < u∗.The lassi�ation above provides useful information aboutthe qualitative behavior of trajetories. Any trajetory thatenters a DIE yle will eventually quit it after a �nite num-ber of turns. If the yle is STAY, all trajetories that hap-pen to enter it will keep turning inside it forever. In all otherases, some trajetories will turn for a while and then exit,and others will ontinue turning forever. This information isruial for solving the reahability problem for SPDIs, andprovides a means to aelerate the analysis.We reall now the representation theorem for SPDIs thatallows to fatorize the signatures (step 3 in Setion 2) ina onvenient way. The theorem not only guarantees theexistene of the above representation for SPDIs but alsoprovides a onstrutive way of doing so [7℄.Theorem 1. Given an SPDI, let σ = e1 . . . ep be an edgesignature, then it an always be written as σA = r1s

k1

1 . . . rn

skn
n rn+1, where for any 1 ≤ i ≤ n + 1, ri is a sequene ofpairwise di�erent edges and for all 1 ≤ i ≤ n, si is a simpleyle (i.e., without repetition of edges).This representation of signatures is the base to obtaintypes of signatures (step 4 in Setion 2) with the followinggood propertiesLemma 2. Given an SPDI, let σ = e0 . . . ep be a feasiblesignature, then its type, type(σ) = r1, s1, . . . , rn, sn, rn+1satis�es the following properties:

P1 For every 1 ≤ i 6= j ≤ n + 1, ri and rj are disjoint;
P2 For every 1 ≤ i 6= j ≤ n, si and sj are di�erent.The above lemma guarantees that there are only �nitelymany di�erent types of signatures, ensuring termination ofthe SPDI reahability algorithm.
4. GSPDIThe goodness restrition (Assumption 1) was originallyintrodued to simplify treatment of trajetories to guaran-tee, among other things, that eah region an be partitionedinto entry-only and exit-only edges in an ordered way, a fatused in the proof of deidability of the reahability problem.Without goodness there are edges that are neither of entry-only nor of exit-only as shown in Fig. 2. This naturallyleads to the following de�nition.Definition 2. An edge e ∈ P is an inout edge of P if eis neither an entry-only nor an exit-only edge of P .Note that formally speaking the de�nition of SPDI doesnot exlude inouts edges, however, to make a lear separa-tion between SPDIs with the goodness assumption and thosewithout suh an assumption, we all the latter generalizedSPDI (GSPDI). Thus, in GSPDIs there are three kinds ofedges: inouts, entry-only and exit-only edges.Self-rossing of trajetory segments of SPDIs an be elim-inated whih allow us to onsider only non-rossing traje-tory (segments). The proof given in [7℄ an be extended
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Figure 4: (a) Proper inout edge; (b) Sliding edge.to deal with the ase when the self-rossing trajetories in-volve inout edges, so the result still holds for GSPDIs. Thusin what follows we will onsider only trajetory segmentswithout self-rossings.Notie that on GSPDIs a trajetory an �interset� anedge at an in�nite number of points beause it an slide atit. Thus, a trae is not anymore a sequene of points butrather a sequene of intervals.Definition 3. The trae of a trajetory ξ is the sequene
