
An Automata-based Approach to Evolving Privacy
Policies for Social Networks?

Raúl Pardo1, Christian Colombo2, Gordon J. Pace2, and Gerardo Schneider1

1 Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Sweden.

2 Department of Computer Science, University of Malta, Malta.
pardo@chalmers.se, christian.colombo@um.edu.mt,

gordon.pace@um.edu.mt, gersch@chalmers.se

Abstract. Online Social Networks (OSNs) are ubiquitous, with more than 70%
of Internet users being active users of such networking services. This widespread
use of OSNs brings with it big threats and challenges, privacy being one of them.
Most OSNs today offer a limited set of (static) privacy settings and do not allow
for the definition, even less enforcement, of more dynamic privacy policies. In this
paper we are concerned with the specification and enforcement of dynamic (and
recurrent) privacy policies that are activated or deactivated by context (events). In
particular, we present a novel formalism of policy automata, transition systems
where privacy policies may be defined per state. We further propose an approach
based on runtime verification techniques to define and enforce such policies. We
provide a proof-of-concept implementation for the distributed social network
Diaspora, using the runtime verification tool LARVA to synthesise enforcement
monitors.

1 Introduction

As stated in [21] by Weitzner et al, “[p]rotecting privacy is more challenging than ever
due to the proliferation of personal information on the Web and the increasing analytical
power available to large institutions (and to everyone else) through Web search engines
and other facilities”. The problem being not only to determine who might be able to
access what information and when but also how the information is going to be used (for
which purpose). Addressing all these privacy-related questions is complex, and as today
there is no ultimate solution.

The above is particularly true for Online Social Networks (OSNs) (also known as
Social Networking Sites or Social Networking Services —SNSs), due to their explosion
in popularity in the last years. Sites like Facebook, Twitter and LinkedIn are in the top
20 most visited Web sites in the world [1]. Nearly 70% of the Internet users are active
on OSNs as shown in a recent survey [12], and this number is increasing. A number
of studies show that the number of privacy breaches is keeping pace with this growth
[15, 10, 14, 16]. The reasons for this increase on privacy breaches are manifold; just to

? Published in the 16th International Conference on Runtime Verification (RV’16), vol. 10012 of
LNCS. Springer, 2016.



2 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

mention a few: i) Many users are not aware of the implications of content sharing on
OSNs, and do not foresee the consequences until it is too late; ii) Most users do not take
the time to check/change the default privacy settings, which are usually quite permissive;
iii) The privacy settings offered by existing OSNs are limited and are not fine-grained
enough to capture desirable privacy policies; iv) Side knowledge and indirect disclosure,
e.g. through aggregation of information from different sources, it is difficult to foresee
and detect; v) There currently are no good warning mechanisms informing users of the
potential breach of privacy, before a given action is taken; vi) Privacy settings are static
(they are not time- nor context-dependent), thus not being able to capture the possibility
of defining repetitive or recurrent privacy policies.

Recently, the following privacy flaw was pointed out in the Facebook messenger
app [3]. It was shown that it is possible to track users based on their previous conver-
sations. It was enough to chat several times per day with users to accurately track their
locations and even infer their daily routines. It was possible since the app adds by default
the location of the sender to all the messages. This problem arises because of some of
the reasons in the previous list such as i), ii) and v). Facebook solution was to disable
location sharing by default, which might be seen as a too radical solution. However, it is
the best Facebook developers can do given the current state of privacy protection mecha-
nisms. We believe that there is room for better solutions that offer protection to users
while not restricting the sharing functionalities of the OSN. For instance, this privacy
flaw could have been solved with a privacy policy that says “My location can only be
disclosed 3 times per day”. This policy prevents tracking users while still allowing users
to share their location in a controlled manner. We called this type of privacy policies
evolving polices and they are the focus of this paper. Other examples of evolving policies
are “Co-workers cannot see my posts while I am not at work, and only family can see
my location while I am at home” or “My supervisor cannot see my pictures during the
weekend”.

In this paper we address the above problem, through the following contributions:
i) The definition of policy automata (finite state automata enriched with privacy policies
in their states), the definition of a subsumption and a conflict relation between policy
automata, and the proofs of some properties about these relations (Section 2); ii) A
translation from policy automata into DATEs [4], the underlying data structure of the
runtime verification tool LARVA [5] (Section 3); iii) A proof-of-concept implementation
of dynamic/recurrent privacy policies for the open source distributed OSN Diaspora* [6]
using LARVA (Sections 4,5).

2 Policy automata

In order to describe evolving policies, we adopt the approach of taking a static policy
language and use it to describe temporal snapshots of the policies in force. We then use
a graph structure to describe how a policy is discarded and another enforced, depending
on the events taking place e.g. user actions or system events.



