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Towards a Formal De�nition of EletroniContratsCristian Prisaariu∗ Gerardo Shneider†January 2007AbstratIn this paper we propose a formal language for writing eletroniontrats, based on the normative deonti notions of obligation, pro-hibition, and permission. We take an ought-to-do approah, wherethe above notions are applied to ations instead of state-of-a�airs. Wepropose an extension of the µ-alulus in order to apture the intu-itive meaning of obligation, prohibition and permission, and to expressdeterministi and onurrent ations. We provide a translation of theontrat language into the logi, and we show how the semantis faith-fully aptures the meaning of the ontrat language. We also showhow our language aptures most of the intuitive desirable propertiesof eletroni ontrats, as well as how it avoids most of the lassialparadoxes of deonti logi. We also disuss informally the main prob-lems in formalizing the above normative deonti notions in partiularin the ontext of eletroni ontrats. We �nally show its appliabilityon a ontrat example.1 IntrodutionWith the imminent use of Internet as a means for developing ross-organiza-tional ollaborations and virtual ommunities engaged in business, new hal-lenges arise to guarantee a suessful integration and interoperability of suhvirtual organizations. Servie-oriented arhitetures (SOA) is beoming more
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and more the trend in this arena. Entities partiipating in a SOA have noaess to omplete information, inluding information for heking the relia-bility of the servie provider and/or servie onsumer. For instane, a servieonsumer has no aess to the ode implementing the servie, and is there-fore unable to examine, muh less verify, the servie implementation to haveassurane of its ompliane with his/her needs. This motivates the needof establishing an agreement before any transation is performed, througha ontrat, engaging all partiipants in the transation under the ommit-ments stipulated in suh a doument, whih must also ontain lauses statingpenalties in ase of ontrat violations. In the ase of a bilateral ontrat,one usually talks about the roles of servie provider and servie onsumer;but multi-lateral ontrats are also possible where the partiipants may playother roles. A servie provider may also use a ontrat template (i.e. ayet-to-be-negotiated ontrat) to publish the servies it is willing to provide.As a servie spei�ation, a ontrat may desribe many di�erent aspets ofa servie, inluding funtional properties and also non-funtional propertieslike seurity and quality of servie (QoS).Before a ontrat is signed it has to go �rst through a stage of negotiation.At this stage, the ontrat template o�ered by the servie provider has to beanalyzed (e.g. by model heking tehniques) and hanged to suite the needsof both the lient and the provider. After eah hange the new ontrat issent to the other party whih either aepts it or hanges it again. Thisproess goes on until an agreement is ahieved.In order to advane towards a reliable SOA, we need to be able to writeontrats whih an be �understood� by the software engaged in the negoti-ation proess, and later may be used by virtual organizations responsible forensuring that the ontrat is respeted. In other words, ontrats should beamenable to formal analysis.Formal Approahes for Contrats. There are urrently several di�er-ent approahes aiming at de�ning a formal language for ontrats. Someworks onentrate on the de�nition of ontrat taxonomies [Aag01, BJP99,TP05℄, while others look for formalizations based on logis (e.g. lassi-al [DKR04℄, modal [DM01℄, deonti [GR06, PDK05℄ or defeasible logi[Gov05, SG05℄). Other formalizations are based on models of omputation(e.g. FSMs [MJSSW04℄ and Petri Nets [Das00℄).In our opinion, the most promising approah is the one based on logi.A logi for ontrats not neessarily has to be based on, or extend, deontilogi, but must ontain normative deonti notions (obligation, permission,and prohibition) and preserve their intuitive properties, both in the proof2



system and in its model theory.Deonti Logi. Formalizing the usual notions of obligation, permissionand prohibition is not an easy task as witnessed by the extensive researhonduted by the deonti ommunity both from the philosophial and thelogial point of view, starting as early as 1926 [Mal26℄1. These works haveobviously been done muh before the onrete problem of de�ning eletroniontrats (e-ontrats) and the problems identi�ed still ontinue to hallengephilosophers, logiians and omputer sientists.In early papers (e.g. [Wri51℄) the approah was to relate the normativenotions of obligation, permission and prohibition in a similar way as thequanti�ers (all, some, no) and modalities (neessary, possible, impossible) oflassial and modal logi, respetively. This was the bases of the so-alledStandard Deonti Logi (SDL) whih is built on lassial propositional logi,leading to a nie formalization but also to many paradoxes.One of the �rst issues to take into aount before formalizing normativenotions is whether we want to represent (names of) human ations or (sen-tenes desribing) states of a�airs, produt of a human ation. The former isusually known as an ought-to-do and the latter as ought-to-be. The followingis a lassial example where �One ought to build a window� an be under-stood as an ought-to-do sentene, while �There ought to be a window� is anought-to-be sentene. In many ases it is possible to translate an ought-to-besentene into its orresponding ought-to-do quite easily, as in the followingexample: �It ought to be the ase that John pays the money to Smith�(ought-to-be) and �John ought to pay the money to Smith� (ought-to-do).In many e-ontrats it is more natural to �nd ought-to-do statements; wherethe subjet is stated expliitly (the supplier, the lient), the ations (that arepermitted or forbidden) are visible, and also in many ases there might bean objet. There may be also ases where an ought-to-be approah gives amore onise expression, like in QoS ontrats where we may have statementsthat express quantitative restritions like: The average bandwidth should bemore than 20kb/s. The disussion among philosophers and logiians is farfrom an end in what onerns the deision of whether one approah is betterthan the other, or even if both should oexist in the same reasoning system.Some authors have osillated from one side to the other � Avon Wright forinstane took an ought-to-be approah in early papers, and later inlined forthe ought-to-do (ation-based) approah, as stated in [Wri99℄.Note that norms (and lauses in ontrats), by de�nition, are violable (if1Mally's work is onsidered a preursor of deonti logi, though it is widely aeptedthat modern deonti logi started with the work by G.H. Avon Wright [Wri51℄.3



we have the guarantee that nobody will violate the norms, normative systemswould be ompletely useless). Hene, ontrary-to-duty obligations (or CTDs)and ontrary-to-prohibitions (or CTPs), onerning the fat that obligationsmight not be ful�lled and that prohibitions might be violated, are importantaspets to be onsidered. In both ases, we might want to know whih isthe reparation or the penalty to be applied. See for instane [PS96℄ for adisussion on CTDs.There are many other problems to be onsidered when formalizing obliga-tion, permission and prohibition. Among others, their interrelation (dualityand de�nition in terms of eah other), the understanding of their truth-value(even the disussion whether it is reasonable to talk about the truth-value ofsuh notions), and the di�erene between �must� and �ought�.The intention of this setion is to give an overview of the main problemsin deonti logi, and not to disuss the di�erent solutions. See [Wri99℄ fora nie overview of the history, problems and di�erent approahes on deontilogi. The entry �Deonti Logi� of the Stanford Enylopedia of Philosophyontains a general desription of the topi, mainly the di�erent paradoxesarising under SDL2. See also the hapter of MNamara in the Handbook ofthe History of Logi [MN06℄.Our Approah and Contributions. The above disussion should notgive the impression that we are trying to solve an old unsolvable problem. Weare mainly onerned with formal de�nition of ontrats, and more preisely,of e-ontrats. By narrowing the sope of appliation of deonti logi, we arede�nitely on a terrain were many of the philosophial problems of the logiare not present.In this paper we take a �rst step towards the de�nition of a formal ontratlanguage, based on an extension of the µ-alulus. Our starting point is[BWM01℄, where a �x-point haraterization of obligation, permission andprohibition is given, based on the modal µ-alulus. The logi allows toexpress obligation, permission and prohibition on regular ations, taking thusan out-to-do approah.The main ontribution of this paper is the de�nition of a ontrat lan-guage with the following properties:1. The language avoids most of the lassial paradoxes of deonti logi;2. It is possible to express in the language obligations, permission andprohibition over onurrent ations keeping their intuitive meaning;2http://plato.stanford.edu/entries/logi-deonti/index.html.4



3. Obligation of disjuntive and onjuntive ations is de�ned omposi-tionally;4. It is possible to express CTDs and CTPs;5. The language has a formal semantis given in a variant of the proposi-tional µ-alulus.Other side ontributions are:1. We revisit the relations between the deonti notions, providing newinsight on how they should be related under the ontext of e-ontrats;2. We give speial attention to the disjuntion on obligations, to whihwe provide a natural and preise interpretation;3. We extend the propositional µ-alulus with the possibility of express-ing onurrent and deterministi ations.The paper is organized as follows. In Setion 2 we present an informaldisussion about deonti logi, and the main problems arising when formal-izing the notions of obligation, permission and prohibition. In Setion 3 wepresent the most well-known paradoxes as well as a new one we found un-der ertain di�erent interpretation of the normative deonti notions. Basedon the two previous setions we present a list of desirable properties for aontrat language, in Setion 4. In Setion 5 we present our formal languagefor writing ontrats, and in Setion 6 we present a variant of the µ-alulus,with its syntax and semantis, and we give a translation of the language intothe logi. In Setion 7 we show that our language avoids the most importantparadoxes, and that it satis�es most of the desirable properties desribed inSetion 4. In Setion 8 we present an example of a ontrat written in ourlanguage. We brie�y desribe a related approah also based on a variantof the µ-alulus [BWM01℄ in Setion 9 and we disuss the advantages anddisadvantages of the approah in ontrast to ours. We onlude in Setion10.2 Obligation, Permission and Prohibition: In-formal DisussionCapturing the right intuition of normative notions in general, and in parti-ular of obligation, permission and prohibition, is a di�ult task. We present5



