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On the Deidability of the ReahabilityProblem for GSPDIsGerardo ShneiderDepartment of Informatis, University of OsloPO Box 1080 Blindern, N-0316 Oslo, NorwayE-mail: {gerardo at i�.uio.no}AbstratPolygonal hybrid systems (SPDIs) are a sublass of hybrid sys-tems whose dynamis is de�ned by onstant di�erential inlusions, forwhih the reahability problem is deidable. The deidability result isbased, among other things, on the fat that a trajetory annot enterand leave a given region through the same edge. An SPDI satisfy-ing the above restrition is said to have the goodness property. In aprevious work we have given a misleading proof sketh of deidabilityof reahability for SPDIs when relaxing goodness. In this work wegive a ounter-example to suh proof and we give an algorithm forsemi-deiding reahability of suh lass of systems.1 IntrodutionAn interesting and still deidable (w.r.t reahability) lass of hybrid systemsis the so-alled Polygonal Hybrid System (SPDI for short, [ASY01, ASY07,Sh02℄) whih is a sublass of hybrid systems on the plane whose dynamisis de�ned by onstant di�erential inlusions. SPDIs are a generalization ofPCDs (deterministi systems with Piee-wise Constant Derivatives) for whihit has been shown that the reahability problem is deidable for the pla-nar ase [MP93℄ but undeidable for three and higher dimensions [AMP95℄.Slight extensions of suh deidable lasses have been proved to be undeid-able or equivalent to a problem for whih deidability or undeidability isnot known [AS02, MP05℄.The onstrutive proof for deiding reahability on SPDI given in [ASY01℄(see also [ASY07℄ and [Sh02, Chap. 5℄) relies, among other things, on the1



fat that SPDIs have the goodness property, i.e. the dynamis of any region ofthe SPDI (loation of the orresponding automaton) does not allow a traje-tory to traverse any edge of the polygon de�ning the region in both diretions.Tehnially this means that the diretor vetor of eah edge annot be ob-tained as a positive linear ombination of the vetors de�ning the dynamis.An SPDI without the goodness property is alled General SPDI �or GSPDIfor short. We have wrongly laimed in [Sh02, Chap. 9℄ that the reahabilityproblem for GSPDI is deidable. The proof sketh was onduted by provingthat any GSPDI an be redued to a set of SPDIs, preserving reahabil-ity. The proof sketh, as presented, is not ompletely wrong but inomplete,letting the deidability onlusion to be still inonlusive. Unfortunatelywe have disovered suh mistake in September 2002, just few months afterthe �nal print of the thesis. We onsidered it was not worth publishing arefutation of the result at that moment sine there was no researh beingonduted in that diretion then. We revived our interest on the subjetagain only reently due to the publiation of the paper [MP05℄, in whihthe frontier between deidable and undeidable hybrid systems is revisited,to re�ne previous result given in [AS02℄. The deidability of reahability ofGSPDIs would have ontributed to narrow the undeidability frontier; withthe result presented here we let it still open, unfortunately.In this paper we provide a ounter-example to the laim of the deidability ofthe reahability problem for GSPDIs given in [Sh02, Chap. 9℄, whih remainthus an open problem. We prove, indeed, that GSPDI reahability annotbe redued to SPDI reahability. We rephrase the results given in [Sh02℄to give a semi-deidable algorithm for solving the reahability problem forGSPDIs.The paper is organized as follows. In next setion we explain informally theproblems arising when relaxing goodness while in Setion 3 we give somepreliminaries, providing useful notation and de�nitions and realling the def-inition of SPDI. In Setion 4 we present GSPDIs. Setion 5 is onerned withthe analysis of trajetories, providing some results needed to establish thesemi-deision algorithm for reahability presented in Setion 6. We onludein the last setion.2 On GoodnessIn this setion we disuss informally why goodness is good for deiding thereahability problem of SPDI and what are the problems when relaxing it.More formal de�nitions will be given in Setion 3.See Fig. 1 for an example of a good and a 'bad' region (here 'bad' stands2



for a region not satisfying the goodness riteria). In the left side of the�gure we an see a good region, where the two vetors a and b determinethe impossibility of a trajetory to enter and leave the region P through thesame edge of the polygon delimiting the region. On the other hand, the�gure on the right shows a bad region: Both e2 and e5 an be rossed in bothdiretions by a trajetory entering and leaving P .
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αFigure 1: a) A good region. b) A bad region.2.1 Why Goodness is Good?The algorithm presented in [Sh02℄ for deiding reahability on SPDI heavilydepends on the pre-proessing of trajetory segments to guarantee that itis possible to list all the possible sets of signatures, i.e., those sequenesof edges of the SPDI traversed by all the possible trajetories between twopoints. This is of ourse not possible in general as there are in�nitely manysuh trajetories. However, a qualitative analysis allows to prove that indeedthere are a �nite number of types of signatures, that are kind of abstratsignatures that preserve the reahability property.Brie�y, the above is ahieved by performing the following steps.1. Simpli�ation of trajetory segments: straightening them and removingself-rossings. Given an arbitrary trajetory segment from one point toanother, we show how to get a pieewise onstant derivative trajetorysegment without self-rossing.2. Abstration of trajetory segments into signatures, onsidering the se-quene of traversed edges. This result is based on the Poinaré map [HS74,3