Evolving Privacy Policies for Social Networks 3

2.1 Semantics of Policy Automata

Policy automata are defined as structures such that progressing through structure rep-
resents evolving policies, parametrised by a static policy language SPL. This approach
allows us to define a whole family of evolving policy languages, depending on the
underlying static language used.

Assumption 1 We assume that SPL has the notion of conjunction of policies such that,
for any two policies3 p1, p2 ∈ SPL, p1 & p2 ∈ SPL.

Definition 1. A policy automaton over a static privacy policy language SPL is a 4-tuple
〈Σ, Q, q0,→, π〉 where: Σ is the alphabet — effectively the set of observable actions of
the underlying system; Q is the set of states in the automaton; q0 ∈ Q is the initial state
of the automaton;→⊆ Q× Σ×Q is the transition relation; and π ∈ Q→ SPL is a
function which maps each state to a privacy policy in SPL.

We will write q a−→ q′ to indicate that there is a transition from state q to state

q′, labelled by a: q a−→ q′
df
= (q, a, q′) ∈→. We will take the transitive closure of the

transition relation to enable us to write q es
=⇒ q′ to denote that the sequence of events es

takes the automaton from state q to state q′.

Example 1. To illustrate policy automata let us consider the policy ‘Co-workers cannot
see my posts while I am not at work, and only family can see my location while I am at
home’ (P1). If we use the static policy operator Fg(x) to denote that anyone in group
g is forbidden from performing action x (where x can refer to posting, viewing a post,
liking a post, etc.), we can express the first part of P1 to be Fco-workers(read-post), and
the second part to be Ffamily(see-location) (we use ḡ to denote the complement of a
group of users g). By synchronising with the actions of our social network application
through events marking the arrival at and departure from a location (enter(l) and leave(l)
respectively), we can express the evolving policy in the following manner4:

Fco-workers(read-post)

start

Fco-workers(read-post) &

Ffamily(see-location)

leave(work)

enter(work)

enter(home)

leave(home)

Non-deterministic and non-total transition relations in a policy automaton can lead to
policy behaviour which is typically not required in real-life policy analysis. For instance,
we do not want to consider automata that under the execution of an event, randomly
choose between the activation of two different static policies. For this reason, we define
the subset of sane policy automata which behave deterministically and never deadlock.

3 In the rest of the paper we take SPL to be the set of well-formed policy formulae of the static
policy language.

4 When we draw a policy automaton, transitions for events that are not explicitly drawn are
assumed to be reflexive.



4 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

Definition 2. We say that a policy automaton P = 〈Σ, Q, q0,→, π〉 is sane if its transi-
tion relation is total and deterministic (functional). With sane policies, we write q e−→
and q es

=⇒ (with e ∈ Σ and es ∈ Σ∗) to denote the unique state reachable from state
q, following action e and sequence es respectively. Finally, we will write policyP(es)
to denote the policy in force after following event sequence es from the initial state:

policyP(es)
df
= π(q0

es
=⇒).

In order to give a semantics to policy automata, we require the semantics of the
underlying static policy language. Let σ ∈ SN be the state of the social network where
SN is the universe of all possible social network states. Given a static policy language
SPL, we write σ, e `SPL p to denote that in the social network state σ an event e
respects privacy policy p. We assume that the social network (but not the policy) may
evolve over time through events via the relation→SN⊆ SN ×Σ×SN which is assumed
to be a total function on the two first parameters.

Based on the semantics of the static policy language, we can now define the semantics
of policy automata:

Definition 3. The configuration of a policy automaton consists of the state of the au-
tomaton5. The initial configuration is taken to be q0. Whether an event respects a policy
automaton in a particular configuration C is defined as follows:

σ, e `SPL π(C)

σ, e `PA C
SPL

This is extended over traces in the following manner:

σ, ε `PA C
BASETRACE

σ, e `PA C σ
e−→SN σ′ C

e−→ C ′ σ′, es `PA C ′

σ, e : es `PA C
INDTRACE

Example 2. Consider the policy ‘Only up to 3 posts disclosing my location are allowed
per day in my timeline’ (P2), which can be encoded as the following automaton (we will
assume that from left to right, the states are named q0, q1, q2 and q3):

start Fall(post(my-location))

post(my-location) post(my-location) post(my-location)

midnight

midnight

midnight

5 We present these semantics in terms of general configurations, rather than the automata states,
since we envisage the extension of the automata to handle local symbolic state, requiring a
richer configuration but still in line with the definitions given in this paper.



Evolving Privacy Policies for Social Networks 5

Since we expect that posting the location when a policy prohibiting it is in force is
a violation, we would expect the static policy language semantics to show that for any
social network state σ: σ, post(my-location) 6`SPL Fall(post(my-location)).