in this setion an informal disussion about the main ideas to take into a-ount when trying to formalize the above notions. In what follows we use
O(a) to denote the obligation of performing a given ation a, similarly forpermission (P (a)) and prohibition (F (a)), and + for hoie among ations.A more preise de�nition will be given later.2.1 On the Truth-Value and the Notion of Consistenyin Deonti LogiThis setion is entirely based on [Wri99℄. In the philosophial tradition ofAvon Wright's eduation, norms were seen as subjetive, relative and de-pendent on ulture, without any truth-value: �norms, as presriptions forondut, simply are not true or false� [Wri99℄. The apparent problem here isthat if one takes this point of view, then it is not possible to study the logialrelation between obligation, permission and prohibition, to de�ne a notion oflogial onsequene or to detet ontraditions. Von Wright argues that theabove only implies that logi is muh more than truth and thus norms arestill subjet to logial laws. Von Wright makes a di�erene between presrip-tive and desriptive sentenes. In the former the sentene does not have atruth-value, it only enuniates a norm, while in the latter it has a truth-value(it is a norm-proposition). In its desriptive interpretation of formulas, de-onti logi should aim at a omplete and ontradition-free system of norms.Von Wright makes a lear distintion between �ought�, the obligation, and�must�, the pratial neessity. The �rst is neither true nor false and it is anought-to-be, while the seond an be true or false depending on the situationand is thus related to something whih has to be done (ought-to-do).Von Wright laims that �a set of norms is onsistent if and only if, theonjuntion of all states pronouned obligatory by the norms with any one ofthe states pronouned permitted is a doable state of a�airs, i.e., somethingwhih an be ahieved through human ation.� Along these lines, it is pos-sible to de�ne the notion of normative entailment: a onsistent set of normsentails another one if and only if adding the negation of the latter makes theset inonsistent.2.2 Conjuntion in Ation LogisBefore explaining why onjuntion is problemati when ombined with de-onti operators, we start by showing some problems when trying to add on-juntion to Propositional Dynami Logi (PDL). If we want to de�ne 〈a&b〉φompositionally, it is natural to think that it an be de�ned as follows:6
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Figure 1: Example of a model for 〈a〉φ ∧ 〈b〉φ but not for 〈a&b〉φ.
〈a&b〉φ = 〈a〉φ ∧ 〈b〉φ.If ations a and b are interpreted as sets of pairs of states (i.e. relationsover states) and if onjuntion over ations a&b is interpreted as intersetionof sets [BV03℄ then in PDL extended with ation onjuntion (denoted as

PDL∩) it holds only that 〈a&b〉φ ⇒ 〈a〉φ ∧ 〈b〉φ. The onverse impliationdoes not hold in PDL∩ beause the left side means that there exists a state,say t to whih the system may get by performing ation a and also by per-forming ation b and the formula φ holds in t. On the other hand, the rightside means that there exists a state t to whih one may get by performingation a and there exists another state t′ to whih one may get by performingation b, and in both t and t′, φ holds; but t and t′ may be di�erent. Beauseof these the right side does not imply the left side. Consider the model inFigure 1 whih is a model for the formula on the right of the impliation butis not a model for the formula on the left of the impliation beause it doesnot exist a state to whih the system an get by performing both ations aand b.One solution to the above problem is not to de�ne 〈·〉 and [·] on onjun-tion of ations, but to axiomatize the logi giving the desirable properties[BV03℄. Another solution is to enhane the logi with nominals as in hybridlogis (see for instane [AtC06℄ and referene therein). Hybrid logis de�ne,besides the sort of propositional variables, a new sort of speial propositionsalled nominals NOM = {i, j, k, . . .} disjoint from the set of propositionalvariables. The intent of the nominals is to name states of a model. Thenaming of the states is possible beause eah nominal holds in only one stateof the model (i.e. if a nominal i holds in the state s of the model then itis said that the state has the name i; also there an not be another state s′with the same name i). Given a urrent state, if i is the name of a suessorstate, then we ould write: 7
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Figure 2: Example of a model for both 〈a〉φ ∧ 〈b〉φ and 〈a&b〉φ.
〈a〉(i ∧ φ) ∧ 〈b〉(i ∧ φ) ⇒ 〈a&b〉(i ∧ φ),whih would fore the transitions to have the same soure and target states.A model for both formulas on the left and right of the impliation arrow ispitured in Figure 2. This, however, does not fore the two ations to beperformed onurrently. In order to apture true onurreny we would needto fore having only one transition labeled with a and b in an atomi way;we will see a solution in Setion 6. An extension of PDL with nominals was�rst presented in [PT85℄ (see also [PT91℄).2.3 On the Relationship Between Obligation and Per-missionThe relation between obligation and permission is rather umbersome. Thereis no onsensus on how to relate these two notions or if it is possible (ormore preisely, natural) to express one in terms of the other. Many re-searhers argue for de�ning permission as derived from obligation (or vie-versa): O(a) ≡ ¬P (a). In [Wri99℄, von Wright argues for not using the abovede�nition, though he introdued it in his early works; he proposes insteadthe following two equivalenes: ¬O(a) ≡ P (a) and O(a) ≡ ¬P (a).We laim that none of the above equivalenes are natural, at least for ourpurpose in trying to de�ne a logi for formalizing e-ontrats.First notie that not being obliged to do something does not add anyknowledge about what is permitted. Furthermore, in the ontext of a logifor ontrats it does not make muh sense to talk about negation of obli-gations: a ontrat must speify your rights and obligations, not what youare not obliged to do. Thus the �rst equivalene above an be disarded.Furthermore, we do not aept the impliation ¬P (a) ⇒ O(a) beause it isnot natural to infer from not being permitted an ation (or equivalently, theation is prohibited) that it is obligatory to perform the negated ation. Onthe other hand, O(a) ⇒ ¬P (a) might be reasonable only on systems where8



the presene of O(a) and O(a) make the system inonsistent. Not everybodyagrees on suh inonsisteny, so we do not onsider it in a �rst instane.In our opinion the only natural relations between obligation and permis-sion are the following:
O(a) ⇒ P (a)
O(a) ⇒ ¬P (a)

(1)where the seond impliation only holds if there is no ontrary-to-duty obliga-tion (CTD) assoiated with O(a), in whih ase one must take the reparationin ase the obligation is not ful�lled.2.4 Obligations and Permissions2.4.1 About Disjuntion of AtionsWe �rst make a remark about obligation over disjuntion of ations. Manypapers use the notation O(a ∪ b) for obligation of �disjuntion� of ations,while in fat they mean �hoie�, or �exlusive or�. Indeed, it does not seemvery intuitive to de�ne obligation of lassial disjuntion of ations, sinethis is not the usual meaning in natural languages. We will, thus, use thenotation a + b for the hoie of ations.We want to de�ne O(a+b) ompositionally while avoiding the Ross para-dox. In order to do so, we need to have a hierarhial de�nition of formulasand not allow the ∨ on obligation formulas. Instead we add a XOR operator(⊕) over obligation formulas to represent the intuitive idea of hoie3. In thisway we have the intuitive meaning of the obligation of a hoie:
O(a+ b) = O(a) ⊕ O(b).Many of the problems assoiated with the hoie disappear as soon as atemporal aspet is introdued [PS96℄, as for example in "You must pay ontime or at least give a notie 10 days before the paying date. If you don'tpay on time and you don't give notie, you must pay a �ne of 1000$".2.4.2 About Conjuntion of AtionsWe would like to be able to express obligation of performing onurrentations, O(a&b). There are two solutions to do this: (1) using interleaving,and (2) having true onurreny. True onurreny would apture the idea3This operator is not new to logis: it an be de�ned in lassial propositional logiand also has speial properties in linear logi.9



that O(a)∧O(b) ⇒ O(a&b). We will propose later a solution based on setsof ations to apture onurrent ations in the logiAnother important aspet to take into aount is the di�erene betweenpermission and obligation over onjuntion of ations. Saying that �you areobliged to remain silent and to talk with your lawyer� introdues an inon-sisteny sine there is a requirement to do two ontraditory ations. On theother hand, to say that �you have the right to remain silent and to talk withyour lawyer� does not introdues any inonsisteny. This shows that thereis a lear di�erene between permission and obligation of onjuntion of a-tions. We believe the disussion about the di�erenes between onjuntionunder permission and under obligations is onstrutive and sheds some lighton problems not always onsidered by many researhers.We onsider now the problem of understanding ¬O(a&b)4. We will givehere three di�erent interpretations. We then justify the intuitive solution,and then explain how we an get the right solution by making a distin-tion between the onjuntion of ations under the sope of obligations andpermissions.1. By de�ning ¬O(a) = P (a), we get (by applying De Morgan law andthe equivalene O(a&b) ≡ O(a) ∧O(b)):
¬O(a&b) = ¬(O(a) ∧ O(b)) = ¬O(a) ∨ ¬O(b) = P (a) ∨ P (b)This is ompletely ounter-intuitive sine it is not lear what the dis-juntion over permissions means. We also have disjuntion on obliga-tions, whih we believe should be forbidden syntatially, though manyresearhers on deonti logi see disjuntion on obligations as natural.2. One an argue that ¬O(a) = P (a) ∧ P (a), sine intuitively not beingobliged to do something gives you permission to do the ontrary, butalso the permission of the positive ation itself. In this ase we have:

¬O(a&b) = P (a) ∧ P (b) ∧ P (a) ∧ P (b)We have now two di�erent interpretations (based on the interpretation
P (a&b) = P (a) ∧ P (b) or P (a+ b) = P (a) ∧ P (b))(a) ¬O(a&b) = P (a&a&b&b)(b) ¬O(a&b) = P (a+ a+ b+ b)4Notie that the disussion about negation of obligations is more philosophial, andinluded here only for ompleteness. As disussed in the previous setion negation overobligations is not natural in e-ontrats. 10



The �rst option seems more natural, but this would imply to give spe-ial meaning to the &, sine intuitively a&a =⊥ under obligation, but
a&a 6=⊥ under permission. The seond option has the problem thatwe annot do two things at the same time (like a&b, whih should beallowed).All the disussion above lead us to the following onlusions:1. The ation operator & behaves di�erently under permissions and obli-gations, hene we need two di�erent ation operators (let's all them
&o and &p).2. We need to introdue XOR also for permissions.3. We must allow negation on ations also under permissions.Assuming we have a on�it relation ♯ between ations, in what followswe propose some laws for getting the above:1. &o an only be used under obligations and must have the followingproperties:

a&oa =⊥
a&ob =⊥ if a♯b
(a&ob) = a&obWe then have that:

O(a&ob) =⊥ if a♯b
O(a&oa) =⊥
O(a&ob) = O(a) ∧O(b)