NS60℄, that relates n-dim ontinuous-time systems with (n − 1)-dimdisrete-time systems.3. Fatorization of signatures in a onvenient way, having only sequenesof edges and simple yles. This fatorization allows to have a nierepresentation of signatures.4. Abstration of fatorized signatures into types of signatures, that aresignatures without taking into aount the number of times eah simpleyle is iterated.Many of the lemmas for proving that the above provides a �nite number oftypes signatures ritially depend on the goodness assumption, whih propa-gate this dependeny to the onstrutive proof given for deiding reahabilityof SPDIs.2.2 Why Relaxing Goodness is not so Good?The main question now is, how muh do we need to depend on the goodnessassumption to prove deidability of reahability of SPDIs? In other words,let us onsider the new lass of polygonal hybrid systems, GSPDI, obtainedby relaxing goodness in SPDI. Is reahability still deidable? From the abovedisussion we are let with the following two alternatives:1. Adapt the proofs of deidability for SPDIs to GSPDIs. This wouldimply to restate the proofs to make them independent of the goodnessassumption.2. Provide a ompletely new deidability proof for GSPDI. This will prob-ably need to use di�erent tehniques and results than the ones used forSPDIs.The �rst alternative above seems the most straightforward and easy to do.However, as we will show later it is not possible to redue GSPDI reahabilityto SPDI reahability. This is done by proving that it is not in general possibleto simplify ertain trajetories entering and leaving a given region through thesame edge, to trajetories behaving as in SPDIs. One of the main problemswhen relaxing goodness is that a region annot be bi-partitioned anymore intotwo semi-planes were all the edges in one semi-plane an be traversed only inone diretion, w.r.t. the region, and all the edges in the other semi-plane anbe traversed only in the other diretion. That is, the goodness assumptionpermit a ertain 'ontiguity' of entry edges and exit edges belonging to two4



disjoint sub-regions (see Fig. 8). Some lemmas and proofs of soundness ofthe reahability algorithm depend on this ontiguity. If we relax goodness,we should be able to re-prove all suh results without assuming the ontiguityof entry and exit edges.This let us with the seond alternative. Unfortunately, to date we have notsueeded in providing a proof of deidability (nor of undeidability) to thereahability problem on GSPDIs.On the other hand and as stated in the introdution, we will show that wean relax the goodness assumption as to give a terminating semi-deisionalgorithm for reahability analysis on GSPDIs.3 PreliminariesThis setion is more tehnial, realling the main de�nitions and oneptsneeded to understand the rest of the paper. For a more detailed presentationsee [ASY07, Sh02℄.3.1 SPDILet a = (a1, a2),x = (x1, x2) ∈ R
2 and α, β ∈ R. The inner produt of twovetors a = (a1, a2) and x = (x1, x2) is de�ned as a · x = a1x1 + a2x2. Wedenote by x̂ the vetor (x2,−x1) obtained from x by rotating lokwise bythe angle π/2. Notie that x · x̂ = 0.An angle ∠

b

a
on the plane, de�ned by two non-zero vetors a,b is the set ofall positive linear ombinations x = α a+β b, with α, β ≥ 0, and α+β > 0.We an always assume that b is situated in the ounter-lokwise diretionfrom a.De�nition 1. A polygonal di�erential inlusion system (SPDI) is de�nedby giving a �nite partition P of the plane into onvex polygonal sets (alledregions), and assoiating with eah P ∈ P a ouple of vetors aP and bP .Let φ(P ) = ∠
bP
aP
, we have that for eah x ∈ P , ẋ ∈ φ(P ).Let E(P ) be the set of edges of P . We say that e ∈ E(P ) is an entry of P iffor all x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P for some ǫ > 0. We say that

e is an exit of P if the same ondition holds for some ǫ < 0. We denote byIn(P ) ⊆ E(P ) the set of all entries of P and by Out(P ) ⊆ E(P ) the set ofall exits of P .Assumption 1. All the edges in E(P ) are either entries or exits, that is,
E(P ) = In(P ) ∪ Out(P ). We say then that all the regions in an SPDI aregood or that they have the goodness property.5