From this, and given that π(q3) = Fall(post(my-location)) we can deduce that in
state q3, the policy clause is likewise violated whenever a post disclosing my-location is
performed, no matter the state of the social network: σ, post(my-location) 6`PA q3.

Using the rule INDTRACE, provided there is σ′ such that σ
post(my-location)3

============⇒ σ′,
we have:6 σ, post(my-location)4 6`PA q0.

Note that here we write post(my-location)4 because we want to check that after
disclosing 3 times the user’s location, the forth one would be a violation of π(q3).

If the maximum number of posts were to be increased, the number of states in the
automaton would grow quickly. For the sake of presentation, in the rest of the paper, we
will also be enriching our notation in the examples to transition systems which have an
implicit symbolic state. Transitions are labelled by a triple: event/condition/state-update
— triggering when the specified event happens and the condition holds, performing the
state update before proceeding. The property allowing for 10 location posts can be
expressed in this notation in the following manner:

start Fall(post(my-location))

post(my-location)/posts < 10/posts + +

midnight//posts = 0

midnight//posts = 0

post(my-location)/posts == 10/

Such a symbolic automaton can be unfolded into a policy automaton possibly with
an infinite number of states. For instance, in the above example, the set of states would
be {(q, n) | q ∈ {q0, q1}, n ∈ N} where q holds the value of the (explicit) state, and
n the value of posts. Since in this paper we are concerned with runtime verification —
enforcing a dynamic policy along a single trace, the infinite number of states poses no
challenge to the decidability question.

States in policy automata do not contain all the privacy policies which are being
enforced in the OSN. Internally the OSN could be enforcing other static policies that
have been manually activated by the users. Policy automata are a separate layer to control
some static policies. When a policy automaton moves to a state, the static policies in the
new state are activated in the OSN. Similarly, when the automaton leaves a state, the
static polices are deactivated. Transitions to and from an empty state just mean that there
is no update of static policies.

One advantage of using policy automata is that one can combine them synchronously
to get the equivalent of conjunction over evolving policies. In order to do so, we require
the underlying SPL to have a notion of conjunction (cf. Assumption 1).

Policy automata can now be combined using standard synchronous composition over
a particular alphabet:

6 The supra-index over events represent the number of occurrences of the event, so my-location3

represent the sequence of events my-location;my-location;my-location.



6 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

Definition 4. Given two policy automata P1 and P2 (such that Pi = 〈Σi, Qi, q0i,→i

, πi〉), the synchronous composition of the automata synchronising over actions G, is
defined to be the policy automaton P1‖GP2 = 〈Σ1 ∪ Σ2, Q1 ×Q2, (q01, q02), →, π〉
where π(q1, q2)

df
= π1(q1) & π2(q2) and the transition relation is defined as follows:

q1
a−→1 q

′
1 q2

a−→2 q
′
2

(q1, q2)
a−→ (q′1, q

′
2)

a ∈ G

q1
a−→1 q

′
1

(q1, q2)
a−→ (q′1, q2)

a /∈ G
q2

a−→2 q
′
2

(q1, q2)
a−→ (q1, q

′
2)

a /∈ G

Example 3. The policy automaton of Example 1 effectively is a composition of two
individual evolving policies. First “Colleagues cannot see my posts when I am not at
work”, which can be represented in the following automaton

Fco-workers(read-post)

start

q10 q11leave(work)

enter(work)

and secondly, “Only my family can see my location while I am at home”:

start

q20

Fco-workers(read-post) &

Ffamily(see-location)

q21

enter(home)

leave(home)

Let P1 and P2 denote the previous two automata, respectively. The following di-
agram shows P12, the parallel composition of the previous automata P1‖∅P2 (the
synchronisation set is empty because P1 and P2 do not communicate over any event):

Fco-workers(read-post)

start

(q10 ,q20)

Fco-workers(read-post) &

Ffamily(see-location)

(q10 ,q21)

(q11 ,q20)

Fco-workers(read-post) &

Ffamily(see-location)

(q11 ,q21)

enter(home)

leave(home)

enter(home)

leave(home)

leave(work) enter(work) leave(work) enter(work)

Note that this automaton is not equivalent to that of Example 1. In some transitions
that Example 1’s automaton do not update the static privacy policies (i.e., the automaton
remains in the same state) this synchronous composition updates the policies accordingly.



Evolving Privacy Policies for Social Networks 7

Imagine, for instance, that a user goes from work to home without leaving work (it
is a possible scenario if the user lives at her workplace). After receiving enter(work),
enter(home), the automaton resulting from the synchronous composition would active
the policy Fco-workers(read-post) & Ffamily(see-location) whereas Example 1’s au-

tomaton would activate no policies. Formally, the state (q1
0 ,q2

1) should contain the static
policy Fco-workers(read-post) & Fco-workers(read-post) & Ffamily(see-location).

