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Stati Analysis of SPDIs for State-SpaeRedutionGordon Pae∗ Gerardo Shneider†April 2006AbstratPolygonal hybrid systems (SPDI) are a sublass of planar hybridautomata whih an be represented by pieewise onstant di�erentialinlusions. The reahability problem as well as the omputation of er-tain objets of the phase portrait, namely the viability, ontrollabilityand invariane kernels, for suh systems is deidable. In this paperwe show how to ompute another objet of an SPDI phase portrait,namely semi-separatrix urves and show how the phase portrait anbe used for reduing the state-spae for optimizing the reahabilityanalysis.1 IntrodutionHybrid systems ombining disrete and ontinuous dynamis arise as math-ematial models of various arti�ial and natural systems, and as approxima-tions to omplex ontinuous systems. They have been used in various do-mains, inluding avionis, robotis and bioinformatis. Reahability analysishas been the prinipal researh question in the veri�ation of hybrid systems,even if it is a well-known result that for most non-trivial sublasses of hybridsystems reahability and most veri�ation questions are undeidable. Vari-ous deidable sublasses have, subsequently, been identi�ed, inluding timed[AD94℄ and retangular automata [HKPV95℄, hybrid automata with linear
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vetor �elds [LPY01℄, pieewise onstant derivative systems (PCDs) [MP93℄and polygonal di�erential inlusion systems (SPDIs) [ASY01℄.Compared to reahability veri�ation, qualitative analysis of hybrid sys-tems is a relatively negleted area [ALQ+01b, DV95, KdB01, MS00, SP02,SJSL00℄. Typial qualitative questions inlude: �Are there `sink' regionswhere a trajetory an never leave one it enters the region?�; �Whih arethe basins of attration of suh regions?�; �Are there regions in whih everypoint in the region is reahable from every other point in the region withoutleaving it?�. To answer suh questions one usually gives a olletion of ob-jets haraterizing these sets, hene providing useful information about thequalitative behavior of the hybrid system. The set of all suh objets for agiven system is alled the phase portrait of the system.De�ning and onstruting phase portraits of hybrid systems has been diretlyaddressed for PCDs in [MS00℄, and for SPDIs in [ASY02℄. In this paper wepresent a a new element of the phase portrait for SPDIs, and disuss howthe phase portrait an be used to redue the size of an SPDI, as an aid toveri�ation.Roughly speaking, an SPDI (Fig. 1) is a �nite partition P of the plane (intoonvex polygonal areas), and, for eah P ∈ P an assoiated pair of vetors aPand bP . The SPDI behaviour is de�ned by the di�erential inlusion ẋ ∈ ∠
bP

aPfor x ∈ P , where ∠
b

a
denotes the angle on the plane between the vetors aand b.In [ASY01℄ it has been proved that edge-to-edge and polygon-to-polygonreahability in SPDIs is deidable by exploiting the topologial properties ofthe plane. The proedure is not based on the omputation of the reah-setbut rather on the exploration of a �nite number of types of qualitative be-haviors obtained from the edge-signatures of trajetories (the sequenes oftheir intersetions with the edges of the polygons). Suh types of signaturesmay ontain loops whih an be very expensive (or impossible) to explorenaively. However, it has been shown that loops have strutural propertiesthat are exploited by the algorithm to e�iently ompute the e�et of suhloops. In summary, the novelty of the approah is the ombination of severaltehniques, namely, (i) the representation of the two-dimensional ontinuousdynamis as a one-dimensional disrete dynamial system, (ii) the harater-ization of the set of qualitative behaviors of the latter as a �nite set of typesof signatures, and (iii) the �aeleration� of the iterations in the ase of ylisignatures.Given a yle on a SPDI, we an speak about a number of kernels pertainingto that yle. The viability kernel is the largest set of points in the yle whihmay loop forever within the yle. The ontrollability kernel is the largest setof strongly onneted points in the yle (suh that any point in the set may2
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Figure 1: An SPDI and its trajetory segment.be reahed from any other). An invariant set is a set of points suh that eahpoint must keep rotating within the set forever. The invariane kernel is thelargest of suh sets. The information gathered for omputing reahabilityturns out to be useful for omputing viability, ontrollability and invarianekernels of suh systems. Algorithms for omputing these kernels have beenpresented in [ASY02, Sh04℄ and implemented in the tool set SPeeDI+[PS06℄.The ontribution of this paper is threefold. We start by giving an algorithmto ompute semi-separatrix urves (or simply, semi-separatries) of SPDIs.Separatries are onvex polygons disseting the plane into two mutually non-reahable subsets. The notion of separatrix an be relaxed, obtaining semi-separatrix urves, suh that some points in one set may be reahable from theother set, but not vie-versa. We then show how the kernels an be used toanswer reahability questions diretly. We also show how semi-separatriesan be used to optimize the reahability algorithm for SPDIs by reduing thenumber of states of the SPDI graph. The optimization is based on topologialproperties of the plane (and in partiular, that of SPDIs).The paper is strutured as follows. In the next setion we introdue theneessary theoretial bakground, inluding the de�nition of SPDI, kernelsand semi-separatries as well as how to ompute suh phase portrait objets.In Setion 3 we show how the semi-separatries an be used for reduingthe state-spae of the reahability graph whereas in Setion 4 we present theoptimization done by using the kernels.
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2 Theoretial BakgroundA (positive) a�ne funtion f : R → R is suh that f(x) = ax+ b with a > 0.An a�ne multivalued funtion F : R → 2R, denoted F = 〈fl, fu〉, is de�nedby F (x) = 〈fl(x), fu(x)〉 where fl and fu are a�ne and 〈·, ·〉 denotes an inter-val. For notational onveniene, we do not make expliit whether intervalsare open, losed, left-open or right-open, unless required for omprehension.For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverseof F is de�ned by F−1(x) = {y | x ∈ F (y)}. The universal inverse of F isde�ned by F̃−1(I) = I ′ if and only if I ′ is the greatest non-empty intervalsuh that for all x ∈ I ′, F (x) ⊆ I.It is not di�ult to show that F−1 = 〈f−1
u , f−1