¬O(a&ob) = ¬O(a) ∧ ¬O(b) = P (a&b)2. &p an only be used under permissions and must have the followingproperties:
a&pa = a+ a

a&pb 6= a+ b if a 6= b ∧ ¬(a♯b)
a&pb → a+ b if a♯b (Here → means that a&pb must be replaedby a+ b)
¬(a&pb) = a&pb 11



We then have that:
P (a&pb) = P (a) ∧ P (b) if ¬(a♯b)
P (a&pa) = P (a+ a) = P (a) ⊕ P (a)
P (a&pb) = P (a+ b) = P (a) ⊕ P (b) if a♯b
P (a&pb) = F (a) ∧ F (b)With these laws, we might get the right interpretation of the ¬O(a&b).2.4.3 About the Negation of AtionsNegation introdues new problems and at �rst it seems enough to onsideronly negation over atomi ations. We an have "positive" and "negative"atomi ations. One ruial question is: Given an ation a, what does itmean by �negation� of a? Does it mean �not doing a�, or �doing anything but

a�? Do we want to allow both interpretations? If so, we might need to havedi�erent notations, like a and ¬a for the two di�erent notions. The intuitivemeaning of a negative ation a is "not performing a". That is, a is not de�nedas "the set of all the ations but a". One intrinsi problem onerning thede�nition of negative ations is that when performing an ation, the urrentstate hanges, but what is the e�et of not perform an ation? Is it natural toonsider not performing an ation as being an ation itself? For example, if Iwithdraw money from my personal bank aount, then the aount hanges.On the other hand, if I do not withdraw any money, this negative ation hasnot e�et on my bank aount. Though we do not have a onvining �nalsolution on how to treat negation, we will see later the approah we take inour ontrat language.Besides, the above problem extends to obligation, permission and pro-hibition over negative ations. For instane "you are not obliged to talk",
¬O(talk), might be interpreted as "you have the right to remain in silene"(whih means "you have the right not to talk", i.e., P (talk)). This showsthat the intuition of negated ations on permission is in some sense di�erentfrom those on obligations, and it might be reasonable to allow them underpermissions.2.5 On Obligation, Permission and Prohibition in E-ontratsMany of the researh onduted by philosophers and logiians tend to stressdi�erenes between �ought� and �must�, or to de�ne logial equivalenes be-tween obligation and permission, or even to fore one notion being dual of12



the other and then haraterizing the exeptions. Although this is reasonablein a philosophial ontext or in pure logi, we laim that we an avoid manyof the above disussions given that we are restrited to eletroni ontrats.In what follows we provide arguments for restriting syntatially the o-urrene of ertain expressions involving obligation (O), permission (P ) andprohibition (F ) in a e-ontrats.In what follows we resume some of the above disussions, and we introduenew insights of what should and should not be expressible in a ontratlanguage.
• We onsider statements expressing one is NOT obliged to do somethingis not intuitive in the setting of e-ontrats.

¬O(a) should not our in a ontrat
• It is ounter intuitive to have iteration of ations under obligation,permission and prohibition; e.g. it is not normal to have in a ontrata statement like: One is obliged to not pay, or pay one, o pay twie,or . . ..

O(a∗), P (a∗), or F (a∗) are not allowed
• A statement like one is NOT permitted to do some ation an be rewrit-ten as one is forbidden to do the ation

¬P (a) ≡ F (a)

• A statement like one is NOT forbidden to do an ation an be rewrittenas one is permitted to do the ation
¬F (a) ≡ P (a)Note that we adhere to the lassial de�nitions of permission and prohibitionas one being the negation of the other.We now disuss some restritions related to Prohibition (F ).

• It is not intuitive to have the + under the F operator. Consider forexample the following norm: In Europe it is forbidden one of the fol-lowing ations (but not both): to drive on the left side of the road (dl),or to drive on the right side (dr) whih an be represented as F (dl+dr).The problem is that it is not lear under whih irumstanes eah one13



of the ations an be taken. The natural way to exlusively forbidthe hoie between two ations is to relate eah of the ations with itsontext. So, the above sentene ould be rewritten as: In the UnitedKingdom it is forbidden to drive on the right side of the road. In therest of Europe (exept United Kingdom) it is forbidden to drive on theleft side of the road. Whih an be formalized as:
ϕUK ⇒ F (dr)
ϕREU ⇒ F (dl).Where ϕUK and ϕREU are mutually exlusive. On the other hand, itis possible to forbid two ations a and b simultaneously by imposing

F (a) ∧ F (b).Moreover, we argue that in ontrats it is not ommon to �nd state-ments that may be formalized using an exlusive OR operator ⊕ be-tween prohibitions. If we take the formula F (a) ⊕ F (b) to mean thateither is forbidden a or forbidden b but not forbidden both then onease of the statement is F (a) ∧ ¬F (b) whih, using the above equiva-lene between P and ¬F is F (a) ∧ P (b). This means that one has thepermission to do b. Similar from the seond ase, one may onludethat it is permitted to do a. In the end, the formula F (a) ⊕ F (b) doesnot expliitly prohibit anything, making its use ompletely meaninglessand dangerous.
• The prohibition of performing an ation a should imply the prohibitionof any onurrent exeution of any set of ations that ontain the ation
a:

F (a) ⇒ F (a&b), (2)but the onverse impliation should not hold:
F (a&b) 6⇒ F (a). (3)3 Puzzles and ParadoxesIn what follows we mention only the most important paradoxes of deontilogi; see for instane [MN06℄ for more details.
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3.1 Classial Paradoxes and PuzzlesRoss's Paradox [Ros41℄: In natural language it is expressed as:1. It is obligatory that one mails the letter.2. It is obligatory that one mails the letter or one burns the letter.In Standard Deonti Logi (SDL) these are expressed as:1. O(p)2. O(p ∨ q)The problem is that in SDL one an infer that O(p) ⇒ O(p ∨ q).The Good Samaritan Paradox [Pri58℄: In natural language we have:1. It ought to be the ase that Jones helps Smith who has beenrobbed.2. It ought to be the ase that Smith has been robbed.And one naturally infers that:Jones helps Smith who has been robbed if and only if Jones helpsSmith and Smith has been robbed.In SDL the �rst two are expressed as:1. O(p ∧ q)2. O(q)The problem is that in SDL one an derive that O(p∧q) ⇒ O(q) whihis ounter intuitive in the natural language, as in the example above.The Free Choie Permission Paradox [Ros41℄: In natural language wehave:1. You may either sleep on the sofa or sleep on the bed.2. You may sleep on the sofa and you may sleep on the bed.In SDL this is:1. P (p ∨ q)2. P (p) ∧ P (q) 15



The natural intuition tells that P (p ∨ q) ⇒ P (p) ∧ P (q). In SDL thiswould lead to P (p) ⇒ P (p ∨ q) whih is P (p) ⇒ P (p) ∧ P (q), so
P (p) ⇒ P (q). As an example: If one is permitted something, then oneis permitted anything.Sartre's Dilemma [MN06℄: In natural language:1. It is obligatory to meet Jones now (as promised to Jones).2. It is obligatory to not meet Jones now (as promised to Smith).In SDL this is:1. O(p)2. O(¬p)The problem is that in the natural language the two obligations areintuitive and often happen, where the logial formulas are inonsistentwhen put together (in onjuntion) in SDL.Chisholm's Paradox [Chi63℄: In natural language it is expressed as:1. John ought to go to the party.2. If John goes to the party then he ought to tell them he is oming.3. If John does not go to the party then he ought not to tell themhe is oming.4. John does not go to the party.In Standard Deonti Logi (SDL) these are expressed as:1. O(p)2. O(p ⇒ q)3. ¬p ⇒ O(¬q)4. ¬pThe problem is that in SDL one an infer O(q) ∧ O(¬q) whih is dueto statement (2).The Gentle Murderer Paradox [For84℄: In natural language it is ex-pressed as:1. It is obligatory that John does not kill his mother.16



2. If John does kill his mother, then it is obligatory that John killsher gently.3. John does kill his mother.In Standard Deonti Logi (SDL) these are expressed as:1. O(¬p)2. p ⇒ O(q)3. pThe problem is that when adding a natural inferene like q ⇒ p thenin SDL one an infer that O(p).3.2 A new paradox?Apparently the deonti ommunity does not see, in general, O(a) ∨ O(b)as a problemati formula, but we believe it is indeed a problem to havedisjuntion of obligations � and also of permissions and prohibitions. Thismight be avoided in di�erent ways depending on the approah, but in thepresene of onjuntion of ations and some of the usual relations betweenobligation, permission and prohibition, a new paradox arises. In what followswe explain why we think the above auses problems on the deonti reasoning.Most of the approahes using logis for formalizing normative deontinotions5 propose an extension of propositional logi (PL), meaning that thelogis inlude all the tautologies of PL. This naturally inludes the followingtautology: A ⇒ A ∨ B. We will show in what follows that from O(a) wean derive P (a)∧P (b) whih is learly a dangerous paradox (�if I am obligednot to talk in the presene of the Pope, then I am permitted not to talk andto kill the Pope�). In our derivation we use the following ommon relations:
• O(·) ⇒ P (·),
• P (·) ≡ ¬F (·).We also make use of the De Morgan laws and the following intuitiveequivalenes:
• P (a&b) ≡ P (a) ∧ P (b),5Usually these notions are formalized as operators and in deonti logi are onsideredto be modalities. Though they are not operators in our approah, we keep the terminologywhenever no onfusion might arise. 17



• F (a&b) ≡ F (a) ∧ F (b).Notie that the above is not �standard� sine many approahes do notonsider onjuntion over ations, but it is very intuitive to interpret permis-sion and prohibition of onjuntion of ations as above. We are ready nowto show that O(a) implies P (a) ∧ P (b).First takeO(a) ⇒ O(a)∨O(b) (instane of the PL tautologyA ⇒ A∨B).From O(a) ⇒ P (a) and O(b) ⇒ P (b), we get that O(a) ∨ O(b) ⇒ P (a) ∨
P (b). But P (a)∨P (b) ⇒ ¬F (a)∨¬F (b) and by the De Morgan law we havethat ¬(F (a) ∧ F (b)) whih implies ¬F (a&b). We then get P (a&b) whih isequivalent to P (a) ∧ P (b).What is wrong on the above derivation? Some might argue that theequivalenes given for permission and prohibition of ations are not univer-sally aepted by the deonti ommunity and that they are not orret. Webelieve that the ause of the problem relies on aepting ertain laws ofpropositional logi when reasoning about deonti modalities (like de Morganlaws). Moreover, we strongly advoate for the elimination of the lassialdisjuntion on normative deonti notions, given that the intuitive idea innatural language when using the word or is usually that of an exlusive or(�The lient is obliged to pay or to send a noti�ation of delay.�, and anotherexample would be: �You have the right to remain silent or anything you sayan be used against you in the ourt of law.�). Thus, we laim that a logiof ations (with onjuntion of ations) for a orret representation and rea-soning of obligation, permission and prohibition should have the followingrestritions:

• The De Morgan laws annot be applied to deonti modalities,
• Use the exlusive or, and disallow (syntatially) the lassial disjun-tion on deonti modalities.We laim that the right interpretation of ¬(O(a)∧O(b)) should be ¬O(a)∧

¬O(b), whih is more intuitive, in ase one admits the use of negation overobligations. Similarly for prohibition.4 Desirable Properties of a Language for Con-tratsBefore presenting our language we start by listing some of the intuitive prop-erties we should have, and others we should avoid, when formalizing on-trats. 18



(1) Avoid as many deonti logi paradoxes as possible:(a) Avoid the Good Samaritan paradox, Satre's dilemma, and theGentle Murder paradox;(b) Avoid Chisholm's paradox. This means obligation should be de-�ned only on ations, not on formulas. In partiular do not writeformulas of the form O(φ ⇒ ψ);() Avoid Ross's paradox. This means avoid having (in the lassialnotation of deonti logi): O(p) ⇒ O(p ∨ q);(d) Avoid the Free Choie Permission paradox (i.e. do not allow thefollowing impliation: P (p) ⇒ P (p ∨ q));(e) Avoid the new paradox desribed in Setion 3.2; i.e., syntatiallydisallow the lassial disjuntion between deonti modalities.(2) Use the XOR logial onnetive instead of the lassial disjuntion be-tween modalities;(3) Allow onurrent ations and keep the intuition of onjuntion on obli-gations; i.e., O(a&b) = O(a) ∧ O(b).(4) Some intuitive desirable relations on obligations:(a) O(a; b) = O(a) ∧ [a]O(b)(b) Allow CTD (reparation)(5) Allow the de�nition of onditional obligations, i.e., formulas of the form
ψ ⇒ O(a).(6) Have the following: O(a) ⇒ P (a).(7) Do not de�ne permission and obligations in terms of eah other (forinstane, do not de�ne obligation as O(a) = ¬P (¬a)).(8) Some intuitive desirable relations on permissions:(a) P (a; b) = P (a) ∧ [a]P (b)(b) P (a+ b) = P (a) ⊕ P (b)6(9) Some intuitive desirable relations on prohibitions:(a) F (a) = ¬P (a)6Many authors prefer to have P (a + b) = P (a) ∧ P (b) (see for instane [BWM01℄).19



(b) F (a; b) = F (a) ∨ 〈a〉F (b)() F (a+ b) = F (a) ∧ f(b)(d) F (a) ⇒ F (a&b)(e) F (a&b) 6⇒ F (a)(f) Allow ontrary-to-prohibition.5 A Spei�ation Language for ContratsThis setion ontains the de�nition of our spei�ation language for writinge-ontrats. The �rst two subsetions are meant as a tehnial preamble tosubsetion 5.3 where the language is de�ned. If the reader is more or lessfamiliar with the onept and the intuition of an ation (from dynami logisfor example) then she may skip diretly to subsetion 5.3. Subsetion 5.2 isintended to de�ne the onept of ation negation. This setion an also beskipped in a �rst reading.5.1 Ation AlgebraSome of the most well known and studied ation algebras ome from the workon dynami logis [Pra76℄. We base our work on Pratt and Kozen's dynamialgebra [Pra80, Koz80℄. This algebra is built on top of Kleene algebra whihwas introdued in 1956 and further developed by Conway in [Con71℄. Forreferenes and an introdution to both Kleene and dynami algebra see theextensive work of Kozen [Koz81, Koz90, Koz97℄.In these researh e�orts the authors used, for example, regular languagesas the objets of the algebra, or relations over a �xed set (as we have in dy-nami logi) and analyzed properties like ompleteness [Koz94℄, omplexity[CKS96℄ and appliations [Coh94℄ of variants of Kleene algebra. Some vari-ants inlude the test operator ?, and others disard the iteration operator ∗.Many insights an be drawn from this extensive work related to our need ofation algebra.We de�ne an algebrai struture similar to dynami algebra, modi�ed sothat it omplise with the intuition drawn from e-ontrats. A �rst hangeis in dropping the Kleene star (iteration) as it is unnatural to have it underobligation, permission and prohibition of the Contrat Language (see disus-sion in Setion 2.5). A seond hange involves the onurreny of two ormore ations, and it onsists of de�ning a speial operator for the algebra tomodel truly onurrent ations. For example, we need to express that Thelient is obliged to do ations a and b at the same time.20



We reall that a Kleene algebra is a struture K = {K,+, ·, 0, 1,∗ } withthe properties that (K,+, 0) is a ommutative monoid with the identityelement 0, and (K, ·, 1) is a monoid with the identity element 1. Moreover,operator + is idempotent and thus it is possible to de�ne a partial order ≤on K thus having that (K,+, 0) is a semilatie. The ∗ is a unary operatorwhih respets a set of axioms with the intuition that a∗ = 1+ a+ a · a+ . . ..In programming theory it is usual to interpret + as hoie, · as sequene and
∗ as iteration.A dynami algebra is a rather more omplex struture D = (K,B, 〈·〉)where K is a Kleene algebra, B is a Boolean algebra, and 〈·〉 a salar multi-pliation de�ned as 〈·〉 : K × B → B respeting the usual rules.Our ation algebra has a set of atomi ations denoted A and the ationoperators whih form the ompound ations: + for hoie of two ations,
· for sequene of ations (or onatenation; in PDL we �nd this operatordenoted as ;), & for onurrent exeution of two atomi ations, and the testoperator ? (we will see later how with test operator we an simulate impli-ation over formulas [HKT00℄). The three operators +, ·, and & are binaryoperators. Choie (+) is applied to ompound ations and is assoiative andommutative. Conurreny (&) operator is applied to atomi ations onlyand is assoiative and ommutative. The sequene (·) operator is applied toompound ations and is right-assoiative and non-ommutative. For brevitywe often drop the sequene operator and instead of α · β we just write αβ.The operators +, ·, and & are applied to elements of A (ations).In dynami algebra, the elements of the boolean algebra are alled testsand are inluded in the set of ations of the Kleene algebra (i.e. tests arespeial ations)7. With the test operator the skip ation (denoted 1 above)is de�ned as ⊤?, where ⊤ is the speial proposition that holds in every world.
1 is interpreted in PDL as the identity relation over the set of worlds. It hasthe meaning that when exeuting the skip atomi ation the system goes tothe same state. With skip the ations a and a ·1 have the same set of traes,and skip has also the property that 1∗ = 1.We do not study in this paper properties of this ation algebra but at a�rst look the + and · operators obey the same properties as the operators ofKleene algebra. It is left to investigate the properties of & operator and itsrelations with the other operators. Adding the test operator we obtain anation algebra with tests [Koz97℄ and we expet to have similar properties.7To be more formal and to have a syntax more loser to the syntax used in PDL we usethe ? operator and all it test operator. The test operator is speial in the sense that itis applied to elements of B (i.e. formulas in the boolean algebra) and generates ations of
A (i.e. ? : B → A). Basially ? generates the set of ations alled the set of tests inludedin A. 21



5.2 Ation Normal FormalIt is known that for regular expressions there is no standard normal form;for example, see the Starr-Height problem [Egg63℄ whih looks at regularexpressions normal forms from the perspetive of Kleene star.For the set of ation operators (+, ·, ∗, ?) of the algebra de�ned inSetion 5.1 we have the following de�nition of ation normal form. For thesemantis of ations given with traes, as in proess logis [Pra79℄, we obtainall the traes of the ation.De�nition 5.1 (ation normal form for +). For ations de�ned with theoperators +, ·, ∗, ? we have an ation normal form denoted by ANF+ andde�ned as
α = +

ρ∈R
ρ · α′where α is a ompound ation, ρ represents either an atomi ation or a test,and R is a subset of atomi ations and tests.Theorem 5.1. For every ation in the algebra of Setion 5.1 we have aorresponding ANF+.A natural and useful view of ation negation when we onsider ations in-terpreted as traes is to say that the negation α of ation α is the ation givenby all the immediate traes that take us outside the trae of α [BWM01℄.With ANF+ it is easy to formally de�ne α.De�nition 5.2 (ation negation). The ation negation is denoted by α andis de�ned for any ation α in ANF+ as:

α = +
ρ∈R

ρ · α′ = +
b∈A\R

b + +
ρ∈R

ρ · α′where α′ is also in ANF+, and R is a set of the atomi ations or tests.Note that b is only an atomi ation8 of A, whih means that the ationnegation does not take into onsideration the tests.5.3 The Contrat LanguageWe aim at the de�nition of a preise syntax of a ontrat language, with atranslation into a logi in order to be able to reason about it. We de�nea Contrat Language (CL), and provide a set of rewriting rules in order tosimplify and minimize the number of expressions in the language.8When we remove from the set of atomi ations A the set R whih ontains bothatomi ations and tests, the resulting set will ontain only the ations of A whih are notin R. 22



De�nition 5.3 (Contrat Language Syntax). The syntax of the ontratlanguage is:
Contract := D ; C

C := φ | CO | Cp | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (δ) | CF ∨ [δ]CFThe syntax of CL losely resembles the syntax of a modal (deonti) logi.Though this similarity is learly intentional sine we are driven by a logi-based approah, CL is not a logi. In what follows we provide an intuitiveexplanation of the CL syntax; a more preise meaning will be given laterthrough a translation into an extension of the propositional µ-alulus.A ontrat spei�ation onsists of two parts: de�nitions (D) and lauses(C). In the de�nitions part we expliit the assertions (or onditions) andthe atomi ations present in the lauses. In a �rst presentation we let theatomi ations underspei�ed, whih for our purposes an be understoodas onsisting of three parts: the proper ation, the subjet performing theation, and the target of (or, the objet reeiving) suh an ation. C isthe general ontrat lause. CO, CP , and CF denote respetively obligation,permission, and prohibition lauses.
φ represents an assertion, like the budget is more than 200$. ∧ and ⊕maybe thought as the lassial onjuntion and exlusive disjuntion, whih maybe used to ombine obligations and permissions. For prohibition CF we have