However, we require the & operator of the static policy language to be idempotent (cf. As-
sumption 2, see below), thus being able to reduce the policy to Fco-workers(read-post)
& Ffamily(see-location).

Though formally the evolving policies can thus be combined into a single one, in
practice one can keep them separate and enforce them independently, e.g. possibly
on separate machines, thus avoiding information leaks (if all the policies) have to be
communicated to a central server for enforcement. For instance, one can see a user’s set
of policies being combined together over his or her local alphabet, and then synchronising
globally at a global level across users:

(p1,1‖U1 . . . ‖U1p1,n) ‖Global (pm,1‖Um . . . ‖Um pm,n′)

2.2 Subsumption of dynamic privacy policies

Many notions can be carried over from the underlying static policy language to dynamic
policies expressed using policy automata. Provided that the static policy language has a
notion of semantic equivalence (which encompasses the usual properties of idempotency,
commutativity and associativity of conjunction), we can derive equivalence and strictness
ordering over policy automata.

Assumption 2 We assume that the static policy language SPL has the notion of seman-
tic equivalence =SPL which is assumed to be an equivalence relation.

Furthermore, conjunction is assumed to be commutative, associative and idempotent
under this equivalence: (i) p1&p2 =SPL p2&p1; (ii) p1&(p2&p3) =SPL (p1&p2)&p3;
and (iii) p&p =SPL p.

Based on this equivalence, we can extend this to policy automata equivalence by
quantifying over traces:

Definition 5. Two policy automata P1 and P2 (with Pi = 〈Σi, Qi, q0i,→i, πi〉) with
a common alphabet Σ (which requires Σ1 = Σ2) are equivalent if after following any
trace, they both end up in a state in which the policies are equivalent:

P1 =PA P2
df
= ∀es : Σ∗ · policyP1

(es) =SPL policyP2
(es)

Using standard approach, we can now define policy strictness ordering — a policy is
considered stricter than another if all behaviour allowed by the former is also allowed by
the latter.



8 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

Definition 6. Given policy automata P1 and P2 over alphabet Σ, we say that P1 is
stricter than P2, written P1 vPA P2 as follows:

P1 vPA P2
df
= P1‖ΣP2 =PA P1

The strictness relation can be shown to obey certain properties.

Lemma 1. The relation vPA is transitive, antisymmetric and reflexive.

Example 4. Consider the policy automaton in Example 1 (P1) and the synchronous
composition of the two automata in Example 3 (P12).

As we remarked in Example 3, the two policy automata are clearly not equivalent.
However, we would expect P12 to be a stricter version of P1. To show this, we note
that the synchronous composition of P1 and P12, P1‖ΣP12 (where Σ is the whole
alphabet, including {leave(home), leave(work), enter(home), enter(work)}), and
P12 result in identical policies after following any trace. Formally, for all traces es ∈
Σ∗ ·policyP12‖P1

(es) =SPL policyP12
(es), and thus we can conclude thatP12 is stricter

than P1: P12 vPA P1.

2.3 Conflicting policy automata

In a similar manner as policy equivalence can be lifted from the static policy language to
evolving policies, we can extend the notion of conflicting policies. Two static policies
conflict when both cannot be satisfied or enforced at the same time. For example, imagine
that Alice sets the policy “Everyone can see the posts on my timeline” and Bob activates
a policy saying “Only my friends can see my posts”. If Bob posts in Alice’s timeline
which policy would apply? If the audience of the post is only Bob’s friends Alice’s
policy would be violated. Similarly, if the audience of the posts is everyone, Bob’s policy
would not be satisfied. In order to define conflicting policy automata, we require the
static policy language to include the notion of conflict between policies.

Assumption 3 The static policy language SPL must be equipped with the notion of
conflicting polices @SPL, which is assumed to be (i) symmetric; and (ii) closed under
conjunction: if p1@SPLp2 then for any p′1, it also holds that (p1 & p′1)@SPLp2.

We can lift the static policy conflict relation to one on evolving policies:

Definition 7. Given any static policy language SPL and policy automata P1 and
P2 with alphabet Σ:

P1 @PA P2
df
= ∃es ∈ Σ∗ · policyP1

(es) @SPL policyP2
(es).

The intuition behind the previous definition is simple. Any two automata are in
conflict if after the execution of a sequence of events, they end up in a state where their
policies conflict (at the static policy level).



Evolving Privacy Policies for Social Networks 9

Example 5. Imagine that Alice and Bob want to leverage the advantages of evolving
policies, and they rewrite the previous static policies in a more precise way, “Everyone
can see the posts on my timeline during my birthday” and “Only my friends can see
my posts when I am at home”. Combining the policy automata representing these two
policies, we can identify a conflict in a state reachable after a trace in which, Alice’s
birthday begins and afterwards (before the day ends) Bob goes home. Note that it is
not required that Bob posts in Alice’s timeline for the conflicting policies to be reached,
since it is known beforehand that both policies cannot be satisfied at the same time.