l 〉 and similarly that F̃−1 =
〈f−1

l , f−1
u 〉, provided that 〈f−1

l , f−1
u 〉 6= ∅. Notie that if I is a singleton then

F̃−1 is de�ned only if fl = fu. These lasses of funtions are losed underomposition.A trunated a�ne multivalued funtion (TAMF) F : R → 2R is de�nedby an a�ne multivalued funtion F and intervals S ⊆ R
+ and J ⊆ R

+ asfollows: F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For onvenienewe write F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ Jand F−1(I) = F−1(I ∩ J) ∩ S. The universal inverse of F is de�ned by
F̃−1(I) = I ′ if and only if I ′ is the greatest non-empty interval suh that forall x ∈ I ′, F (x) ⊆ I and F (x) = F(x).We say that F is normalized if S = DomF = {x | F (x) ∩ J 6= ∅} (thus,
S ⊆ F−1(J)) and J = ImF = F(S).The following theorem states that TAMFs are losed under omposition[ASY01℄.Theorem 1. The omposition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦ F1)(I) = F(I) = F (I ∩ S) ∩ J ,where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).2.1 SPDIAn angle ∠
b

a
on the plane, de�ned by two non-zero vetors a,b is the set ofall positive linear ombinations x = α a+β b, with α, β ≥ 0, and α+β > 0.We an always assume that b is situated in the ounter-lokwise diretionfrom a.A polygonal hybrid system1 (SPDI) is de�ned by giving a �nite partition Pof the plane into onvex polygonal sets, and assoiating with eah P ∈ P a1In the literature the names polygonal di�erential inlusion and simple planar di�er-ential inlusion have been used to desribe the same systems.4



ouple of vetors aP and bP . Let φ(P ) = ∠
bP

aP
. The SPDI is determined by

ẋ ∈ φ(P ) for x ∈ P .Let E(P ) be the set of edges of P . We say that e is an entry of P if forall x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P for some ǫ > 0. We say that eis an exit of P if the same ondition holds for some ǫ < 0. We denote byin(P ) ⊆ E(P ) the set of all entries of P and by out(P ) ⊆ E(P ) the set of allexits of P .Assumption 1. All the edges in E(P ) are either entries or exits, that is,
E(P ) = in(P ) ∪ out(P ).A trajetory segment of an SPDI is a ontinuous funtion ξ : [0, T ] → R

2whih is smooth everywhere exept in a disrete set of points, and suh thatfor all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). Thesignature, denoted Sig(ξ), is the ordered sequene of edges traversed by thetrajetory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If
T = ∞, a trajetory segment is alled a trajetory.Example 1. Consider the SPDI illustrated in Fig. 1. For sake of simpliitywe will only show the dynamis assoiated to regions R1 to R6 in the piture.For eah region Ri, 1 ≤ i ≤ 6, there is a pair of vetors (ai,bi), where:
a1 = (45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 =
(−2,−3), a5 = b5 = (1,−15), a6 = (1,−2),b6 = (1,−1).A trajetory segment starting on interval I ⊂ e0 and �nishing in interval
I ′ ⊆ e4 is depited.De�nition 1. We say that a signature σ is feasible if and only if there existsa trajetory segment ξ with signature σ, i.e., Sig(ξ) = σ.From this de�nition, it immediately follows that extending an unfeasiblesignature, an never make it feasible:Proposition 1. If a signature σ is not feasible, then neither is any extensionof the signature � for any signatures σ′ and σ′′, the signature σ′σσ′′ is notfeasible.Given an SPDI S, let E be the set of edges of S, then we an de�ne a graph
GS where nodes orrespond to edges of S and suh that there exists an arfrom one node to another if there exists a trajetory segment from the �rstedge to the seond one without traversing any other edge. More formally:De�nition 2. Given an SPDI S, the underlying graph of S (or simply thegraph of S), is a graph GS = (NG, AG), with NG = E and AG = {(e, e′) |
∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′}. We say that a sequene e0e1 . . . ekof nodes in GS is a path whenever (ei, ei+1) ∈ AG for 0 ≤ i ≤ k − 1.5