Example 1. In Fig. 1-(a), region P (with φ(P ) = ∠
b

a
) is good, sine all areentry or exit edges. Fig. 1-(b) shows a region that is not good: edges e2 and

e5 are not in In(P ) ∪Out(P ).A trajetory segment of an SPDI is a ontinuous funtion ξ : [0, T ] → R
2whih is smooth everywhere exept in a disrete set of points, and suh thatfor all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). Thesignature, denoted Sig(ξ), is the ordered sequene of edges traversed by thetrajetory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If

T =∞, a trajetory segment is alled a trajetory.The following is a very simple example of an SPDI: a swimmer trying toesape from a whirlpool in a river.Example. The dynamis ẋ of the swimmer around the whirlpool is ap-proximated by the piee-wise di�erential inlusion de�ned as follows. Thezone of the river nearby the whirlpool is divided into 8 regions R1, . . . , R8. Toeah region Ri we assoiate a pair of vetors (ai,bi) meaning that ẋ belongsto their positive hull: a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2
), a3 = (−1, 11

60
) and

b3 = (−1,−1

4
), a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1),

a7 = b7 = (1, 0), a8 = b8 = (1, 1). The orresponding SPDI is illustrated inFig. 2.
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3.1.1 Suessors and predeessorsGiven an SPDI, we �x a one-dimensional oordinate system on eah edge torepresent points laying on edges. For notational onveniene, we will use e todenote both the edge and its one-dimensional representation. Aordingly,we write x ∈ e or x ∈ e, to mean �point x in edge e with oordinate x in theone-dimensional oordinate system of e�. The same onvention is applied tosets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e)and to trajetories (e.g., �ξ starting in x� or �ξ starting in x�).Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e, Succee′(I) isthe set of all points in e′ reahable from some point in I by a trajetorysegment ξ : [0, t] → R
2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Given

I = [l, u], Succee′(I) = F (I ∩ S)∩ J , where S and J are intervals, F ([l, u]) =
〈fl(l), fu(u)〉 and fl and fu are a�ne funtions (a funtion f : R→ R is a�nei� f(x) = ax + b with a > 0).For I ⊆ e′, Preee′(I) is the set of points in e that an reah a point in I by atrajetory segment in P . We have that: Preee′ = Succ−1

ee′ and Preσ = Succ−1

σ .3.1.2 Qualitative analysis of simple edge-ylesLet σ = e1 · · · eke1 be a simple edge-yle, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k.Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉.Assumption 2. None of the two funtions fl, fu is the identity.Let l∗ and u∗ be the �x-points1 of fl and fu, respetively, and S∩J = 〈L, U〉.It an be shown that a simple yle is of one of the following types:STAY. The yle is not abandoned neither by the leftmost nor the rightmosttrajetory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost trajetory exits the yle through the left (onsequentlythe leftmost one also exits) or the leftmost trajetory exits the ylethrough the right (onsequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost trajetory exits the yle through the left andthe rightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost trajetory exits the yle (through the left) butthe rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .1The �x-point x∗ is omputed by solving a linear equation f(x∗) = x∗, whih an be�nite or in�nite. 7



EXIT-RIGHT. The rightmost trajetory exits the yle (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.The lassi�ation above provides useful information about the qualitativebehavior of trajetories. Any trajetory that enters a yle of type DIE willeventually quit it after a �nite number of turns. If the yle is of type STAY,all trajetories that happen to enter it will keep turning inside it forever.In all other ases, some trajetories will turn for a while and then exit, andothers will ontinue turning forever. This information is ruial for solvingthe reahability problem for SPDIs.To �nish this setion we reall the representation theorem for SPDIs thatallows to fatorize the signatures (step 3 in Setion 2.1) in a onvenient way.Given a sequene w, ε denotes the empty sequene whereas first(w) and
last(w) are the �rst and last elements of the sequene respetively. An edgesignature σ an be expressed as a sequene of edges and yles of the form
r1s

k1

1 r2s
k2

2 . . . rns
kn
n rn+1, where1. For all 1 ≤ i ≤ n + 1, ri is a sequene of pairwise di�erent edges;2. For all 1 ≤ i ≤ n, si is a simple yle (i.e., without repetition of edges)repeated ki times;This is summarized by the following representation theorem for SPDIs thatnot only guarantees the existene of the above representation for SPDIs butalso provides a onstrutive way of doing so [Sh02, Theorem 17℄.Theorem 1. Given an SPDI, let σ = e1 . . . ep be an edge signature, then itan always be written as σA = r1s