∨, again with the lassial meaning of the orresponding logial operator. αis a ompound ation with syntax as given in Setion 5.1, while δ denotesa ompound ation not ontaining any ourrene of +. Operationally, weonsider that atomi ations do not require time for their exeution, i.e., theatomi ations are instantaneous. A onurrent ation is also instantaneous,so from this point of view it an be seen also as atomi. Note that synta-tially ⊕ annot appear between prohibitions and + annot our under F ,as disussed in Setion 2.5.We borrow from PDL the syntax [α]C (also alled dynami box ) to repre-sent that after performing α, C should be the ase. Intuitively, one may thinkof [·] as the ∀ quanti�er in the sense that either the ation is not performed orif it is performed then the lause after it should be enfored. The [·] notationallows having a test inside, where the syntax [φ?]C must be understood as
φ ⇒ C. 〈α〉C (also known as dynami diamond) aptures the idea that theremust exist the possibility of exeuting α, in whih ase C will be enfored23



(1) O(α+ β) = O(α) ⊕ O(β)(2) O(a&b) = O(a) ∧O(b)(3) O(αβ) = O(α) ∧ [α]O(β)(4) P (α+ β) = P (α) ⊕ P (β)(5) P (αβ) = P (α) ∧ 〈α〉P (β)(6) F (αβ) = F (α) ∨ [α]F (β)Table 1: Compositional rulesafterwards. In the ontrat language we do not relate the dynami box to thedynami diamond. They are related in µ-alulus, through their translationof Setion 6.3. Following temporal logi (TL) [Pnu77℄ notation we have U(until) and© (next) with the intuitive behavior as in TL. Thus C1 U C2 statesthat C1 should hold until C2 holds. ©C intuitively states that the C shouldhold in the next moment, usually after something happens. We an de�ne
�C (always) and ♦C (eventually) for expressing that C holds everywhere andsometimes in the future, respetively.The ompound ations have a ompositional behavior in CL when theyappear under obligation O. For hoie of ations we have

O(α+ β) = O(α)⊕ O(β) (4)with the intuition (drawn from the world of ontrats) that If one is obligedto hoose between doing one ation or doing another ation, then one shouldregard it as being either obliged to do the �rst ation or as being obliged todo the seond ation.For onurrent ations we have
O(a&b) = O(a) ∧ O(b) (5)with the intuition that, regarding atomi ations If one is obliged to do anatomi ation a and is also obliged to do another atomi ation b then oneshould onlude that one is obliged to do the two atomi ations at the sametime.For the sequene of ations we have
O(αβ) = O(α) ∧ [α]O(β) (6)whih intuitively means that if one is obliged to do a sequene of ations thenone should be obliged to do the �rst ation, and after doing the �rst ationone should also be obliged to do the seond ation.24



The ompound ations under permition are similar to the ones underobligation. The hoie of ations is also exlusive hoie and we still haveompositionallity of P :
P (α+ β) = P (α) ⊕ P (β) (7)whih intuitively means that if one is permitted to hoose between doingone of the ations α or β then, one is either permitted the �rst ation or ispermitted the seond ation.For onurreny under permission we do not �nd any ompositionallityrule. A lause P (a&b) stating that it is permitted to do the two ations atthe same time, does not give any information about the individual ations.Moreover, the permission of the individual ations an not give informationabout the permission of the onurrent exeution of the two ations.For the sequene of ations under permission we have:
P (αβ) = P (α) ∧ 〈α〉P (β) (8)with the intuition that if one is permitted to do the sequene of ations thenone may onlude that one is both permitted the �rst ation and also thereexists a way of doing the �rst ation and afterwords one would be permittedthe seond ation.Compound ations under prohibition do not behave the same as underobligation or permission. For onurreny under prohibition we do not �ndany ompositionallity rule; (see equations (2), and (3) of Setion 2.5).For the sequene of ations under prohibition we have
F (αβ) = F (α) ∨ [α]F (β) (9)with the intuition that if one is forbidden to do the sequene of ations thenone may onlude that one is either forbidden the �rst ation or, if the �rstation is performed the seond ation is forbidden.The main di�erene between modal logi (where the modality denotesneessity) and deonti logi (where the modality denotes obligation) is in thefat that the deonti modality an be violated. For example, if in modallogi one an make the inferene: �p then p (if it is neessary that p, then

p is true), in deonti logi the inferene is no longer possible beause O anbe violated (see Setion 2.1 for a disussion). Related to this we onstantly�nd in ontrats the ontrary to duty (CTD) and ontrary to prohibition(CTP) formulas. CTDs express what happens if an obligation is violated. Inour ase, if we have the obligation to do an ation then the violation of theobligation is the exeution of the negation of the ation. CTDs are added tothe ontrat language with the following syntax:25



Oϕ(α)stating the obligation to exeute the ompound ation α and the reparationformula ϕ whih should hold in ase the obligation is violated. The reparationmay be either another obligation, a prohibition, a stand alone assertion, oreven another CTD whih should be enfored after the violation ours. Theabove is syntati sugar for the following CL formula:
Oϕ(α) = O(α) ∧ [α]ϕ (10)stating the obligation O(α) whih should hold in the urrent world and ifthe negation of α is exeuted (meaning that the obligation is violated) thereparation ϕ should be enfored.One might suggest that just the ation negation as de�ned in Setion5.2 does not apture the intuition of violation of an obligation of an ation.One may say that for an ation a (e.g. deposit money in the bank aount)a violating ation may be just the negative ation ¬a (NOT deposit moneyin the bank aount). In this paper we do not onsider negative ations; fora disussion about our deision see Setion 2.4.3. A seond argument forour deision is that negative ations may be expressed in other ways. Forexample, in order to say obliged NOT to do one an say forbidden to do.Contrary to Prohibition statements expliitly provide the reparation for-mula whih should hold in ase the prohibition is violated. For example if theforbidden ation α is exeuted (the prohibition is violated) then a reparationformula ϕ should be enfored. The CTPs (denoted as Fϕ(α)) are abbrevia-tions of the CL formulas:
Fϕ(α) = F (α) ∧ [α]ϕ (11)With the dynami box syntax we an model in CL onditional obligations,permissions, and prohibitions (see Dyadi Deonti Logi for an introdutionto the formalism that has introdued onditional obligations [PS97℄). Wemay have two kinds of onditional expressions; let us take an example forobligation. Conditional obligations an depend on both the exeution ofan ation, or on an assertion whih holds in the urrent state. Intuitively,onditional obligations related to ations state that after exeuting an ation,a ertain obligation is the ase. We represent suh onditional obligation as:

[α]O(β) (12)where α is the onditioning ation and O(β) is the obligation enfored bythe onditioning ation. Often in ontrats we �nd obligations triggered bysome assertion that holds in the urrent world. Intuitively, if the assertion26



(1) O(a) ∧ O(b) → O(a&b)(2) O(a) ⊕ O(a&b) → O(a)(3) O(a) ∧ O(a&b) → O(a&b)(4) O(a) ∧ (O(a) ⊕ O(b)) → O(a)(5) O(a) ∧O(a) → O(a)(6) O(a) ⊕O(a) → O(a)(7) O(c) ∧ (O(a) ⊕ O(b)) → (O(c) ∧ O(a)) ⊕ (O(c) ∧ O(b))(8) (⊕iO(ai)) ∧ (⊕jO(bj)) → ⊕i,j(O(ai) ∧ O(bj)) ai 6= bjTable 2: Rewriting rules for obligation O
ϕ holds in the urrent world then the obligation should be enfored in theurrent world. We model this by using the test operator ?:

[ϕ?]O(α) (13)The formula ϕ represents any ontrat formula C spei�ed in the ContratLanguage or a stand alone assertion φ like: the budget is more than 200$.We aim at translating into the logi of Setion 6.2 as few onstruts fromthe ontrat language as possible. For this we give �rst a set of rewritingrules for the CL obligation formulas whih lead to an obligation normal formwhih is muh easier to translate. The rewriting rules are also useful forgiving several restritions on the formulas of CL drawn from real ontrats inpratie. In the Table 2 the rules (1)-(4) are guided by the ommon examplesfound in real ontrats, rules (5)-(6) are the usual ontration rules, and therules (7)-(8) basially give the distributivity of the onjuntion operator overthe exlusive disjuntion operator. Note that the rules (1)-(8) are appliedonly to obligation operator over atomi or onurrent ations.For formulas involving just the obligation onstrut and the ∧ and ⊕ overobligations we an write them in the following obligation normal form. Notethat it is applied only to obligations of atomi or onurrent ations, thusgiving a normal form only for the �rst step in the traes of the ompoundations. We do not take into onsideration the · sequene syntax.
n⊕

i=1

(O(&m
i=1ai,j))where for a �xed i, and ∀j, ai,j are di�erent one from another. Beause ofthe normal form, all we need to translate for obligations into the extended

µ-alulus is: O(a), O(a&b), and the ⊕ syntati onstruts.27



6 The Underlying Logi for the Contrat Lan-guage6.1 Propositional µ-alulus: Syntax and SemantisWe take the lassial propositional µ-alulus as de�ned in [Koz83℄ (a verynie introdution an be found in [BS01℄, where the authors all the logimodal µ-alulus). µ-alulus has nie properties: it is deidable [KP83℄and has a omplete [Wal95℄ axiomati system and a omplete Gentzen-stylededution system [Wal93℄.
µ-alulus de�nes a speial set L of labels, whih we all atomi ationsand denote them by small letters from the beginning of the Latin alphabet

a, b, c, . . .. The syntax of propositional µ-alulus is:
P , Z, and ⊤ are µ-formulas; where P represents the propositional vari-ables, Z represents the state variables, and⊤ is the onstant propositiondenoting true.If ϕ and ψ are µ-formulas then ¬ϕ, ϕ ∧ ψ, and [a]ϕ are µ-formulaswhere a ∈ L are labels.If ϕ is µ-formula and ν denotes the greatest �x-point then νZ.ϕ(Z) isa µ-formula.In a more onise notation the syntax of µ-alulus is:

ϕ := P | Z | ⊤ | ¬ϕ | ϕ ∧ ϕ | [a]ϕ | νZ.ϕ(Z)We also have the usual dualities:
ϕ ∨ ψ

def
= ¬(¬ϕ ∧ ¬ψ)

〈a〉ϕ
def
= ¬[a]¬ϕ

µZ.ϕ(Z)
def
= ¬νZ.¬ϕ(¬Z)In the following we give the standard semantis of the operators of propo-sitional µ-alulus. The semanti interpretation of the above syntati on-struts follows the lassial set-theoretial approah [Koz83℄. The formulasare interpreted over a struture (similar to a labelled transition system) de-noted T . T is de�ned with respet to a set of propositions P and a set oflabels L and is T = (S, RL,VP ,V). S is the set of states (worlds), RL is afuntion assigning to eah ation in L a relation over S (i.e. RL(a) ⊆ S ×S,28



a ∈ L), VP : P → 2S is the interpretation of the propositions as subsets ofstates where the propositions hold. V is a valuation funtion assigning toeah state variable a set of states. The valuation V[Z := S] maps variable Zto the states set S and in the rest it agrees with V. For the sake of notationinstead of RL(a) we write Ra.Some of the papers in the literature present the semantis of µ-alulusas a Labeled Transition System (LTS) [BS01℄. The di�erene between a LTSand the present struture T is that in plae of a labelled transition relation
→⊆ S ×L×S we assoiate for eah ation of L a set of transitions betweentwo states. This set of pairs of states gives for eah ation a relation over S.The semantis of µ-alulus is:

‖⊤‖TV = S

‖P‖TV = VP (P )

‖Z‖TV = V(Z)

‖¬ϕ‖TV = S \ ‖ϕ‖TV

‖ϕ ∧ ψ‖TV = ‖ϕ‖TV ∩ ‖ψ‖TV

‖[a]ϕ‖TV = {s | ∀t ∈ S. (s, t) ∈ Ra ⇒ t ∈ ‖ϕ‖TV }

‖νZ.ϕ‖TV =
⋃
{S ⊆ S | S ⊆ ‖ϕ‖TV [Z:=S]}

‖ϕ ∨ ψ‖TV = ‖ϕ‖TV ∪ ‖ψ‖TV

‖〈a〉ϕ‖TV = {s | ∃t ∈ S. (s, t) ∈ Ra ∧ t ∈ ‖ϕ‖TV }

‖µZ.ϕ‖TV =
⋂
{S ⊆ S | S ⊇ ‖ϕ‖TV [Z:=S]}It is known that propositional µ-alulus is more expressive than PDLand an embed PDL [BWM01℄. Therefore we de�ne the following syntatishortuts whih apture the behavior of the ation algebra we have in PDL.We denote by [α; β]ϕ the following µ-formula [α][β]ϕWe denote by [α ∪ β]ϕ the following µ-formula [α]ϕ ∧ [β]ϕWe denote by [α∗]ϕ the following µ-formula νZ.ϕ ∧ [α]Z29



We denote by [ψ?]ϕ the following µ-formula ψ ⇒ ϕA simple example of a ompound ation in PDL is [ψ?; a]ϕ whih meansthat if in the urrent state ψ holds then we may ontinue and exeute ation
a and every time the ation terminates it will terminate in a state satisfyingformula ϕ. Guided by the de�nitions of the above syntati shortuts we geta µ-formula:

[ψ?; a]ϕ
def
= [ψ?][a]ϕ

def
= ψ ⇒ [a]ϕThis formula expresses the partial orretness assertion of Hoare logi {ψ}a{ϕ}whih means that if a program starts with the input ψ (in a state satisfying

ψ) then, whenever the program ends it will end in a state satisfying ϕ.6.2 Yet another propositional µ-alulusIn this setion we give a variant of the propositional µ-alulus speiallytailored for our needs to have a formal framework to reason about ontratsspei�ed in CL. We take the syntax of the propositional µ-alulus as de�nedin Setion 6.1, and we modify the set of ations L, and the set of propositions
P by adding a set of propositional onstants whih we denote by Pc inludedin P . The set of state variable remains also unhanged. We all the extendedlogi Cµ.The interpretation of the operators remains the same. We only give thesemantis for our extension part.We need �rst to be able to deal with true onurreny. Instead of thelabels representing atomi ations we have �nite subsets of atomi ationswith the intuitive meaning that all the atomi ations in the set are exeutedonurrently.De�nition 6.1 (onurrent sets). A onurrent set denoted by γ (possibleindexed) is a �nite subset of the set of atomi ations L, γ = {a1, . . . , an}where ai ∈ L. These onurrent sets are onsidered the labels of Cµ. Thestruture of the new logi is interpreted over 2L instead of L.Inside the box operator we now have onurrent sets γ instead of atomiations ([γ]ϕ). Note that Cµ subsumes the lassial µ-alulus by taking theations of µ-alulus to be singleton onurrent sets (γ = {a}). We hangethe RL funtion of µ-alulus into R2L whih is applied to onurrent sets of
2L instead of atomi ations of L. R2L : 2L → S×S is a funtion assigning toeah onurrent set γ of 2L a relation over S (i.e., R2L(γ) ⊆ S ×S, γ ∈ 2L).Note also that R2L for singleton onurrent sets behaves the same as RL for30
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Figure 3: The intuition for the determinism in Cµ.ations of µ-alulus. For the sake of notation instead of R2L(γ) we write Rγ .In the ase of singleton onurrent sets instead of R{a} we just write Ra whenthere is no hane of onfusion with the one from propositional µ-alulus.Also, we often use as shorthand for a onurrent set inside dynami operatorsjust the syntax [a, b]ϕ instead of [{a, b}]ϕ.Non-determinism in ation logis like PDL and onsequently propositional
µ-alulus refers to the ations. Ations are onsidered non-deterministibeause from one world/state, by performing an ation, the system may goto several other worlds/states.On the other hand deterministi variants of the above logis have beeninvestigated. Among the �rst approahes was DPDL of Ben-Ari, Halpern,and Pnueli [BAHP81℄ where the intuition is that an ation started in theurrent state may terminate in only one �nal state. The determinism isnaturally de�ned for atomi ations. Formally, the relationRa that interpretsthe atomi ation a beomes a partial funtion ρ(a), i.e., for any (s, t), (s, t′) ∈
ρ(a) then t = t′. Naturally a ompound ation may have several endingworlds, both in the interpretation of the ations as relations [FL77℄ or theations as trajetories [Pra78℄.In the nie essay [PT91℄ on Combinatory Dynami Logi (PDL is ex-tended with nominals; whih are speial onstant propositions valid in onlyone state) determinism is de�ned by an axiom:

(det) ⊢ 〈a〉ϕ ⇒ [a]ϕThe intuition is that an ation may end up in several worlds but in all theending worlds we have the same set of propositions holding. This means thatin a Kripke struture we an merge all the arrows labelled with our ationinto one arrow and all the states that the arrows end up in, into one state(for an example onsider the piture in Figure 3). Note that the authors alsorelate the determinism to the atomi ations.From the point of view of modelling ontrats it is natural to adopt thedeterministi variant of an ation logi. Usually the aim of a ontrat lause31



is to expliitly state what is the outome of performing an ation. Non-determinism is not desirable beause we would be able to model ationswhih have no lear single outome.The determinism that we have presented above extends to the onurrentsets by requiring to have only one transition from one state labelled with aonurrent set. Formally we take the approah of DPDL and restrit R2Lto assign to eah onurrent set only partial funtions (not relations). Forexample, if (s, t), (s, t′) ∈ R{a,b}, and s, t, t′ ∈ S then t = t′. Note that if
(s, t) ∈ Ra and (s, t′) ∈ R{a,b} it does not mean that for ation a we havenon-determinism. This is beause one may either perform ation a and havea formula holding after, or may perform the onurrent ation a&b and havesome other outome (other formula holding) in the state after. For exampleone may onsider O(a&b) ⊕ O(a) to generate non-determinism. A loseranalysis of the above example shows that it does not make sense to hoosebetween O(a&b) and O(a), sine if it is my hoie, then I would hoose thelest restritive for me (i.e. O(a)), and if the hoie is external (or imposed)it may be the ontrary.Note that the ation normal form ANF+ de�ned in Setion 5.2 mergestogether several arrows labelled with the same ation into one arrow, whihgoes well with our deterministi variant of µ-alulus.In order to translate obligation, permission and prohibition syntax of CLinto the new logi we need to extend the propositional µ-alulus with a newset Pc of onstant propositions. The onstant propositions are interpreted,the same as the propositional variables of P , as a set of states where theonstant proposition holds. We de�ne the obligation onstants Oa ∈ Pc whihare indexed by the atomi ations of L. Similarly we de�ne the prohibitiononstants Fa ∈ Pc whih are also indexed by the atomi ations.The intuition of the obligation onstants is that when the system is in astate s and ∃t ∈ S with (s, t) ∈ Ra and t ∈ ‖Oa‖

T
V then we may onludethat in the urrent state s the system has the obligation to exeute ation a.A �rst reason for having a set of obligation onstants indexed by theations is that we want to apture in the logi the ompositionallity of theobligation onstrut of the CL over the onurrent ations. Another reasonfor indexing the obligation onstants is that in eah state we need to knowwhih inoming ations are obligation ations; i.e. if we would have only oneonstant proposition O denoting obligation then if O holds at a state t, andtwo ations a = (s, t) and b = (s′, t) enter the state t then both ations haveto be obligatory ations.For the obligation and prohibition onstants we hoose to have a restri-tion on their semantis. 32