The following lemma shows the relation between edge signatures in an SPDIand paths in its orresponding graph.Lemma 2. If ξ is a trajetory segment of S with edge signature Sig(ξ) =
σ = e0 . . . ep, it follows that σ is a path in GS .Remark. Notie that the onverse of the above lemma is not true in general.It is possible to �nd a ounter-example where there exists a path from node
e to e′, but it does not exist a trajetory segment form edge e to edge e′ onthe SPDI.Lemma 3. If σ = e0 . . . ep is a feasible signature, then σ is a path in GS .2.2 Suessors and predeessorsGiven an SPDI, we �x a one-dimensional oordinate system on eah edgeto represent points laying on edges [ASY01℄. For notational onveniene, weindistintly use letter e to denote the edge or its one-dimensional representa-tion. Aordingly, we write x ∈ e or x ∈ e, to mean �point x in edge e withoordinate x in the one-dimensional oordinate system of e�. The same on-vention is applied to sets of points of e represented as intervals (e.g., x ∈ I or
x ∈ I, where I ⊆ e) and to trajetories (e.g., �ξ starting in x� or �ξ startingin x�).Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e, Succe,e′(I) is theset of all points in e′ reahable from some point in I by a trajetory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). It has beenshown [ASY01℄ that Succe,e′ is a TAMF.Example 2. Let e1, . . . , e6 be as in Fig. 1 and I = [l, u]. We assume aone-dimensional oordinate system. We have:
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with Succeiei+1
(I) = Feiei+1

(I ∩ Si) ∩ Ji+1, for 1 ≤ i ≤ 5, and Succe6e1
(I) =

Fe6e1
(I ∩ S6) ∩ J1.Given a sequene w = e1, e2, . . . , en, Theorem 1 implies that the suessor of

I along w de�ned as Succw(I) = Succen−1,en
◦ . . . ◦ Succe1,e2

(I) is a TAMF.Example 3. Let σ = e1 · · · e6e1. It results that Succσ(I) = F (I ∩ S) ∩ J ,where:
F (I) =

[
l

4
+

1

3
,

9

10
u +

2

3

] (1)
S = [37

25
e−16, 10] and J = [1

3
, 29

3
] are omputed using Theorem 1.For I ⊆ e′, Pree,e′(I) is the set of points in e that an reah a point in

I by a trajetory segment in P . The ∀-predeessor P̃re(I) is de�ned in asimilar way to Pre(I) using the universal inverse instead of just the inverse:For I ⊆ e′, P̃reee′(I) is the set of points in e suh that any suessor ofsuh points are in I by a trajetory segment in P . Both de�nitions an beextended straightforwardly to signatures σ = e1 · · · en: Preσ(I) and P̃reσ(I).Therefore, the suessor operator has two inverse operators.Example 4. Let σ = e1 . . . e6e1 be as in Fig. 1 and I = [l, u]. Now,
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].Similarly, we ompute P̃reσ(I) = F̃−1(I∩J)∩S, where F̃−1(I) =

[
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].2.3 Qualitative analysis of simple edge-ylesLet σ = e1 · · · eke1 be a simple edge-yle, i.e., ei 6= ej for all 1 ≤ i 6=
j ≤ k. Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉 (we suppose thatthis representation is normalized). We denote by Dσ the one-dimensionaldisrete-time dynamial system de�ned by Succσ, that is xn+1 ∈ Succσ(xn).7



Assumption 2. None of the two funtions fl, fu is the identity.Let l∗ and u∗ be the �xpoints2 of fl and fu, respetively, and S ∩J = 〈L, U〉.A simple yle is of one of the following types [ASY01℄:STAY. The yle is not abandoned neither by the leftmost nor the rightmosttrajetory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost trajetory exits the yle through the left (onsequentlythe leftmost one also exits) or the leftmost trajetory exits the ylethrough the right (onsequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost trajetory exits the yle through the left andthe rightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost trajetory exits the yle (through the left) butthe rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .EXIT-RIGHT. The rightmost trajetory exits the yle (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.Example 5. Let σ = e1 · · · e6e1. We have S ∩ J = 〈L, U〉 = [1

3
, 29

3
]. The�xpoints of Eq. (1) are suh that 1

3
< l∗ = 11

25
< u∗ = 20

3
< 29

3
. Thus, σ is aSTAY.The lassi�ation above gives us some useful information about the quali-tative behavior of trajetories. Any trajetory that enters a yle of typeDIE will eventually quit it after a �nite number of turns. If the yle is oftype STAY, all trajetories that happen to enter it will keep turning insideit forever. In all other ases, some trajetories will turn for a while and thenexit, and others will ontinue turning forever. This information is ruial forproving deidability of the reahability problem.Example 6. Consider the SPDI of Fig. 1. Fig. 2 shows part of the reah setof the interval [8, 10] ⊂ e0, answering positively to the reahability question:Is [1, 2] ⊂ e4 reahable from [8, 10] ⊂ e0? Fig. 2 has been automatiallygenerated by the SPeeDi toolbox we have developed for reahability analysisof SPDIs based on the results of [ASY01℄.2The �xpoint x∗ is omputed by solving the equation f(x∗) = x∗, where f(·) is positivea�ne.
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Figure 2: Reahability analysis.The above result does not allow us to diretly answer other questions aboutthe behavior of the SPDI suh as determine for a given point (or set of points)whether: (a) there exists (at least) one trajetory that remains in the yle,and (b) it is possible to ontrol the system to reah any other point. In orderto do this, we need to further study the properties of the system aroundsimple edge-yles.2.4 KernelsWe an now present how to ompute the invariane, ontrollability and via-bility kernels of an SPDI. Proofs are omitted but for further details, refer to[ASY02℄ and [Sh04℄. In the following, for K a subset of R
2 and σ a ylisignature, we de�ne Kσ as follows:

Kσ =

k⋃

i=1

(int(Pi) ∪ ei) (2)where Pi is suh that ei−1 ∈ in(Pi), ei ∈ out(Pi) and int(Pi) is Pi's interior.2.4.1 Viability KernelWe now reall the de�nition of viability kernel [Aub01℄.De�nition 3. A trajetory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. Kis a viability domain if for every x ∈ K, there exists at least one trajetory9