k1

1 . . . rns
kn
n rn+1, where for any 1 ≤ i ≤ n+1,

ri is a sequene of pairwise di�erent edges and for all 1 ≤ i ≤ n, si is a sim-ple yle (i.e., without repetition of edges).This representation of signatures is the base to obtain types of signatures(step 4 in Setion 2.1) with the following good properties [Sh02, Lemma20℄.Lemma 2. Given an SPDI, let σ = e0 . . . ep be a feasible signature, then itstype, type(σ) = r1, s1, . . . , rn, sn, rn+1 satis�es the following properties.
P1 For every 1 ≤ i 6= j ≤ n + 1, ri and rj are disjoint;
P2 For every 1 ≤ i 6= j ≤ n, si and sj are di�erent.The above is the base for the argument on the �niteness of di�erent typesof signatures to take into aount in the reahability algorithm and thus totermination of SPDI reahability. 8



4 GSPDIThe goodness restrition (Assumption 1) was originally introdued to simplifytreatment of trajetories to guarantee, among other things, that eah regionan be partitioned into entry and exit edges in an ordered way, fat used inthe proof of deidability of the reahability problem. We will study in thissetion what happens when goodness is relaxed. First notie that withoutgoodness there are edges that are neither of entry nor of exit as shown inFig. 1. This naturally leads to the following de�nition.De�nition 2. An edge e ∈ P is an inout edge of P if e is neither an entrynor an exit edge of P .As already explained in previous setions, the above de�nition is the base forobtaining a new lass of polygonal hybrid systems whih generalizes SPDI.De�nition 3. An SPDI without the goodness restrition is alled a generalSPDI (GSPDI).Thus, in GSPDIs there are three kinds of edges: inouts, entries and exits.Self-rossing of trajetory segments of SPDIs an be eliminated whih allowus to onsider only non-rossing trajetory (segments). The proof given in[Sh02, Chap. 4, Se. 4.2.2℄ an be extended to deal with the ase whenthe self-rossing trajetories involve inout edges, so the result still holds forGSPDIs. Thus in what follows we will onsider only trajetory segmentswithout self-rossings.Notie that on GSPDIs a trajetory an �interset� an edge at an in�nitenumber of points beause it an slide at it. Thus, a trae is not anymore asequene of points but rather a sequene of intervals.De�nition 4. The trae of a trajetory ξ is the sequene trace(ξ) = I0I1 . . .of the intersetion intervals of ξ with the set of edges, that is, Ii ⊆ (ξ ∩E).A point interval I = [x,x] will be sometimes written as x whenever noonfusion might arise.De�nition 5. An edge signature (or simply a signature) of a GSPDI isa sequene of edges. The edge signature of a trajetory ξ, Sig(ξ), is theordered sequene of traversed edges by the trajetory segment, that is, Sig(ξ) =
e0e1 . . ., with trace(ξ) = I0I1 . . . and Ii ⊆ ei. The region signature of ξ isthe sequene RSig(ξ) = P0P1 . . . of traversed regions, that is, ei ∈ In(Pi).Notie that in many ases the intervals of a trae are in fat points. Wesay that a trajetory with edge signature Sig(ξ) = e0e1 . . . ei . . . and trae
trace(ξ) = I0I1 . . . Ii . . . interval-rosses edge ei if Ii is not a point.9
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Figure 3: (a): A proper inout edge; (b): A sliding edge.Given a trajetory segment, we will make the di�erene between proper inoutedges and sliding edges.De�nition 6. Let ξ be a trajetory segment from point x0 ∈ e0 to xf ∈ ef ,with edge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P ) be an edge of P .We say that ei is a sliding edge of P for ξ if ξ interval-rosses ei, otherwise
e is said to be a proper inout edge of P for ξ.We say that a trajetory segment ξ slides on an edge e if e is a sliding edge of
P for ξ and ξ is said to be a sliding trajetory if there is at least one slidingedge e ∈ Sig(ξ).Example 2. In Fig. 3-(a), e is a proper inout edge. Edge e on Fig. 3-(b) isa sliding edge.5 Simpli�ation of GSPDI's Trajetory SegmentsIn this setion we show that in many ases it is possible to simplify trajetorysegments eliminating inout edges, but not always. We �rst start by showingthat the good properties of the representation theorem for SPDIs are notvalid any longer for GSPDIs, explaining why inouts edges are not desirablein a reahability analysis.Proposition 1. Property P2 of the representation theorem for SPDIs (Lemma2) does not hold in general for GSPDIs.Proof: Let ξ be a trajetory with signature Sig(ξ) = σ = e0 . . . ei . . . en . . .of a given GSPDI. The proposition states that it is not possible in generalto write σ in the form σA = r1s
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n rn+1 with the properties stated10