trace(ξ) = I0I1 . . . of the intersetion intervals of ξ with theset of traversed edges.A point interval I = [x,x] will be written as x wheneverno onfusion might arise.Definition 4. An edge signature (or simply a signature)of a GSPDI is a sequene of edges. The edge signatureof a trajetory ξ, Sig(ξ), is the ordered sequene of tra-versed edges by the trajetory, that is, Sig(ξ) = e0e1 . . ., with
trace(ξ) = I0I1 . . . and Ii ⊆ ei. The region signature of ξis the sequene RSig(ξ) = P0P1 . . . of traversed regions, thatis, ei ∈ In(Pi).Notie that in many ases the intervals of a trae are infat points. We say that a trajetory with edge signature
Sig(ξ) = e0e1 . . . ei . . . and trae trace(ξ) = I0I1 . . . Ii . . .interval-rosses edge ei if Ii is not a point.Given a trajetory segment, we will make the di�erenebetween proper inout edges and sliding edges.Definition 5. Let ξ be a trajetory segment from point
x0 ∈ e0 to xf ∈ ef , with edge signature Sig(ξ) = e0 . . . ei . . . en,and ei ∈ E(P ) be an inout edge of P . We say that ei is asliding edge of P for ξ if ξ interval-rosses ei, otherwise e issaid to be a proper inout edge of P for ξ.We say that a trajetory segment ξ slides on an edge e if
e is a sliding edge of P for ξ and ξ is said to be a slidingtrajetory if there is at least one sliding edge e ∈ Sig(ξ).Example 3. In Fig. 4-(a), e is a proper inout edge. Edge
e on Fig. 4-(b) is a sliding edge.
5. REACHABILITY ANALYSIS OF GSPDIIn order to get a sound deision algorithm, based on theSPDI algorithm, we would need to prove the following the-oretial results: (1) Show that it is enough to onsider tra-jetories without self-rossing (argument of its validity pre-sented in the previous setion); (2) Show that it is possible toeliminate all inout edges, preserving reahability; (3) Showthat it is possible to eliminate all sliding edges, preserv-ing reahability (Setion 5.1); (4) Re-state and prove someresults on SPDI reahability useful to GPSDI reahabilityanalysis (Setion 5.2); (5) Prove soundness and termination(Setion 5.3).
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dFigure 5: Counter-example for Proposition 1.However, as we will see in Setion 5.1 step (2) is not valid,and we thus get a semi-test algorithm for GSPDI reahabil-ity analysis instead, by proving the rest of the above steps.Due to lak of spae we do not provide full proofs here;see [10℄ for more details.
5.1 Simplification of Trajectory SegmentsWe �rst start by showing that the good properties of therepresentation theorem for SPDIs are not valid any longerfor GSPDIs.Proposition 1. Property P2 of the representation the-orem for SPDIs (Lemma 2) does not hold in general forGSPDIs.Proof Sketh: Let ξ be a trajetory with signature Sig(ξ) =
σ = e0 . . . ei . . . en . . . of a given GSPDI. The propositionstates that it is not possible in general to write σ in theform σA = r1s