(a) (b)Figure 3: (a) Viability Kernels; (b) Controllability Kernels
ξ, with ξ(0) = x, whih is viable in K. The viability kernel of K, denoted
Viab(K), is the largest viability domain ontained in K.For I ⊆ e1 we de�ne Preσ(I) to be the set of all x ∈ R

2 for whih there existsa trajetory segment ξ starting in x, that reahes some point in I, suh that
Sig(ξ) is a su�x of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonalsubset of the plane whih an be alulated using the following proedure.We start by de�ning:

Pree(I) = {x | ∃ξ : [0, t] → R
2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}and apply this operation k times: Preσ(I) =

⋃k

i=1
Preei

(Ii) with I1 = I,
Ik = Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k − 1.The following result provides a non-iterative algorithmi proedure for om-puting the viability kernel of Kσ on an SPDI:Theorem 4. If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) =

∅.Example 7. Fig. 3-(a) shows all the viability kernels of the SPDI given inExample 1. There are 4 yles with viability kernels � in the piture two ofthe kernels are overlapping.
10



2.4.2 Controllability KernelWe say K is ontrollable if for any two points x and y in K there exists atrajetory segment ξ starting in x that reahes an arbitrarily small neighbor-hood of y without leaving K. More formally:De�nition 4. A set K is ontrollable if ∀x,y ∈ K, ∀δ > 0, ∃ξ : [0, t] →
R

2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). Theontrollability kernel of K, denoted Cntr(K), is the largest ontrollable subsetof K.For a given yli signature σ, we de�ne CD(σ) as follows:
CD(σ) =





〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE (3)For I ⊆ e1 let us de�ne Succσ(I) as the set of all points y ∈ R

2 for whih thereexists a trajetory segment ξ starting in some point x ∈ I, that reahes y,suh that Sig(ξ) is a pre�x of e1 . . . ek. The suessor Succσ(I) is a polygonalsubset of the plane whih an be omputed similarly to Preσ(I). De�ne
C(σ) = (Succσ ∩ Preσ)(CD(σ))We ompute the ontrollability kernel of Kσ as follows:Theorem 5. Cntr(Kσ) = C(σ).Example 8. Fig. 3-(b) shows all the ontrollability kernels of the SPDIgiven in Example 1. There are 4 yles with ontrollability kernels � in thepiture two of the kernels are overlapping.The following result whih relates ontrollability and viability kernels, statesthat the viability kernel of a given yle is the loal basin of attration of theorresponding ontrollability kernel.Proposition 2. Any viable trajetory in Kσ onverges to Cntr(Kσ).Let Cntrl(Kσ) be the losed urve obtained by taking the leftmost traje-tory and Cntru(Kσ) be the losed urve obtained by taking the rightmosttrajetory whih an remain inside the ontrollability kernel. In other words,

Cntrl(Kσ) and Cntru(Kσ) are the two polygons de�ning the ontrollabilitykernel. 11



A non-empty ontrollability kernel Cntr(Kσ) of a given yli signature σpartitions the plane into three disjoint subsets: (1) the ontrollability kernelitself, (2) the set of points limited by Cntrl(Kσ) (and not inluding Cntrl(Kσ))and (3) the set of points limited by Cntru(Kσ) (and not inluding Cntru(Kσ)).De�nition 5. We de�ne the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) tobe the subset de�ned by (2) above if the yle is ounter-lokwise or to bethe subset de�ned by (3) if it is lokwise. The outer of Cntr(Kσ) (denotedby Cntrout(Kσ)) is de�ned to be the subset whih is not the inner nor theontrollability itself.Remark: Notie that an edge in the SPDI may be split into parts by theontrollability kernel � part inside, part on the kernel and part outside. Insuh ases, we an generate a di�erent SPDI, with the same dynamis butwith the edge split into parts, suh that eah part is ompletely inside, on oroutside the kernel. Although the signatures will obviously hange, it is trivialto prove that the behaviour of the SPDI remains idential to the original. Tosimplify presentation, in the rest of the paper, we will assume that all edgesare either ompletely inside, on or ompletely outside the kernels. We notethat in pratie splitting is not neessary sine we an just onsider parts ofedges.Proposition 3. Given two edges e and e′, one lying ompletely inside aontrollability kernel, and the other outside or on the same ontrollabilitykernel, suh that ee′ is feasible, then there exists a point on the ontrollabilitykernel, whih is reahable from e and from whih e′ is reahable.Proof. Let e ⊆ Cntrin(Kσ). Let us assume that e′ ⊆ Cntr(Kσ); sine ee′is feasible, by the Jordan urve theorem [Hen79℄, the trajetory must ross
Cntrl(Kσ) or Cntru(Kσ) at least one. Assume the �rst holds, then thereexists x ∈ Cntrl(Kσ) suh that exe′ is feasible. If e′ ⊆ Cntrout(Kσ) the proofis onduted in a similar way as the previous ase by using the de�nitionof ontrollability kernel: every point inside the kernel is reahable from anyother point in the kernel.2.4.3 Invariane KernelIn general, an invariant set is a set of points suh that for any point in theset, every trajetory starting in suh point remains in the set forever and theinvariane kernel is the largest of suh sets. In partiular, for SPDI, givena yli signature, an invariant set is a set of points whih keep rotating inthe yle forever and the invariane kernel is the largest of suh sets. Moreformally: 12