in Lemma 2. The proof is done by providing a ounter-example. A typialounter-example should allow to obtain a signature onsisting of a lokwisespiral followed by a ounter-lokwise spiral (or vie-versa) and then bak tothe �rst spiral. In suh a ase it is possible to �nd two simple yles whihare repeated in the type of signature. Let us onsider the GSPDI of Fig. 4.To let it simple we do not write down the dynamis of the regions and weassume that they are as to allow the segments of trajetories shown in thepiture to be well-de�ned. In suh a GSPDI it is possible to obtain the follow-ing type of signature: r1s1r2s2r3s3 . . ., where s1 = (abcd), s2 = (dcba), and
s3 = (abcd). Sine s1 = s3, then property P2 of Lemma 2 is not satis�ed.
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dFigure 4: Counter-example for Proposition 1.The following lemma presents some typial ases where it is possible to elim-inate proper inout edges.Lemma 3. Let ξ be a trajetory segment x0 ∈ e0 to xf ∈ ef with edgesignature Sig(ξ) = e0 . . . ei . . . en. If ei is a proper inout edge then in someases there exists a trajetory segment ξ′ from x0 to xf that traverses ei inat most one sense (that is, ei is either an entry or an exit, but no both).Proof Sketh: In Fig. 5-(a) we illustrate a typial ase where edge ei is aproper inout edge. After a straightforward algebrai vetor manipulation, on11



the same lines of elimination of self-rossings, the trajetory segment shownin Fig. 5-(a') is obtained.
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(a')x0 Figure 5: Inout ase.Note that the above does not establish ompleteness of a redution fromGSPDIs into SPDIs reahability sine there are ases where the above is notpossible. We have then the following result.Proposition 2. Given a GSPDI, assume there exists a trajetory segmentfrom points x0 ∈ e0 to xf ∈ ef , traversing inout edges in both diretions.Then it is, in general, not possible to �nd a trajetory segment whose edgesignature ontains no proper inout edges (traversed in both diretions), be-tween them.Proof: The GSPDI of Fig. 6 presents a typial example of an inout edge (e2)whih annot be diretly eliminated as to preserve that xf is reahable from
x0. To keep the explanation simple we do not present here a formal GSPDIas ounter-example. The example, however, sheds some light on the kind ofGSPDI regions serving as ounter-examples. It su�es to take any trajetorywith a dynamis suh that the angle is slightly less than 180 degrees. Thetrajetory must traverse an inout edge following the b vetor and enters intothe region by following the a vetor. The trajetory must not ross itself.We show now how to eliminate sliding edges.Lemma 4. Let ξ be a trajetory segment x0 ∈ e0 to xf ∈ ef with edgesignature Sig(ξ) = e0 . . . ei . . . en. If ei is a sliding edge for ξ then there existsa trajetory segment ξ′ from x0 to xf that does not slide on edge ei.12
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Figure 6: A GSPDI with a non-eliminating inout edge.Proof Sketh: Sliding edges an arise in four di�erent ases (without takinginto aount the symmetri ases); they are shown in Fig. 14-(a) to (d). Theorresponding primed �gures (Fig. 14-(a') to (d')) show the transformationdone in order to avoid sliding on edge e. The reason why the above trans-formation is possible is beause in all the ases the new obtained segment oftrajetory an be expressed as a positive linear ombination of two suitableexisting segments of trajetory. Suh two segments are the sliding segment,and another segment of trajetory with starting point at the beginning orthe end of the sliding segment.As a onsequene we have the following result.Proposition 3 (Existene of a non-sliding trajetory). If there exists a slid-ing trajetory segment from points x0 ∈ e0 to xf ∈ ef then there always existsa non-sliding trajetory segment between them.Proof: By indution on the number n of sliding edges of the signature ofthe trajetory segment using Lemma 4 in the indution step.We usually eliminate �rst proper inout edges (when possible) and next slid-ing. In fat, the number of sliding edges is not guaranteed to derease ifsliding edges are eliminated before proper inout edges as shown in the fol-lowing example.Example 3. In Fig. 7-(a) a trajetory segment that slides at edge e′ is shown.After eliminating the sliding at edge e′, a new sliding edge is introdued (e).This is shown in Fig. 7-(b). However, if proper inout edges are eliminated13