Based on this definition and the assumptions we made about conflicts over static
policies, we can prove that evolving policies are closed under increasing strictness.

Theorem 1. Given the policy automata P1 and P2 the following holds

P1 @PA P2 ∧ P ′1 vPA P1 =⇒ P ′1 @PA P2.

3 Translation of policy automata to DATEs

Dynamic Automata with Timers and Events (DATEs) [4] are symbolic automata aimed at
representing monitors, with a corresponding compilation tool LARVA. In this section, we
introduce the basic definitions (leaving out advanced element which are not necessary
for this paper) enabling us to provide the translation from policy automata, effectively
providing an implementation to the latter through LARVA. As a monitoring formalism,
DATE transitions are event, condition, action triples: if a matching event occurs and the
condition — based on event parameters and the automaton symbolic state — holds, then
the action is carried out. The action can be used to either modify the automaton state,
interact with the event-generating system, or generate an alert as appropriate.

Definition 8. A symbolic automaton (SA) running over a system with state of type Θ, is
a quintuple 〈Q, q0, a0, →, B〉 with set of statesQ, initial state q0 ∈ Q, initial action to
be executed a0 ∈ Θ→ Θ, transition relation→⊆ Q×event×(Θ→ B)×(Θ→ Θ)×Q,
and bad states B ⊆ Q. Note that the transitions between automaton states are labelled
with: (i) an event expression which triggers the transition; (ii) an enabling condition on
the system state — encoded as a function from the system state to a boolean value; and
(iii) an action (code) which may change the state of the underlying system — encoded as
a function, which given a system state returns an updated system state.

A total ordering <, giving a priority to transitions, is assumed to be given so as to
ensure determinism.

The behaviour of an SA M , upon receiving a set of events, consists of: (i) choosing
the enabled transition with the highest priority; (ii) performing the transition (possibly
triggering a new set of events); and (iii) repeating until no further events are generated,
upon which the automaton waits for a system event.



10 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

3.1 Translation

Intuitively, the translation keeps the same states of the policy automaton, but introduces
transitions and states for each static policy. We note that the translation below only
handles the high-level enabling and disabling of policies, leaving the low-level checking
and enforcement up to a static policy checker. We note that the translation below only
handles conjunction of policies.

Given a policy automaton 〈Σ, Q, q0,→, π〉, for a given transition (q, e, q′) ∈→, we
generate an action which disables policies in the outgoing state, and enabling those in the
ingoing state, as follows: action(q, e, q′) = stopEnforcing(π(q)); startEnforcing(π(q′)),
where startEnforcing(p) and stopEnforcing(p) switches on and off the enforcement of
static policy p. Using this construction, we generate transitions of the SA labelled as
follows: →SA= {(q, e, true, action(q, e, q′), q′) | (q, e, q′) ∈→}. The resulting DATE
would be: 〈Q, q0, start,→SA, ∅〉 where start is an action representing the activation of
the automaton.

Example 6. Consider the policy automata presented in Example 1, which models the
policy ‘Co-workers cannot see my posts while I am not at work, and only family can see
my location while I am at home’. Assuming that the events leave(work), leave(home),
enter(work) and enter(home) exist, the automaton can be directly converted to a DATE
as follows:

start//E1

leave(work)//E1

enter(work)//D1

enter(home)//D1;E2

leave(home)//D2;E1

where E1, D1, E2 and D2 are defined as follows:

E1 = startEnforcing(Fco-workers(read-post))
D1 = stopEnforcing(Fco-workers(read-post))
E2 = startEnforcing(Fco-workers(read-post) & Ffamily(see-location))

D2 = stopEnforcing(Fco-workers(read-post) & Ffamily(see-location))

4 Implementation in Diaspora* using LARVA

One of our objectives is to have an effective enforcement mechanism for evolving privacy
policies based on policy automata in a real OSN. In this section, we describe the details
of the implementation of policy automata using LARVA in the OSN Diaspora*.

We chose Diaspora* since it is open source, which allows us to implement the inter-
action between the OSN and LARVA. Diaspora* has a built-in mechanism for enforcing
static privacy policies. Pardo and Schneider have recently extended Diaspora* with a pro-
totype implementation of some privacy policies defined in the PPF framework [18, 17].
PPF is a formal (generic) privacy policy framework for OSNs, which needs to be instan-
tiated for each OSN in order to take into account the specificities of the OSN. PPF was



Evolving Privacy Policies for Social Networks 11

Fig. 1: High-level representation of the Diaspora*-LARVA communication

shown not only to be able to capture all privacy policies of Twitter and Facebook, but
also more complex ones involving implicit disclosure of information. PPF comes with
a privacy policy language, PPLSN , which satisfies all the assumptions placed for the
static privacy language in policy automata (cf. Section 2).