De�nition 6. A set K is said to be invariant if for any x ∈ K there exists atleast one trajetory starting in it and every trajetory starting in x is viablein K. Given a set K, its largest invariant subset is alled the invarianekernel of K and is denoted by Inv(Kσ).We need some preliminary de�nitions before showing how to ompute thekernel. The extended ∀-predeessor of an output edge e of a region R is theset of points in R suh that every trajetory segment starting in suh pointreahes e without traversing any other edge. More formally, let R be a regionand e be an edge in out(R), then the e-extended ∀-predeessor of I, P̃ree(I)is de�ned as:
P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.It is easy to see that P̃reσ(I) is a polygonal subset of the plane whih anbe alulated using the following proedure. First ompute P̃reei

(I) for all
1 ≤ i ≤ k and then apply this operation k times: P̃reσ(I) =

⋃k

i=1
P̃reei

(Ii)with I1 = I, Ik = P̃reeke1
(I1) and Ii = P̃reeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1. Weompute the invariane kernel of Kσ as follows:Theorem 6. If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)), otherwise Inv(Kσ) =
∅.Example 9. Fig. 4-(a) shows the unique invariane kernels of the SPDIgiven in Example 1.An interesting property of invariane kernels is that the limits are inludedin the invariane kernel, i.e. [l∗, u∗] ⊆ Inv(Kσ). In other words:Proposition 4. The set delimited by the polygons de�ned by the interval
[l∗, u∗] is an invariane set of STAY yles.In [ASY02℄ it has been proved that for σ a STAY yle, then (1) C(σ) isinvariant and (2) there exists a neighborhood K of C(σ) suh that any vi-able trajetory starting in K onverges to C(σ). From this, the de�nitionof invariane kernel and theorem 6 it follows the following result relatingontrollability and invariane kernels.Proposition 5. If σ = e1 . . . ene1 is STAY then Cntr(Kσ) ⊆ Inv(Kσ).13



(a) (b)Figure 4: (a) Invariane Kernel; (b) All the KernelsExample 10. Fig. 4-(b) shows the viability, ontrollability and invarianekernels of the SPDI given in Example 1. For any point in the viability kernelof a yle there exists a trajetory whih will onverge to its ontrollabilitykernel (proposition 2). It is possible to see in the piture that Cntr(·) ⊂ Inv(.)(proposition 5). All the above pitures has been obtained with the toolboxSPeeDI+ [PS06℄.In a similar way as for the ontrollability kernel, we de�ne Invl(Kσ), Invu(Kσ),the inner Invin(Kσ) and outer Invout(Kσ) of an invariane kernel.2.5 Semi-Separatrix CurvesIn this setion we de�ne the notion of separatrix urves, whih are urves on
R

2 disseting the plane into two mutually non-reahable subsets. We relaxthe notion of separatrix obtaining semi-separatrix urves suh that somepoints in one set may be reahable from the other set, but not vie-versa.We de�ne �rst the above notions for the plane independently of SPDIs.De�nition 7. Let K ⊆ R
2. A separatrix in K is a losed urve γ parti-tioning K into three sets KA, KB and γ itself, suh that KA ∩ KB ∩ γ = ∅,

K = KA ∪ KB ∪ γ and the following onditions hold:1. For any point x0 ∈ KA and trajetory ξ, with ξ(0) = x0, there is no tsuh that ξ(t) ∈ KB; and 14



2. For any point x0 ∈ KB and trajetory ξ, with ξ(0) = x0, there is no tsuh that ξ(t) ∈ KA.If only one of the above onditions holds then we say that the urve is asemi-separatrix. If only ondition 1 holds, then we say that KA is the innerof γ (written γin) and KB is the outer of γ (written γout). If only ondition2 holds, KB is the inner and KB is the outer of γ.Remark: Notie that, as in the ase of the ontrollability kernel, an edge ofthe SPDI may be split into two by a semi-separatrix � part inside, and partoutside. As before, we an split the edge into parts, suh that eah part isompletely inside, or ompletely outside the semi-separatrix.The set of all the separatries of R
2 is denoted by Sep(R2), or simply Sep.The above notions are extended to SPDIs straightforwardly.Now, let σ = e1 . . . ene1 be a simple yle, ∠

bi

ai
(1 ≤ i ≤ n) be the dynamis ofthe regions for whih ei is an entry edge and I = [l, u] and interval on edge e1.Remember that Succe1e2

(I) = F (I∩S)∩J , where F = [a1l+b1, a2u+b2]. Let
l be the vetor orresponding to the point on e1 with loal oordinates l and
l′ be the vetor orresponding to the point on e2 with loal oordinates F (l)(similarly, we de�ne u and u′ for F (u)). We de�ne �rst Succ

b1

e1
(I) = {x | l′ =

αx+ l, 0 < α < 1} and Succ
a1

e1
(I) = {x | u′ = αx+u, 0 < α < 1}. We extendthese de�nitions in a straight way to any (yli) signature σ = e1 . . . ene1,denoting them by Succ

b

σ(I) and Succ
a

σ(I), respetively; we an ompute themsimilarly as for Pre. Whenever applied to the �x-point I∗ = [l∗, u∗], we denote
Succ

b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respetively. Intuitively, ξl
σ (ξu

σ) denotesthe piee-wise a�ne losed urve de�ned by the leftmost (rightmost) �x-point
l∗ (u∗).We show now how to identify semi-separatries for simple yles.Theorem 7. Given an SPDI, let σ be a simple yle, then the following hold:1. If σ is EXIT-RIGHT then ξl