�rst, we do not introdue new proper inout edges as shown in part () of thesame �gure.
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Figure 7: Elimination order of inout edges.Remark. Sliding is not easy to treat in general sine an edge always belongto two di�erent regions with di�erent dynamis. Thus a trajetory may be'allowed' to slide by one of the dynamis but not by the other. We do notanalyze this in more detail, for our purposes we assume that at an inoutedge a trajetory an slide if at least one of the dynamis allows so. Thisassumption does not a�et the reahability analysis.About the ordering between edges. We �nish this setion with aninformal disussion about the importane of the 'ontiguous' order betweenentry and exit edges on SPDIs.In SPDIs edges of a region an be bi-partitioned into entry and exit edges ina ontiguous way (see Fig. 8) having as a onsequene an ordering betweenedges. This is not longer the ase in GSPDIs.
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Figure 8: Ordering of edges on an SPDI (all the edges e satisfy â e > 0).
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First of all, notie that the ordering of edges on an SPDI were hosen inorder to preserve the `positive a�nity' (and hene the monotoniity) of thesuessor funtions. Given a region R with di�erential inlusion ∠
b

a
, let e bean entry edge and e1 and e2 two exit edges of R. For e we hose the diretion(given by a diretor vetor e) that satis�es the inequality â e > 0 (see Fig.11). The same for e1 and e2. As a onsequene we obtain an ordering likethe one shown in Fig. 8.Note that on a GSPDI (see Fig. 9(a)), the property that for any edge e,

â e > 0 is not longer valid sine an edge an be of entry and of exit and thenthe ordering an hange. In spite of that, one an inout edge is 'onverted'into an entry (or exit) then we an have the notation of onsidering theordering of entry edges going ounter-lokwise and lokwise for exit edges(see Fig. 9(b)).
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Figure 9: (a) A GSPDI; (b) Ordering after �xing input and output edges.Even though the de�nition of edge and region signatures as well as edge yleontinue to hold, it is not the ase for region yle. We an have a regionsignature P1 · · ·Pi · · ·PkP1 that is not a region yle. The reason is that inGSPDIs a trajetory an enter a region through two di�erent edges withoutforming a yle.Thus we have that a region signature P1 · · ·Pi · · ·PkP1 is a region yle if theedge signature e1 · · · eke1, with ei ∈ Out(Pi) for all 1 ≤ i ≤ k, forms an edgeyle.In Fig. 10 the following is a region yle: P1P2P3P4P2P5P1. Notie that
P2P3P4P2 is region yle for SPDIs but not for the given GSPDI.15



P2

P3

P4

P1

P5

e1

e2

e3

e4

e5

e6

Figure 10: A region yle.6 Reahability Analysis for GSPDIsIn this setion we `topologially' rephrase and prove the results of [Sh02,Chap. 4,5℄ that use the ontiguity between entry and exit edges in theirproofs. We also re-prove soundness of Exit-LEFT and Exit-STAY algorithmsand at the end we give a semi-deision algorithm for GPSDI reahability. Wehave informally explained in Setion 2.2 why we need to do so.6.1 Proof of Lemmas without using the Contiguity As-sumptionThe only results that use the ontiguity order between entry and exit edgesare Lemmas 20, Lemma 26 and Corollary 27 of [Sh02℄. Lemma 20 has beenrepeated here in Setion 3 as Lemma 2, whih as we have seen does not holdin general for GSPDIs (Proposition 1). However, after �xing all the edges aseither of entry or exit, we an prove the result holds sine it behaves as anSPDI, modulo the ontiguity of entry and exit edges.We prove then these three results without using the order between entry andexit edges. We restate Lemma 2 ([Sh02, Lemma 20℄) for property P2, forthe ase when GPSDI is transformed as to �x inout edges as entries or exits.Lemma 5. Given a GSPDI where edges has been �xed as entry or exit, let
σ = e0 . . . ep be a feasible signature, then its type, type(σ) = r1, s1, . . . , rn,16
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âFigure 11: (a) â e > 0; (b) â e < 0.
sn, rn+1 satis�es the following property, P2: For every 1 ≤ i 6= j ≤ n, si and
sj are di�erent.Proof: In order to prove property P2 we prove that, given a simple yle
si = e′, . . . , e, the sequene of edges ee′ annot our after leaving si (hene itannot our in any other simple yle sj , with 1 ≤ i < j ≤ n). After yling
ki times yle si is abandoned by edge e (guaranteed by onstrution). Let
P be a region s.t. e ∈ In(P ) and onsider the unfolding of the last iterationand its ontinuation (see Fig. 12-(a)):

. . . , e, e′, . . . , e, e′′, . . .where e′′ = first(ri+1), e ∈ In(P ) and e′, e′′ ∈ Out(P ) (e′ 6= e′′). Let x2 bethe last point visited on edge e before leaving yle si and x′′
2 be the �rst pointon edge e′′ after leaving si (see Fig. 12-(b)). Segment x2x
′′
2 of the trajetorysegment divides region P into two subregions P1 and P2 and edge e into twosegments elx2 and x2eu. By the non-rossing hypothesis (and monotoniityon edges) after leaving si the only aessible part of edge e is the segment

x2eu ∈ e. By Jordan's urve theorem the only way to reah edge e′ from anypoint in x2eu ∈ e is by rossing x2x
′′
2 or by rossing one of the edges of region