k1

1 . . . rnskn
n rn+1 with the properties statedin Lemma 2. The proof is done by providing a ounter-example. A typial ounter-example should allow to obtaina signature onsisting of a lokwise spiral followed by aounter-lokwise spiral (or vie-versa) and then bak to the�rst spiral. In suh a ase it is possible to �nd two simpleyles whih are repeated in the type of signature. Let usonsider the GSPDI of Fig. 5. To keep it simple we do notwrite down the dynamis of the regions and we assume thatthey are as to allow the segments of trajetories shown inthe piture to be well-de�ned. In suh a GSPDI it is possibleto obtain the following type of signature: r1s1r2s2r3s3 . . .,where s1 = (abcd), s2 = (dcba), and s3 = (abcd). Sine

s1 = s3, then property P2 of Lemma 2 is not satis�ed.The following lemma presents some typial ases where itis possible to eliminate proper inout edges.Lemma 3. Let ξ be a trajetory segment with initial point
x0 ∈ e0 and �nal point xf ∈ ef , with edge signature Sig(ξ) =
e0 . . . ei . . . en. If ei is a proper inout edge then in someases there exists a trajetory segment ξ′ from x0 to xf thattraverses ei in at most one sense (that is, ei is either anentry-only or an exit-only, but no both).Proof Sketh. In Fig. 6-(a) we illustrate a typial asewhere edge ei is a proper inout edge. After a straightfor-ward algebrai vetor manipulation, on the same lines ofelimination of self-rossings, the trajetory segment shownin Fig. 6-(a') is obtained.Note that the above does not establish ompleteness of aredution from GSPDIs into SPDIs reahability sine thereare ases where the above is not possible, as shown in thefollowing proposition.Proposition 2. Given a GSPDI, assume there exists atrajetory segment from points x0 ∈ e0 to xf ∈ ef , traversing
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Figure 7: A non-eliminating inout edge.inout edges in both diretions. Then it is, in general, notpossible to �nd a trajetory segment whose edge signatureontains no proper inout edges (traversed in both diretions),between them.Proof Sketh: The GSPDI of Fig. 7 presents a typi-al example of an inout edge (e2) whih annot be diretlyeliminated as to preserve that xf is reahable from x0. Tokeep the explanation simple we do not present here a formalGSPDI as ounter-example. The example, however, shedssome light on the kind of GSPDI regions serving as ounter-examples. It su�es to take any trajetory exiting a regionthrough an edge (e2 in the �gure) and entering to the regionagain through the same edge, with a dynamis forbiddingthe sliding from the exit point (x1) to the entry point (x2).The trajetory must not have self-rossings.The above result is based on the fat that the underlyingonvex polygons of the GSPDI as well as its dynamis is�xed; the only restrition is the prohibition of trajetoriesentering and exiting a region through the same edge, thoughthe dynamis still would allow to do so. Let G be a GSPDI,and S a GSPDI obtained from G with the above restri-tion, then we say that S preserves the underlying strutureof G, and that S is an underlying SPDI of G (notie that ingeneral there are many underlying SPDIs for eah GSPDI).We say that there is a struture-preserving redution fromthe GSPDI reahability problem to the SPDI reahabilityproblem if there is a transformation from any GSPDI in-stane G into an underlying SPDI instane S of G, suh thatReah(G,x0,xf ) = Yes i� ReachSPDI(S ,x0,xf ) = Yes.From the above proposition we onlude that it is notpossible to redue GSPDI reahability to SPDI reahabilitysine we may miss some of the positive answers. We havethen the following result.Proposition 3. There is no struture-preserving redu-tion from the GSPDI reahability problem to the SPDI reah-ability problem.In what follows we onentrate on sliding edges; we show�rst that we an eliminate sliding edges.Lemma 4. Let ξ be a trajetory segment from x0 ∈ e0 to
xf ∈ ef with edge signature Sig(ξ) = e0 . . . ei . . . ef . If ei isa sliding edge for ξ then there exists a trajetory segment ξ′from x0 to xf that does not slide on edge ei.
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Figure 8: Sliding ases.Proof Sketh. Sliding edges an arise in four di�erentases (plus the symmetri ases); they are shown in Fig. 8-(a) to (d). The orresponding primed �gures (Fig. 8-(a') to(d')) show the transformation done in order to avoid slidingon edge e. We do not give a formal proof of ompletenessof the result here. Notie that indeed the above transforma-tion is always possible sine in all the ases the new obtainedsegment of trajetory an be expressed as a positive linearombination of two suitable existing segments of trajetory.Suh two segments are the sliding segment, and another seg-ment of trajetory with starting point at the beginning orthe end of the sliding segment.As a onsequene we have the following result, showingthe existene of a non-sliding trajetory.Proposition 4. If there exists a sliding trajetory seg-ment from points x0 ∈ e0 to xf ∈ ef then there alwaysexists a non-sliding trajetory segment between them.Proof. By indution on the number n of sliding edgesof the signature of the trajetory segment using Lemma 4 inthe indution step.Sliding is not easy to treat in general sine an edge al-ways belongs to two di�erent regions with di�erent dynam-is. Thus a trajetory may be �allowed� to slide by one ofthe dynamis but not by the other. For our purposes we as-sume that at an inout edge a trajetory an slide if at leastone of the dynamis allows so. This assumption does nota�et the reahability analysis.
5.2 SPDI Results used in GSPDI AnalysisWe will see in next subsetion that the semi-test algo-rithm for reahability analysis of GSPDIs depends on thegeneration of all the possible underlying SPDIs obtained af-ter �xing the inout edges as entry-only or exit-only edges.