σ is a semi-separatrix urve (�ltering tra-jetories from �left� to �right�);2. If σ is EXIT-LEFT then ξu
σ is a semi-separatrix urve (�ltering traje-tories from �right� to �left�);3. If σ is STAY, then the two polygons de�ning the invariane kernel(Invl(Kσ) and Invu(Kσ)), are semi-separatries.15



Proof. 1. By de�nition of EXIT-RIGHT, any trajetory is bounded to theleft by ξl
σ, whih is a piee-wise a�ne losed urve, partitioning R

2 intothree disjoint sets: KB, the �right� part of ξl
σ; KA, the �left� part of

ξl
σ; and ξl

σ itself. By Jordan's theorem, any trajetory may pass from
KB to KA if and only if it ross ξl

σ. However, by de�nition of EXIT-RIGHT, this is only possible from KA to KB but not vie-versa. Hene
ξl
σ is a semi-separatrix urve.2. Symmetri to the previous ase.3. Follows diretly from the de�nition of invariane kernel, sine any tra-jetory with initial point in Inv(Kσ) ∪ Invin(Kσ) annot leave Inv(Kσ).If the trajetory yles lokwise it annot traverse Invl(Kσ) and if ityles ounter-lokwise it annot traverse Invu(Kσ). In both ases nopoint on Invout(Kσ) an be reahed. Symmetrially, trajetories start-ing in Inv(Kσ) ∪ Invout(Kσ) annot reah any point on Invin(Kσ).Remark: In the ase of STAY yles, ξl

σ and ξu
σ are also semi-separatries.Notie that in the above result, omputing a semi-separatrix depends onlyon one simple yle, and the orresponding algorithm is then redued to �ndsimple yles in the SPDI and heking whether it is STAY, EXIT-RIGHTor EXIT-LEFT.Example 11. Fig. 5 shows all the semi-separatries of the SPDI given inExample 1. The small arrows traversing the semi-separatries show the in-ner and outer of eah semi-separatrix: a trajetory may traverse the semi-separatrix following the diretion of the arrow, but not vie-versa.The following two results relate feasible signatures and semi-separatries.Proposition 6. If, for some semi-separatrix γ, e ∈ γin and e′ ∈ γout, thenthe signature ee′ is not feasible.Proof. Diretly from the de�nition of semi-separatrix.Proposition 7. If, for some semi-separatrix γ, and signature σ (of at leastlength 2), then, if head(σ) ∈ γin and last(σ) ∈ γout, σ is not feasible.Proof. The proof proeeds by indution on sequene σ. The base ase, when

σ is of length 2, redues to proposition 6. Now, assuming that the propositionis true for signatures of length n, we are required to prove that it is also truefor signatures of length n + 1. Consider the signature σ′ = ee′σe′′, with
e ∈ γin and e′′ ∈ γout. Clearly, either e′ ∈ γin or e′ ∈ γout.16



Figure 5: Semi-separatriesCase 1: e′ ∈ γin. The signature e′σe′′ satis�es the onditions and is of length
n. Therefore, the indutive property applies, and we an onlude that
e′σe′′ is not feasible. However, sine any extension of an unfeasiblesignature is itself unfeasible, it follows that σ′ is not feasible.Case 2: e′ ∈ γout. The signature ee′ is unfeasible by proposition 6. There-fore, being an extension of ee′, σ′ is also unfeasible (proposition 1).

3 State-Spae Redution Using Semi-SeparatriesSemi-separatries partition the state spae into two parts3 � one one rossessuh a border, all states outside the region an be ignored. We present atehnique, whih, given an SPDI and a reahability question, enables us todisard portions of the state spae based on this information. The approahis based on identifying inert states (edges in the SPDI) whih annot play arole in the reahability analysis.De�nition 8. Given an SPDI S, a set of semi-separatries Γ ⊆ Sep, asoure edge e0 and a destination edge e1, an edge e is said to be inert if itlies outside a semi-separatrix inside whih lies e0, or it lies inside a semi-separatrix outside whih lies e1:3We don't onsider the semi-separatrix itself.17



inertΓe0→e1 = {e : E | ∃γ ∈ Γ · e0 ∈ γin ∧ e ∈ γout}

∪ {e : E | ∃γ ∈ Γ · e1 ∈ γout ∧ e ∈ γin}We an prove that these inert edges an never appear in a feasible signature:Lemma 8. Given an SPDI S, a set of semi-separatries Γ, a soure edge
e0 and a destination edge e1, and a feasible signature e0σe1 in S. No inertedge from inertΓe0→e1 may appear in e0σe1.Proof. From the de�nition of inert states, it follows that either both e0 and
e1 are inert, or neither is. If both are inert, then for some γ, e0 ∈ γin and
e1 ∈ γout. But if this were so, then e0σe1 is unfeasible by proposition 7. Wean thus onsider only inert edges in σ.Let e be an inert edge appearing in σ. Therefore, e0σe1 = e0σ1eσ2e1. Byde�nition of inert edges, e an either be inert beause (i) it lies outside asemi-separatrix inside whih lies e0, or (ii) it lies inside a semi-separatrixoutside whih lies e1.Case 1: Let γ ∈ Γ be a semi-separatrix suh that e0 ∈ γin and e ∈ γout. Butby proposition 7, e0σ1e is not feasible. Hene, neither is e0σ1eσ2e1.Case 2: Let γ ∈ Γ be a semi-separatrix suh that e ∈ γin and e1 ∈ γout. Byproposition 7, eσ2e1 is not feasible, and hene, neither is e0σ1eσ2e1.It thus follows that e0σe1 is not feasible.Given an SPDI, we an redue the state spae by disarding inert edges.De�nition 9. Given an SPDI S, a set of semi-separatries Γ, a soure edge
e0 and a destination edge e1, we de�ne the redued SPDI SΓ