P2. The �rst ase is not possible sine it would ontradit the hypothesis ofnon-rossing trajetory and in the seond ase the sequene ee′ would notbelong to the trajetory segment.Remark. Note that for our purposes it is irrelevant whether property P1holds or not, sine it does not a�et the �niteness argument. This is due to17
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Figure 12: (a): Simple yle si and its ontinuation through edge e; (b) Edge
e′ annot be reahed from point x3 without interseting x2x

′′
2the fat that a type of signature is �nite if the number of simple yles arenot repeated, whih is stated in P2.In what follows we use the following notation. Whenever we partition thespae into two regions PL and PR by the line de�ned by a segment of line

xy, PL is the semi-spae of all the points that are a left rotation of ~xy and
PR is the semi-spae orresponding to the points that are a right rotation ofthe same vetor. With f(x) ↓ we mean that f is de�ned at x and f(x) ↑ willmean that f is unde�ned at x.Next we will (topologially) rephrase [Sh02, Lemma 26℄ and [Sh02, Corol-lary 27℄ and we prove them both.Lemma 6. Let P be a region, e ∈ In(P ), e1, e2 ∈ Out(P ), 〈li, ui〉 be anysubinterval of 〈el

i, e
u
i 〉 and fi(x) = F c

e,ei
(x).1. Let P be partitioned into two regions PL and PR by the line de�ned by

xl1, then the following holds: if e2 ∈ PL, f2(x) ↓ and l1 < f1(x) then
u2 < f2(x);2. Let the plane be partitioned into two subspaes PL and PR by the linede�ned by xl2, then the following holds: if e1 ∈ PR, f1(x) ↓ and f2(x) <
u2 then f1(x) < l1.Proof : 18
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Figure 13: Lemma 6'-1. (a) When f l
2(x) ↓; (b) The ase f l

2(x) ↑.1. Remember that the line de�ned by e2 is ordered and that u2, A and
f2(x) belongs to it. We have then that e2 ∈ PL (and hene u2 ∈ PL)and that f2(x) ∈ PR (by onstrution of the partition). We have thenthat u2 < A and A < f2(x), that implies u2 < f2(x). See Fig. 13(a).2. This ase is symmetri to the previous one.Corollary 7. Let P be a region, e ∈ In(P ), e1, e2 ∈ Out(P ), fi(x) = F c

e,ei
(x)be an a�ne funtion and Fi(〈x, y〉) = Fi(〈x, y〉∩Si)∩Ji be a trunated a�nemulti-valued funtion (with Fi = [f l

i , f
u
i ] and Ji = 〈Li, Ui〉).1. Let P be partitioned into two regions PL and PR by the line de�nedby xL1, then the following holds: If e2 ∈ PL and L1 < f l

1(x) then
F2(〈x, y〉) = ∅;2. Let P be partitioned into two regions PL and PR by the line de�nedby xL2, then the following holds: if e1 ∈ PR and fu

2 (y) < U2 then
F1(〈x, y〉) = ∅.Proof: 19



1. If f l
2(x) is unde�ned, then it is obvious that F2(〈x, y〉) = ∅. If f l

1(x) isde�ned, then the result follows diretly from Lemma 6-1 and de�nitionof Fi(〈x, y〉).2. Symmetri to the above ase using Lemma 6-2.6.2 Soundness of Exit-STAY and Exit-LEFTWe prove now soundness of the Exit-STAY and Exit-LEFT algorithm whoseproofs rely on the results proved in the previous setion.Let A = Succb

s (L) and onsider the line de�ned by AL. This line partitionthe spae into PL and PR as before.Exit-STAY funtion ExitSTAY (I, s, ex)
←− ∅Soundness By hypothesis, L < l∗ < u∗ < U . Hene, for all i, Ĩi = 〈l̃i, ũi〉 ⊆

〈L, U〉, hene Ii = Ĩi and by Corollary 7 we have that Succi
s,ex(I) = ∅.Termination Trivial.Exit-LEFT: funtion ExitLEFT (I, s, ex)