Using policy automata to model the evolution of the privacy policies makes it possible
to define a modular enforcement of evolving policies. As we mentioned, policy automata
are independent of the static policy language of the OSN (except for the assumptions on
=SPL and &), and consequently, they are also independent of the underlying enforcement
of each particular static policy. Policy automata can be translated to DATEs (cf. Section 3).
In order to implement policy automata we use the tool LARVA [5], which automatically
generates a monitor from properties expressed in DATEs.

In order for the runtime enforcement to work we use a communication protocol
between Diaspora* and LARVA. Every time a relevant event occurs in Diaspora* (i.e.,
an event that can update the state of the automata), it is reported to LARVA. Then
LARVA updates the state of the privacy policies (if applicable), and whenever a privacy
policy is updated LARVA reports this change to Diaspora*, which would update the
corresponding (static) privacy policy (see Fig. 1).

Given that Diaspora* is implemented in Ruby and the monitors that LARVA generates
are Java programs, we implement the communication protocol using sockets. One socket
is used by Diaspora* to send a message to LARVA containing the event that has occurred,
plus additional information such as the user who triggered the event; if it is a post the
audience of the post, whether the post contains a location, etc. LARVA monitors detect
(among other things) Java method calls corresponding to events on DATE transitions.
Therefore, we have implemented a Java program, which listens to the communication
socket and depending on the message sent by Diaspora* it calls a concrete method
causing the LARVA automaton to update its state. When an automaton updates its state,
the privacy policies to be enforced might change. There is another socket that the
LARVA monitor uses to send the privacy policies that Diaspora* should enforce. The
message sent by the monitor includes the policies that must be activated (policies of
the incoming state) and/or deactivated (policies of the outgoing state). This part of the
communication will also be handled by the Java program, which contains an auxiliary
method for sending messages to Diaspora*.



12 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

5 Case studies

As a proof-of-concept we have implemented two policy automata in the Disapora*-
LARVA system presented in the previous section. Here we describe the concrete details
of this prototype. The code of these case studies can be found in [8].

5.1 Case 1: Protecting pictures during the weekend

In this case study we describe the implementation of the following evolving privacy
policy, “My supervisor cannot see my pictures during the weekend”. This is a simple
policy that only depends on the time of the week. LetFsupervisor(see-pictures) represent
that my supervisor cannot see my pictures, the following DATE models the policy

start//

monday//stopEnforcing(Fsupervisor(see-pictures));

saturday(uid)//startEnforcing(Fsupervisor(see-pictures));

As we mentioned, Diaspora*’s privacy protection mechanism is based on an in-
stantiation of PPF . In this instantiation, we consider that a user appears in a picture
if the user is mentioned in the post containing the picture7. For this policy automaton
Diaspora* is required to report the events saturday and monday. Each of them represents
the beginning of the day after which they are named. Every Saturday at 00:00 Diaspora*
sends the message uid;saturday to LARVA where uid is a user id. This message
is sent once for each user with her corresponding uid. At this point the automaton of
each user is updated. The automaton moves to the only possible state where it replies
with the message uid;exclude-supervisor;picture. When this message is
received by Diaspora*, it activates the static privacy policy that forbids posting a picture
of a user if her supervisor is part of the audience. More precisely, Diaspora*’s built-in
enforcement mechanism will block any post that contains a picture and mention of a user
whose supervisor is included in the audience of the post. Similarly, on Monday at 00:00,
Diaspora* informs the automata with the message monday. All active automata update
their state, therefore no uid parameter is needed for this event. This choice also reduces
the amount of messages sent between Diaspora* and LARVA. Finally, these automata re-
ply to Diaspora* with the message uid;include-supervisor;picture, which
allows again the user’s supervisor to be part of the audience of her pictures.

5.2 Case 2: Disclosing location at most 3 times per day

Here we describe the implementation of the policy automaton of Example 2, which we
translate to a DATE (as described in Section 3) as follows

start//

post(uid,location)/posts < 3/posts + +

midnight//posts:=0

midnight//posts = 0;D0;

post(uid,location)/posts == 3/E0;

7 Diaspora* does not support tagging users in pictures.



Evolving Privacy Policies for Social Networks 13

In the previous automatonE0 = startEnforcing(Fall(post(uid,location))) andD0 =
stopEnforcing(Fall(post(uid,location))). Note that we use the variable posts to sym-
bolically encode the explict states of the real policy automata (cf. Section 2). There
are two events present in the transitions of the automaton, which therefore need to be
reported from Diaspora* to the LARVA monitors when they occur, post(uid,location)
and midnight.