e0→e1 to be thesame as S but without the inert edges.Clearly, the resulting SPDI is smaller than the original one.Proposition 8. For any SPDI S, a set of semi-separatries Γ, and edges e0and e1, S does not have less edges than SΓ
e0→e1.Example 12. The shaded (light blue) areas of Fig. 6 (a) and (b) are thesubsets of the SPDI (edges of the reahability graph) eliminated by the re-dution presented in this setion, when answering the question: Is interval I ′reahable from I? 18
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(b)Figure 6: Redution using Semi-separatriesFinally, we prove that heking reahability on the redued SPDI is equivalentto heking reahability on the original SPDI:Theorem 9. Given an SPDI S, a set of semi-separatries Γ, and edges e0and e1, then, e1 is reahable from e0 in S if and only if e1 is reahable from
e0 in SΓ

e0→e1.Proof. The proof is split into two parts: that reahability in the reduedSPDI implies reahability in the original automaton (soundness) and vie-versa (ompleteness).Soundness: Assume that e1 is reahable from e0 in SΓ
e0→e1. Then, theremust exist a feasible signature σ in SΓ

e0→e1 whih starts on e0 and endsat e1. Sine every SPDI edge in SΓ
e0→e1 is also in S, and the dynamisof the two systems are idential, it follows that σ is also a feasible pathin S. Therefore, e1 is also reahable from e0 in S.Completeness: Now assume that e1 is reahable from e0 in S. By de�ni-tion of reahability, there exists a feasible signature e0σe1 in S. Byproposition 8, no inert edge may appear in e0σe1. Therefore, e0σe1is also a feasible signature in SΓ

e0→e1, whih in turn implies that e1 isreahable from e0 in Se0→e1.
19



We have shown, that one semi-separatries are identi�ed, given a reahabil-ity question, we an redue the size of the SPDI to be veri�ed. This enablesus to verify SPDIs muh more e�iently. It is important to note that model-heking an SPDI requires identi�ation of simple loops, whih means thatthe alulation of the semi-separatries is not more expensive than the ini-tial pass of the model-heking algorithm. Furthermore, we an perform thisanalysis only one for an SPDI and store the information to be used in anyreahability analysis on that SPDI. Redution, however, an only be appliedone we know the soure and destination states.4 State-Spae Redution Using Kernels4.1 State-spae redution using kernelsWe have already shown that any invariant set, is essentially a pair of semi-separaties. In partiular, the invariane kernel is a largest invariant set fora partiular loop, we an use the results presented in setion 3 to abstrat anSPDI by using invariane kernels. We now turn our attention to state spaeredution using ontrollability kernels:De�nition 10. Given an SPDI S, a loop σ, a soure edge e0 and a destina-tion edge e1, an edge e is said to be redundant if it lies on the opposite sideof a ontrollability kernel as both e0 and e1:redundantσe0→e1 = {e : E | ∃e0, e1 ∈ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}

∪ {e : E | ∃e0, e1 ∈ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}We an prove that we an do without these edges to hek feasibility:Lemma 10. Given an SPDI S, a loop σ, a soure edge e0, a destinationedge e1, and a feasible signature e0σe1 then there exists a feasible signature
e0σ′e1 suh that σ′ ontains no redundant edge from redundantσe0→e1.Proof. Let e0σe1 be a feasible signature whih ontains some redundant edgefrom the set redundantσe0→e1. Without loss of generality, we assume that
e0, e1 ∈ Cntrout(σ) ∪ Cntr(σ). Let f0 and f1 be, respetively, the �rst andlast redundant edges in σ. By de�nition of redundant edges, it follows that
f0, f1 ∈ Cntrin(σ). The path we are following is thus:

e0σ1f0σ2f1σ3e120



Sine f0 (f1) is the �rst (last) redundant edge, it follows that the last elementof σ1 (the �rst element of σ3) is inside the ontrollability kernel. Usingproposition 3, it follows that there exists a point p on the ontrollabilitykernel reahable from the last element of σ1 (a point q on the ontrollabilitykernel from whih the �rst element of σ3 is reahable). Sine all points onthe ontrollability kernel are mutually reahable, it follows that q is reahablefrom p along some disrete path σ′
2 ompletely within the kernel. We havethus obtained a shorter disrete path e0σ1σ