←− Succs,ex(Succs,f(〈L, max{u, u∗}〉))Soundness By hypothesis, l∗ < L < u∗ ≤ U . Thus, there exists a naturalnumber n s.t. l̃n ≤ L and for all i, ui = ũi ≤ U . Let's onsider thefollowing two ases:1. If ex ∈ PR then Ex = ∅ (by de�nition of Exit-LEFT) and Succs,ex(Ii) =
∅ for any i (by Corollary 7-2), so Succs,ex(Succs,f(〈L, max{u, u∗}〉)) =
∅;2. If ex ∈ PL, we onsider two ases:(a) If u < u∗ then for all i, ui = ũi ≤ u∗ and then ∪m>0Succm

s,f(I) =
Succs,f(L, u∗), thus Ex = Succs,ex(Succs,f(L, u∗));20



(b) If u∗ < u then for all i, ui = ũi ≤ u and ∪m>0Succm
s,f(I) =

Succs,f(L, u). Consequently, Ex = Succs,ex(Succs,f(L, u));From both ases we have that Ex = Succs,ex(Succs,f(〈L, max{u, u∗}〉)).Termination Trivial.6.3 A semi-deision algorithm for reahability analysisof GSPDIsFrom the above results we have that the main algorithm for reahability maybe applied to GSPDIs after performing ertain pre-proessing steps.Before presenting a sound (but inomplete) algorithm for reahability analy-sis of GSPDIs we need the following notation. Given a GSPDI H, we denoteby Hred = {H1, . . . , Hn} the set of all the SPDIs obtained after �xing all theinout edges of H as inputs or outputs, onsidering all the possible permuta-tions.The reahability algorithm for a GSPDI H, Reah(H,x0,xf ), onsists of thefollowing steps:1. Detet all the inout edges;2. Generate the set of SPDIs Hred = {H1, . . . , Hn};3. Apply the reahability algorithm for SPDIs to eah Hi (1 ≤ i ≤ n).4. If there exists at least oneHi ∈ Hred suh thatReah(Hi,x0,xf) = Yesthen Reah(H,x0,xf) = Yes, otherwise we do not know.We have then the following result about termination of GSPDI reahability.Lemma 8. Reah(H,x0,xf ) always terminate.Proof: The result follows from the termination of steps 1 and 2 of the abovealgorithm, as well as from that of Reah(Hi,x0,xf) (for all Hi ∈ Hred,
1 ≤ i ≤ n).We �nish this setion with the main result of our paper, whih follows from allthe previous results, stating that we an semi-deide reahability for GSPDIs.Theorem 9. Given a GSPDI H, if Reah(Hi,x0,xf) = Yes for some Hi ∈
Hred, then Reah(H,x0,xf ) = Yes. On the other hand, if for all Hi ∈ Hred,Reah(Hi,x0,xf) = No, then Reah(H,x0,xf ) is inonlusive.21



Proof: Termination is guaranteed by Lemma 8. Soundness follows fromsoundness of the algorithm for SPDIs [Sh02, Se. 5.2℄, inluding the newproof given in Setion 6.2 onsidering the use of non-ontiguous entry and exitedges. The fat that reahability is inonlusive wheneverReah(Hi,x0,xf) =
No for all Hi ∈ Hred follows from Proposition 2.7 Final DisussionIn this work we have provided a ounter-example to a previous proof of thedeidability of the reahability problem for GSPDIs given in [Sh02, Chap.9℄, whih remain thus an open problem. We have rephrased the results givenin above mentioned work in order to give a semi-deidable algorithm forsolving the reahability problem for suh lass of systems.Referenes[AMP95℄ E. Asarin, O. Maler, and A. Pnueli. Reahability analysis ofdynamial systems having pieewise-onstant derivatives. TCS,138:35�65, 1995.[AS02℄ E. Asarin and G. Shneider. Widening the boundary between de-idable and undeidable hybrid systems. In CONCUR'2002, vol-ume 2421 of LNCS, pages 193�208, Brno, Czeh Republi, August2002. Springer-Verlag.[ASY01℄ E. Asarin, G. Shneider, and S. Yovine. On the deidabilityof the reahability problem for planar di�erential inlusions. InHSCC'2001, number 2034 in LNCS, pages 89�104, Rome, Italy,2001. Springer-Verlag.[ASY07℄ Eugene Asarin, Gerardo Shneider, and Sergio Yovine. Algo-rithmi Analysis of Polygonal Hybrid Systems. Part I: Reah-ability. Theoretial Computer Siene, 379(1-2):231�265, 2007.doi:10.1016/j.ts.2007.03.055.[HS74℄ Morris W. Hirsh and Stephen Smale. Di�erential Equations, Dy-namial Systems and Linear Algebra. Aademi Press In., 1974.[MP93℄ O. Maler and A. Pnueli. Reahability analysis of planar multi-linear systems. In CAV, number 697 in LNCS, pages 194�209.Springer-Verlag, 1993. 22
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Figure 14: Sliding ases.24