In our Diaspora* PPF instantiation, mentioning users in a post that includes a
location constitutes a disclosure of their location. Every time a user is mentioned in a post
(i.e., post(uid,location)), a message including the message uid;post;location is
sent to LARVA, specifying the user id and that a location of this user has been disclosed.
The message is sent for each user mentioned in the post. As described before, there is one
LARVA monitor per user, which controls the policy automaton of each individual. When
the message is received the automaton of the user specified by uid will be updated.
This update will increase the value of the automaton variable posts , whose initial value
is 0. After sending the message, Diaspora* waits for the answer of the automaton, in
case an update of the privacy policies of the user is required. In case posts is less than 3,
there is no need to update the privacy policies, therefore the message do-nothing is
sent back. On the other hand, if posts is greater than 3, the automaton will move to the
state where the policy forbidding the disclosure of locations must be activated, thus it
will send the message disable-posting to Diaspora*. Note that it is not required
to specify the user id in the reply since Diaspora* initiated the communication.

As for the event midnight, Diaspora* sends the message midnight to the monitors
of all users every day at 23:59. If the monitors are in the state where the disclosure
of location is forbidden, they take the transition to the initial state. This transition
involves, firstly, resetting the variable posts to 0, and secondly, sending the message
uid;enable-posting;location back to Diaspora*, which removes the privacy
policy preventing the location of the user uid to be disclosed. If the automaton is already
in the initial state, it simply resets posts to 0.

6 Related work

The lack of a temporal dimension in privacy policies was already pointed out by Riesner
et al. [19]. In their survey, they show that there is no OSN that supports policies that
automatically change over time. The authors mention that Facebook allows users to
apply a default audience to all their own old posts, but there is a big gap between that
privacy policy and the family of evolving policies that we introduce in this paper.

Specifying and reasoning about temporal properties in multi-agent systems using
epistemic logic have been the subject of study for a long time. It began with the so called
interpreted systems (IS). In [7] Fagin et al. introduce IS as a model to interpret epistemic
formulae with temporal operators such as box and diamond. IS have been used for
security analyses of multi-agent systems. Though we do consider a temporal aspect, the
focus and objectives of our work are different from the work done in interpreted systems,
at least in what concerns the domain of application and the scope of the approach. In
our case, the policies themselves are the ones evolving based on events, rather than the
information on what is known to different agents at a given time.



14 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

Recent research has been carried out in extending IS to be able to reason about
past or future knowledge. In [2] Ben-Zvi and Moses extend Ki with a timestamp Ki,t,
making it possible to express properties such as “Alice knows at time 5 that Bob knew p
at time 3”, i.e., KAlice,5KBob,3 p. With the same essence but including real time, Woźna
and Lomuscio present TCTLKD [22], a combination of epistemic logic, CTL, a deontic
modality and real time. In these, and other related work, the intention is to be able to
model the time differences in the knowledge acquired by different agents due to delay
in communication channels. Although both our motivation as well as the application
domain differ from those of the aforementioned logics, it is worth mentioning that they
could be indeed useful to express certain real-time policies not currently supported in
our formalism.

Despite the richness of both timed epistemic logics, TCTLKD [22] and the epistemic
logic with timestamps [2], they would not be able to express recurrent policies as we
do. We are of course adding a separate layer beyond the power of the logical formalism
by using automata to precisely express when to switch from one policy to another. It
remains an interesting question what would be the expressivity of policy automata if we
consider an enhancement of PPF with timed extensions as done in some of the above
works in order to express richer (static) policies.

We have not defined here a theory of privacy policies (we have not given a formal
definition in terms of traces or predicates), nor have we developed a formal theory of
enforcement of privacy policies. To the best of our knowledge such a characterisation
does not exist for privacy policies. There is, however, work done in the context of security
policies, for instance the work by Le Guernic et al. on using automata to monitor and
enforce non-interference [11, 9] or by Schneider on security automata [20]. It could be
instructive to further develop the theoretical foundations of policy automata and relate it
to security automata and their successors (e.g., edit automata [13]).

7 Conclusions

We have presented a novel technique to define and implement evolving privacy policies
(i.e., recurrent policies that are (de)activated depending on events) for OSNs. We have
defined policy automata as a formalism to express about such policies. Moreover, we have
introduced the notion of parallel composition, subsumption and conflict between policy
automata and we have proved some of their properties. We have defined a translation
from policy automata to DATEs which enables their implementation by means of the
tool LARVA. Furthermore, we have describe how to connect LARVA monitors to the OSN
Diaspora* so that policy automata can effectively be implemented. In fact, the presented
approach would allow to plug in policy automata to any OSN with a built-in enforcement
of static privacy policies. Finally, as a proof-of-concept, we have implemented a prototype
of two evolving privacy policies.