(1) fT (O(a)) = 〈a〉Oa(2) fT (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)(3) fT (CO ⊕ CO) = fT (CO) ∧ fT (CO)(4) fT (P (&n
i=1ai)) = 〈{a1, . . . , an}〉(∧

n
i=1¬Fai

)(5) fT (CP ⊕ CP ) = fT (CP ) ∧ fT (CP )(6) fT (F (&n
i=1ai)) = [{a1, . . . , an}](∧

n
i=1Fai

)(7) fT (F (δ) ∨ [β]F (δ)) = fT (F (δ)) ∨ fT ([β]F (δ))Table 3: The Translation Funtion for CO, CP and CFDe�nition 6.2 (onstants inompatibility). We de�ne the onstant propo-sitions Fa and the onstant obligations Oa, with a ∈ L to be inompatible,meaning that their interpretations as sets of states must be disjoint:
‖Fa‖

T
V ∩ ‖Oa‖

T
V = ∅, ∀a ∈ L.The intuition drawn from eletroni ontrats is that we want to disallowhaving in a ertain world the obligation to do an ation and prohibition ofthe same ation. Note that the above de�nition gives the following naturalresult:Proposition 6.1 (onstants impliation). We have the following implia-tions holding:1. Oa ⇒ ¬Fa2. Fa ⇒ ¬Oa6.3 Translating the language into the logiBeause of the speial status of the onurrent ations we hoose to translateboth O(a) and O(a&b). Beause of this and of the equation (5) of Setion 5.3we do not translate into Cµ the ∧ onjuntion over obligations. Nevertheless,we translate the hoie and the dynami box.We onsider a translation funtion fT applied to formulas of CL whihgenerates formulas of Cµ.Translation of the obligation to do an atomi ation a is:

fT (O(a)) = 〈a〉OaTranslation of the obligation to do both ations a and b at the same timeuses the onurrent sets: 33



fT (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)Note that the onjuntion ∧ on the right side of the de�nition is the onjun-tion operator from propositional µ-alulus (with the usual interpretation).The two translations above an be generalized and ombined into thefollowing onise notation:
fT (O(&n

i=1ai)) = 〈{a1 . . . an}〉(∧
n
i=1Oai

) (14)where Oai
are the speial onstant propositions of Cµ, and onurreny ofonly one atomi ation (i.e. &1

i=1ai) represents the exeution of only thatspei� atomi ation (a1).The translation of the exlusive or ⊕ over obligations is:
fT (CO ⊕ CO) = fT (CO) ∧ fT (CO) (15)There is no translation for the onjuntion operator ∧ over obligationsbeause this is handled by the rewriting rule (1) of Table 2.The translation of the permission operator is similar to the translation ofthe obligation operator.

fT (P (&n
i=1ai)) = 〈{a1 . . . an}〉(∧

n
i=1¬Fai

) (16)And the translation of the ⊕ over permition is:
fT (CP ⊕ CP ) = fT (CP ) ∧ fT (CP ) (17)We need to translate both prohibition over atomi ations and prohibitionover onurrent ations; i.e., F (a) and F (a&b).

fT (F (a)) = [a]F
fT (F (a&b)) = [{a, b}]F

(18)The disjuntion ∨ over prohibition is translated naturally to its orre-sponding operator of propositional µ-alulus.
fT (F (α) ∨ [β]F (γ)) = fT (F (α)) ∨ fT ([β]F (γ)) (19)Regarding general ontrat lauses C, the onjuntion is translated as theorresponding onjuntion operator of propositional µ-alulus, and until U ,and next © operators are translated using �x-point expressions.34



fT (C1 ∧ C2) = fT (C1) ∧ f
T (C2)

fT (©C) = [any]fT (C)

fT (C1UC2) = µZ.fT (C2) ∨ (fT (C1) ∧ [any]Z ∧ 〈any〉⊤)

(20)where any is the speial ation whih is interpreted as the union of all ationsin L; the intuition is doing any ation.Beause α inside the dynami box [α]C is a ompound ation obtained byapplying the operators of the ation algebra of Setion 5.1 and in Cµ we haveonly onurrent sets of atomi ations, we have to give separate translationsfor eah ompound ation. We give the translation of the ompound ationsunder the dynami box operator from CL into Cµ as follows:
(1) fT ([&n

i=1ai]C) = [{a1, . . . , an}]f
T (C)

(2) fT ([(&n
i=1ai)α]C) = [{a1, . . . , an}]f

T ([α]C)

(3) fT ([α+ β]C) = fT ([α]C) ∧ fT ([β]C)

(4) fT ([ϕ?]C) = fT (ϕ) ⇒ fT (C)

(21)
7 Properties of the Contrat LanguageWe show here some of the good properties CL enjoys, as well as that thelanguage avoids most important deonti paradoxes and the undesirable prop-erties listed in Setion 4.Proposition 7.1 ensures that it is not needed to use negation on deontioperators, while Proposition 7.2 establishes the standard relation betweenobligations and permissions.Proposition 7.1. The following statements are valid in CL:a) P (α) ≡ ¬F (α)b) F (α) ≡ ¬P (α)Proof: The proof follows easy from the translation of the P and F operatorsinto the logi and the duality of the µ-alulus operators [·] and 〈·〉. 2Proposition 7.2. The following statement is valid in CL:

O(α) ⇒ P (α)35



¬Fa

FbFa∧

a

t’

t

s {a,b}

Figure 4: A model M in the Cµ.Proof: The proof follows from the similar translations of the O and Pinto the logi. Moreover, the proof makes use of the De�nition 6.2 of theinompatibility of Oa and Fa onstants. 2The following three results express that CL does not allow the derivationof ertain undesirable properties.Proposition 7.3. The following statement does not hold in CL:
P (a) ⇒ P (a&b)Proof: We give a ounter example to show that the impliation is notpossible. In our ase we should give a model in the logi whih is a model forthe translation of the �rst CL formula and is not a model for the translationof the seond CL formula.Consider (s, t) ∈ Ra and (s, t′) ∈ R{a,b} with t 6∈ ‖Fa‖

T
V and t′ ∈ ‖Fa‖

T
V ∩

‖Fb‖
T
V . Consider the model M in Figure 4 whih has states S = {s, t, t′}two relations: one for ation a, Ra = {(s, t)} and one for ation {a, b},

R{a,b} = {s, t′}. M is a model for the �rst formula but is not a model of theseond formula. 2Proposition 7.4. The following statement does not hold in CL:
F (a) ⇒ F (a&b)Proof: The proof is based again on giving a ounterexample. We hangethe example of Proposition 7.3 suh that t ∈ ‖Fa‖

T
V and t′ 6∈ ‖Fa‖

T
V . M isin this ase a model of the �rst formula but is not a model of the seondformula. 236
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Figure 5: A model in Cµ for the CL prohibition expression F (a).Remark: We may give an alternative translation of the prohibition opera-tor F so that the above impliation holds in CL. The translation we give for
F (a) respets equations (2) and (3) and represents also F (a&b):

fT (F (a)) =
∧

γ⊆L

[γ](∧ai∈γ Fai
) (22)where Fai

are the speial onstant propositions and γ is a onurrent setwhih ontains ation a, i.e., γ = {a} ∪ γ′, γ′ ⊆ L \ {a}. For a pituredintuition of this translation onsider Figure 5.If we were to onsider only one onstant proposition F instead of theations indexed onstants Fa then the translation above is more onise andalso respets the above impliation and equations (2) and (3).
fT (F (a)) =

∧

γ⊆L

[γ]F (23)Note that this translation of prohibition goes well with the desideratafrom Broersen et al. [BWM01℄. If F (a&b) than we an not say that F (a)but we may onlude that we are forbidden to do any other onurrent ationswhih involves the a&b.Proposition 7.5. The following statements do not hold in CL:a) F (a&b) ⇒ F (a)b) P (a&b) ⇒ P (a)Proof: Proof proeeds similar to the proofs of the propositions above bygiving a ounterexample. 237



7.1 ParadoxesThe following propositions express that the most important paradoxes ofdeonti logi are avoided in our ontrat language, either beause they arenot expressible in the language or beause they are simply exluded by thetranslation into the underlying logi.Proposition 7.6. Ross's paradox does not hold in CL.Proof: Basially, Ross's paradox says that it is ounter intuitive to have
O(a) ⇒ O(a + b); i.e., Obligation to drink implies obligation to drink or tokill. In CL this inferene is not possible. The �rst formula is translated into
Cµ as 〈a〉Oa. For the seond formula we have O(a + b) ≡ O(a) ⊕ O(b)

fT

=
〈a〉Oa ∧ 〈b〉Ob. We have in the logi that 〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob. 2Proposition 7.7. The Free Choie Permission paradox does not exist in CL.Proof: The Free Choie Permission paradox basially says that from havingone permission we may infer that we have any permission. That is: P (a) ⇒
P (a+ b) or P (a) ⇒ P (a) ∧ P (b).Neither of the two impliations hold in our approah. The seond oneis obvious. The �rst one is based on the seond one beause P (a + b) ≡
P (a) ⊕ P (b) whih translates in the logi with the onjuntion operator. 2Proposition 7.8. Sartre's Dilemma is not expressable in our approah.Proof: Sartre's dilemma an be rewritten in ontrats terminology as:Obliged to meet John and Forbidden to meet John. This is formally writtenin CL as O(a)∧F (a) whih is a well formed formula. The translation into Cµwould result in a ontradition beause we would have a state t with (s, t) ∈
Ra and t ∈ ‖Fa‖

T
V and t ∈ ‖Oa‖

T
V . This means that ‖Fa‖

T
V ∩ ‖Oa‖

T
V 6= ∅whih is a ontradition with the semantis of the two onstant propositionsin the logi (see De�nition 6.2). So this paradox is dealt with at the semantilevel, in Cµ. 2Proposition 7.9. The Good Samaritan paradox an not be expressed like inSDL, whih means we do not have this paradox.Proof: The Good Samaritan paradox uses ought-to-be and is more deliateto transform it into our ought-to-do approah. The transformation lookslike: ψ ⇒ O(h) whih means that If Smith has been robbed then John isobliged to help Smith. Where ψ is Smith has been robbed, ⇒ is if . . . then,and h is the ation John helps Smith. We an not express in CL obligation38



over onjuntion of two ations that are not performed onurrently as thisparadox is expressed in SDL; i.e., we annot express O(a∧ b). Also, with ourrepresentation of the paradox we annot infer that ψ holds; i.e., infer thatSmith has been robbed. 2Proposition 7.10. The Chisholm's paradox is avoided in CL.Proof: The propositions of the Chisholm's paradox are expressed in CL as:1. O(a)2. [a]O(b)3. [a]O(b)Note �rst that formulas (1) and (3) give the CTD formula Oϕ(a) of CLwhere ϕ = O(b). The problem in SDL was that one may infer both O(b)and O(b) holding in the same world. This is not our ase beause O(b) holdsonly after doing ation a, where O(b) holds only after doing the ontraditoryation a. In the model of the above representation we an not have in thesame world both O(b) and O(b).
2Proposition 7.11. The Gentle Murderer paradox is avoided in CL.Proof: The propositions of the Gentle Murderer paradox are expressed inCL as:1. F (a)2. [a]O(b)Note �rst that the above two formulas give the CTP formula Fϕ(a) where