In order to guarantee that we an still apply the reahabilityalgorithm for SPDIs, we need to: (1) Rede�ne the edge-to-edge suessor operator, Succ, to be able to deal with slidingedges; (2) �Topologially� rephrase and prove the results of[7℄ that use the ontiguity between entry-only and exit-onlyedges in their proofs; (3) The proofs of soundness of theExit-LEFT and Exit-STAY algorithms also rely on the on-tiguity hypothesis, and need thus to be re-proved (see [10℄).Conerning the �rst point above, note that it is onvenientto de�ne a (trivial) suessor Succe where e is a single edge.The only way to do it preserving the semi-group propertyfor SPDIs is to put Succe(I) = I . Notie that for GSPDIs,however, we add the following ases in ase e is an inoutedge, with I = 〈l, u〉, and given 〈L, U〉 = Se∩Je: Succe(I) =
〈L, u〉, or Succe(I) = 〈l, U〉, depending on whih diretion eallows the sliding.
5.3 Reachability AlgorithmGiven a GSPDI H, we denote by Hred = {H1, . . . , Hn}the set of all the underlying SPDIs obtained after �xing allthe inout edges of H as entry-only or exit-only, onsideringall the possible permutations.Let Reah(H, x0,xf ) be the reahability algorithm for aGSPDI H. It onsists of the following steps:1. Detet all the inout edges;2. Generate the set of SPDIs Hred = {H1, . . . , Hn};3. Apply the reahability algorithm for SPDIs to eah Hi(1 ≤ i ≤ n), ReachSPDI(Hi, x0,xf ).4. If there exists at least one SPDI Hi ∈ Hred suh that

ReachSPDI(Hi,x0, xf ) = Yes thenReah(H,x0,xf ) =
Yes, otherwise we do not know.We have then the following result about termination ofGSPDI reahability.Lemma 5. Reah(H,x0,xf ) always terminates.Proof. The result follows from the termination of steps1 and 2 of the above algorithm (based on a �niteness argu-ment), as well as from that of ReachSPDI(Hi,x0,xf ) (forall Hi ∈ Hred, 1 ≤ i ≤ n) [5, 7℄.We �nish this setion with the main result of our paper,whih follows from all the previous results.Theorem 6. Given a GSPDI H, Reah(H, x0,xf ) =

Yes if ReachSPDI(Hi,x0,xf ) = Yes for some Hi ∈ Hred.On the other hand, Reah(H,x0,xf ) is inonlusive if forall Hi ∈ Hred, ReachSPDI(Hi,x0,xf ) = No.Proof. Termination is guaranteed by Lemma 5. Sound-ness follows from soundness of the algorithm for SPDIs [5,7℄, and from that of the steps desribed in Setion 5.2. Thatreahability is inonlusive wheneverReachSPDI(Hi,x0,xf )
= No for all Hi ∈ Hred, follows from Proposition 2.
6. FINAL DISCUSSIONIn this paper we presented a terminating algorithm im-plementing a semi-test for reahability analysis of GSPDIs,based on the deision proedure for SPDIs, and proved itssoundness. We �rst showed that there is no struture-preservingredution from GSPDI reahability to SPDI reahability by

showing that for some trajetories traversing an inout edgein both diretions there is no trajetory traversing the edgeonly in one diretion. Sine those trajetories are, however,obtained only on very spei� ases (Proposition 2), we ar-gue that we miss indeed few positive answers. This wouldneed to be pratially orroborated by implementing the al-gorithm, whih remain a future work. Note that the mostdi�ult part is already implemented in the tool SPeeDI [3℄and we would only need to implement steps 1 and 2 of theGSPDI algorithm.Complexity is another issue. In the worst ase it is learthat the algorithm introdues an exponential blow-up as ithas to generate all possible underlying SPDIs after �xing in-out edges as entry-only or exit-only edges. Some qualitativeanalysis may help here, to guide the reahability analysis asto eliminate beforehand the analysis of some of the types ofsignatures. This might be done by omputing some objetsof GSPDI's phase portrait as previously done for SPDIs [6℄.We believe this paper positively ontributes to the analy-sis of low-dimensional hybrid systems, given that the GSPDIlass lies on the frontier of deidable/undeidable hybrid sys-tems. Moreover, GSPDIs may be used to approximate non-linear planar di�erential equations, for whih exat solutionsare not easy to obtain.
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