The policy automata approach has some limitations. For instance, consider that Alice
enables the following policy “Only my friends can see my pictures during the weekend”.
Imagine that Alice and Bob are not friends. If Alice shares a picture on Saturday, Bob
will not have access to it. However, on Monday this policy would be deactivated. What
would be the effect of turning off this policy? It might be possible that Bob gains access



Evolving Privacy Policies for Social Networks 15

to all the pictures that Alice posted during the weekend, since no restrictions are specified
outside the scope of the weekend. In order to address this problem we might need a
policy language able to express real-time aspects, with an element of access memory
integrated within policy automata.

We are currently also extending policy automata with timing events such as timeouts.
This extension will be almost immediately implementable using LARVA since DATEs
already support timeouts in their transitions. Another line of work is to extend policy
automata with location events. Users normally access OSNs through mobile devices.
These devices could directly report the location of users to their policy automata, which
avoids having to constantly report users’ location to the OSN.

Acknowledgements This research has been supported by: the Swedish funding agency
SSF under the grant Data Driven Secure Business Intelligence, the Swedish Research
Council (Vetenskapsrådet) under grant Nr. 2015-04154 (PolUser: Rich User-Controlled
Privacy Policies), the European ICT COST Action IC1402 (Runtime Verification beyond
Monitoring (ARVI)), and the University of Malta Research Fund CPSRP07-16.

References

1. Alexa-ranking. http://www.alexa.com/topsites, accessed: 2016-05-11
2. Ben-Zvi, I., Moses, Y.: Agent-time epistemics and coordination. In: Logic and Its Applications,

LNCS, vol. 7750, pp. 97–108. Springer (2013)
3. Harvard student loses facebook internship after pointing out privacy flaws.

http://www.boston.com/news/nation/2015/08/12/harvard-student-loses-facebook-internship-
after-pointing-out-privacy-flaws/, accessed: 2016-05-11

4. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring of real-time
and contextual properties. In: 13th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’08). LNCS, vol. 5596, pp. 135–149. Springer-Verlag (2009)

5. Colombo, C., Pace, G.J., Schneider, G.: LARVA –A Tool for Runtime Monitoring of Java
Programs. In: 7th IEEE International Conference on Software Engineering and Formal
Methods (SEFM’09). pp. 33–37. IEEE Computer Society (2009)

6. Diaspora*. https://diasporafoundation.org/, accessed: 2016-05-11
7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge, vol. 4. MIT

press Cambridge (2003)
8. PPF Diaspora*. Test pod: https://ppf-diaspora.raulpardo.org. Code: https://github.com/

raulpardo/ppf-diaspora, 2016
9. Guernic, G.L.: Automaton-based confidentiality monitoring of concurrent programs. In: 20th

IEEE Computer Security Foundations Symposium (CSF’07). pp. 218–232 (2007)
10. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: It’s complicated. In: Pro-

ceedings of the Eighth Symposium on Usable Privacy and Security. pp. 9:1–9:15. SOUPS
’12, ACM, New York, NY, USA (2012)

11. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-Based Confidentiality
Monitoring, pp. 75–89. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

12. Lenhart, A., Purcell, K., Smith, A., Zickuhr, K.: Social media & mobile internet use among
teens and young adults. Pew Internet & American Life Project (2010)

13. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time
security policies. International Journal of Information Security 4, 2–16 (2005)



16 R. Pardo and C. Colombo and G.J. Pace and G. Schneider

14. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook privacy settings:
User expectations vs. reality. In: Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference. pp. 61–70. IMC ’11, ACM (2011)

15. Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an online social
network. In: IEEE International Conference on Pervasive Computing and Communication
Workshops. pp. 340–345. (PERCOM Workshops’12) (2012)

16. Madejski, M., Johnson, M.L., Bellovin, S.M.: The failure of online social network privacy
settings. Columbia University Computer Science Technical Reports (2011)

17. Pardo, R.: Formalising Privacy Policies for Social Networks. Department of Computer Science
and Engineering, Chalmers University of Technology (2015), pages 102. Licentiate thesis.

18. Pardo, R., Schneider, G.: A formal privacy policy framework for social networks. In: SEFM’14.
LNCS, vol. 8702, pp. 378–392. Springer (2014)

19. Riesner, M., Netter, M., Pernul, G.: An analysis of implemented and desirable settings for
identity management on social networking sites. In: Availability, Reliability and Security
(ARES), 2012 Seventh International Conference on. pp. 103–112 (Aug 2012)

20. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

21. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.A., Sussman, G.J.:
Information accountability. Communincations of the ACM 51(6), 82–87 (2008)

22. Woźna, B., Lomuscio, A.: A logic for knowledge, correctness, and real time. In: Computational
Logic in Multi-Agent Systems, LNCS, vol. 3487, pp. 1–15. Springer (2004)