ϕ = O(b). The problem in the paradox omes from the fat that in SDL it ispossible to express the natural impliation b ⇒ a whih in ommon languageis If John kills the mother gently then it implies that John kills the mother.This is not the ase in CL beause we do not have impliation among ations.On the other hand we ould onsider that the ation of killing gentlyimplies the ation of killing by giving a formula in CL whih representsimpliation of ations:
[b]ϕ ⇒ [a]ϕ (24)The expression above intuitively says that whenever after exeuting ation

b and formula ϕ holds then it must be the ase that whenever after exeuting39



the ation a the same formula ϕ holds. In other words all the e�ets of ation
b are also the e�ets of ation a but there may be e�ets of ation a that arenot e�ets of ation b.Still with this de�nition of impliation among ations we an not infer
O(b) ⇒ O(a), whih in SDL lead to the problem of the paradox. This isbeause by onsidering ation b to imply ation a we have the following:
O(b)

fT

=〈b〉Ob

(24)
⇒ 〈a〉Ob 6= O(a) 28 ExampleIn what follows we provide part of a ontrat between a servie providerand a lient, where the provider gives aess to Internet to the lient. Weonsider two parameters of the servie: high and low, whih denote the lient'sInternet tra�. We abstrat away from several tehnial details as how it ismeasured the Internet tra�. We will onsider only the following lauses ofthe ontrat:1. Whenever the Internet tra� is high then the lient must pay x$ im-mediately, or the lient must notify the servie provider by sending ane-mail speifying that he will pay later.2. In ase the lient delays the payment, after noti�ation he must imme-diately lower the Internet tra� to the low level, and pay later 2 ∗ x$.3. If the lient does not lower the Internet tra� immediately, then thelient will have to pay 3 ∗ x$.4. The provider is forbidden to anel the ontrat without previous writ-ten noti�ation by normal post and by e-mail.5. The provider is obliged to provide the servies as stipulated in theontrat, and aording to the law regulating Internet servies.We here formalize this partial ontrat, showing the CL formula for eahof the �ve lauses above. Let us �rst de�ne the di�erent propositions andations:
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ϕ = the Internet tra� is high
p = lient pays x$
d = lient delays payment
n = lient noti�es by e-mail
l = lient downs the Internet tra�
s = provider provides the servie as stipulated in the ontrat
c = provider anels the ontrat
e = provider sends a written noti�ation to the lient by e-mail
w = provider sends a written noti�ation to the lient by normal postThe following is the ontrat written in CL:1. �(ϕ ⇒ O(p+ (d&n)))2. �([d, n](O(l) ∧ [l]♦(O(p) ∧ [p]O(p))))3. �([d, n][ l ]♦(O(p) ∧ [p]O(p) ∧ [p · p]O(p))4. �(F (c) ∧ [w, e]P (c))5. �O(s)Remarks1. Formulas 2 and 3 are rather long beause we an not represent in CLquantitative information like pay two times (2 ∗ x$). It might be morenatural to use the & operator over ations with the same intuition asin logis of resoures (e.g. linear logi [Gir87℄) and for obliged to paytwie we ould write in CL O(p&p) instead of O(p)∧ [p]O(p). Formulas2 and 3 above would beome:2' �([d, n](O(l) ∧ [l]♦(O(p&p))))3' �([p · p, n][ l ](♦O(p&p&p)))For these two formulas written in this onise syntax we give the exam-ple model in Figure 6. The model as it is allows unwanted traes whihare pitured in dashed labeled arrows. A disussion and a solution tothis follows.
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ϕ?

ϕ?
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ϕ?
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ϕ? • {d,n}

{p,p}

{p,p,p}Figure 6: A model for statements 2' and 3' of the ontrat example.2. The above example shows the importane of being able to model heka ontrat. Notie that the ontrat allows the lient to go from lowto high Internet tra� many times and pay the penalty (2 ∗ x$) onlyone. The problem is that after the lient downs the Internet tra�,he might get a high tra� again and delay the payment till a futuremoment. To avoid this situation we should add a lause speifying that�after getting a high Internet tra�, if the lient delays the paymentthen he an get a high tra� again only after having paid�. In CL thismight be expressed by hanging formulas 2 and 3 above:2� �([d, n](O(l) ∧ ¬ϕU (O(p) ∧ [p]O(p)))3� �([d, n][ l ](¬ϕU (O(p) ∧ [p]O(p) ∧ [p · p]O(p)))In Figure 7 we give a model for the new statements 2� and 3�. Notethat the dashed arrows from the previous model have hanged into thedotted arrows, and we have also added the negative guards ¬ϕ? so thatthe until U formulas are satis�ed. Also the hange in the statementsrequired two more states to be added to the model.42
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Figure 7: A model for the orreted example.Model heking is out of the sope of this paper and will be onsiderin future works.3. Notie that our ontrat language laks the possibility of expressingtiming onstraints and more involved lauses like �the lient must paywithin 7 days�, or �the lient is forbidden to pass more than 10 timesper month from low to high Internet tra��, an only be expressed hereby introduing speial variables and simulating a ounter. For modelheking purposes we would like to inlude the possibility to expressthese properties diretly in the logi and an extension with real-timewould be desirable.9 Other ApproahesIn this setion we ontrast our approah in detail with the work by Broersenet al [BWM01℄. Broersen et al introdue a very interesting haraterization ofobligation, permission and prohibition by following an ought-to-do approahbased on a deonti logi of regular ations. The idea is to use the µa-alulusas a basis and then de�ne obligation, permission and prohibition over regular43



expressions on ations. The main di�erenes w.r.t. our approah are thefollowing.1. There is no notion of ontrat language, only haraterization of obli-gation, permission and prohibition in the logi.2. • The only deonti primitive is permission over atomi ations;
• Obligation is de�ned as an in�nite onjuntion of negation of per-missions over ations not in the sope of the negation. We avoidthis in�nite onjuntion by de�ning both prohibition and obliga-tion as primitive (and using the propositional onstants Oa and Faat the semanti level) and prohibition as negation of permission.
• Obligation (O(·)) and prohibition (F (·)) are de�ned in terms ofpermissions (e.g. F (α) = ¬P (α)).3. All the deonti operators are de�ned over regular ations, inluding theKleene star. We onsider it is not natural to have starred ations underthe deonti notions, we have thus dropped it.4. Obligation on the hoie of ations is not ompositional; it is omposi-tional in our ase.5. There is no onjuntion over ations, i.e., it is not possible to expressonurrent ations, whih is the ase in our approah.6. The approah uses disjuntion over ations. We have deided to usethe exlusive or instead.7. Negation on ations (meaning �not performing an ation�) is de�nedas a omplement of the (in�nite) set of ations. In our ase the set ofations is �nite, at the language level, and we have a speial de�nitionfor negation of ations.8. CTDs annot be de�ned unless an extension of the µa-alulus is on-sidered. In our setting both CTDs and CTPs are easily de�ned.9. The semantis of obligation, permission and prohibition is given interms of properties over traes, instead of over an extension of theKripke struture as in our ase.The idea of using a propositional onstant in an ation-based logi forgiving semantis to the deonti notions was �rst presented in [Mey88℄, wherethe speial onstant V was added to denote an �undesirable state-of-a�airs�in the urrent state. 44



10 ConlusionIn this paper we have presented a formal language for writing ontrats, andprovided a formal semantis through the translation of the language intoa variant of the propositional µ-alulus extended with onurrent ations.The language avoids most of the lassial paradoxes, and enjoys all the nieproperties listed in Setion 4. To our knowledge no other work in the �eld hasahieved suh goals. Given that our appliation domain is that of eletroniontrats, we have also given arguments for restriting syntatially and se-mantially ertain uses of (and relations between) obligations, permissionsand prohibitions, usually onsidered in philosophial and logial disussions.10.1 Further WorkOur work is a �rst step towards a more ambitious task, and we believe theformalism hosen will allow us to ahieve the following goals. The �rst ex-tension is to add real-time to be able to express and reason about ontratswith deadlines. Other immediate extension is the syntati distintion in thesignature of the de�nition part of CL between subjets, proper ations andobjets. This would permit to make queries (and model hek properties) forinstane about all the rights and obligations of a given subjet, or determineunder whih onditions somebody is obliged/forbidden of performing some-thing. We have not onsidered in this paper the problem of negotiation normonitoring of ontrats. We believe these are important features of a on-trat language whih must be taken into aount in future works. Conerningations, we got inspiration from the works on dynami logis [Pra76℄. Wewould like to deepen the study of the ation algebra to make the distintionbetween the intuitive meaning of onjuntion under obligation, permissionand prohibition. Further investigation is also needed to haraterize nega-tion on ations, both for apturing and distinguishing the ideas of �not doingsomething� and �doing something but a given ation�, whih are not di�er-entiated in our urrent approah. The use of a variant of the µ-alulus as asemanti framework for our language is not asual. The logi has nie prop-erties: it is deidable [KP83℄, has a omplete axiomati system [Wal95℄, anda omplete Gentzen-style dedution system [Wal93℄. We want to explore theproof system of the logi, and to extend existing model hekers [Bie97℄ toanalyze ontrats as mentioned in the remarks of our example (Setion 8).We would like to be able to extrat a ontrat monitor from the Kripkestruture of a given ontrat. Notie that this is not easy in general sinethere are many models for a partiular ontrat. As an example onsider aontrat ontaining the following lauses:45



�(φ1 ⇒ ♦O(p1))
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