′
2σ3e1 whih is feasible and whihontains no redundant edges.Given an SPDI, we an redue the state spae by disarding redundant edges.De�nition 11. Given an SPDI S, a loop σ, a soure edge e0 and a desti-nation edge e1, we de�ne the redued SPDI Sσ

e0→e1 to be the same as S butwithout redundant edges.Clearly, the resulting SPDI is smaller than the original one.Proposition 9. For any SPDI S, a loop σ, a soure edge e0 and a destinationedge e1, S does not have less edges than Sσ
e0→e1.Finally, we prove that heking reahability on the redued SPDI is equivalentto heking reahability on the original SPDI:Theorem 11. Given an SPDI S, with a set of loops σ, a soure edge e0 anda destination edge e1, then, e1 is reahable from e0 in S if and only if e1 isreahable from e0 in Sσ

e0→e1.Proof. The theorem follows immediately from proposition 10.Given a loop whih has a ontrollability kernel, we an thus redue the statespae to explore. In pratie, we apply this state spae redution for eahontrollability kernel in the SPDI. One a loop in the SPDI is identi�ed, itis straightforward to apply the redution algorithm.4.2 Immediate answers to reahability questionsBy de�nition of the ontrollability kernel, any two points inside it are mu-tually reahable. This an be used to answer ertain reahability questionssimply by inspeting the ontrollability kernel: if both the soure and des-tination edge lie (possibly partially) within the same ontrollability kernel,then, there exists a trajetory from the soure to the destination edge.21



Proposition 10. Given a soure edge esrc and a destination edge edst, iffor some loop σ, esrc ∩ Cntr(Kσ) 6= ∅ and edst ∩ Cntr(Kσ) 6= ∅, then edst isreahable from esrc.Furthermore, proposition 2 tells us that any point in the viability kernel ofa loop an eventually reah the ontrollability kernel of the same loop. Thisallows us to relax the ondition about the soure edge to just hek whetherit (partially) lies within the viability kernel. Sine the ontrollability kernelalways lies within the viability kernel of the same loop, this is a generalizationof the �rst result.Proposition 11. Given a soure edge esrc and a destination edge edst, iffor some loop σ, esrc ∩ Viab(Kσ) 6= ∅ and edst ∩ Cntr(Kσ) 6= ∅, then edst isreahable from esrc.Finally, we note that the union of two non-disjoint ontrollability sets is itselfa ontrollability set. This means that we an extend the result to work fora olletion of loops whose ontrollability kernels form a strongly onnetedset. To state this result, we will require some additional mahinery.De�nition 12. We extend viability and ontrollability kernels for a set ofloops Σ by taking the union of the kernels of the individual loops:
Viab(KΣ) =

⋃

σ∈Σ

Viab(Kσ)

Cntr(KΣ) =
⋃

σ∈Σ

Cntr(Kσ)De�nition 13. Two loops σ and σ′ are said to be ompatible (σ ! σ′) iftheir ontrollability kernels overlap:
σ ! σ′ ⇔ Cntr(Kσ) ∩ Cntr(K ′

σ) 6= ∅We extend the notion of ompatibility to a set of loops Σ to mean that allloops in the set are transitively ompatible:
∀σ, σ′ ∈ Σ · σ !

∗ σ′Theorem 12. Given a soure edge esrc and a destination edge edst, if forsome ompatible set of loops Σ, esrc ∩Viab(KΣ) 6= ∅ and edst ∩Cntr(KΣ) 6= ∅,then edst is reahable from esrc. 22
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(b)Figure 7: Answering Reahability using KernelsProof. The proof of the theorem follows almost immediately from the de�-nition of the ontrollability kernel, and proposition 2.We note that this theorem is a generalization of the previous two propositions.Example 13. Fig. 7-(a) shows a viability and a ontrollability kernel of ayle and two intervals I and I ′. The reahability question, is I ′ reahablefrom I?, annot be answered immediately in this ase. Fig. 7-(b) showsoverlapping of the viability and ontrollability kernels depited in Fig. 7-(a) with the kernels of an inner yle. I ′ is shown to lie in a ompatibleontrollability kernel, thus by theorem 12, I ′ is reahable from I (the positiveanswer is given without the need of performing the reahability analysis).The next theorem provides an immediate answer to edges lying inside andoutside invariane kernels. The proof follows diretly from the de�nition ofinvariane kernels.Theorem 13. If one of the following onditions holds, then then edst is notreahable from esrc:1. Soure edge esrc ∈ Invin(Kσ) and destination edge edst ∈ Inv(Kσ) ∪
Invout(Kσ)2. Soure edge esrc ∈ Inv(Kσ) ∪ Invout(Kσ) and destination edge edst ∈
Invin(Kσ) 23



We note that, sine an invariane kernel indues a pair of semi-separatries,this theorem is a speialization of of the redution using semi-separatrixinformation.In pratie, we propose to use these theorems to enable answering ertainreahability questions without having to explore the omplete state spae. Itan also be used to redue reahability questions to (possibly) simpler onesby trying to reah a viability kernel rather than a partiular edge (in the aseof theorem 12). As in the ase of semi-separatries, a preliminary analysisof an SPDI an be done to store all kernels, whih information is used inall subsequent reahability queries. By ombining this tehnique with thesemi-separatrix redution tehnique we envisage substantial gains.5 Conluding RemarksWe have hereby introdued the onept of semi-separatries for polygonalhybrid systems, and presented non-iterative algorithms to alulate them.Using semi-separatries, and kernels in SPDI phase-portraits introdued in[ASY02℄ and in [Sh04℄, we presented tehniques to improve reahabilityanalysis on SPDIs. In all ases, the tehniques require the identi�ation andanalysis of loops in the SPDI. When multiple reahability questions are tobe asked about the same SPDI, this information an be gathered and storedto avoid repeated analysis. We note that most of this information is stillrequired when performing reahability analysis, and thus no extra work isrequired to perform the optimization presented in this paper. The resultspresented in this paper all depend on heking whether an edge lies withina given polygon. This an be e�iently heked using standard geometrialtehniques frequently used in omputer graphis suh as using the odd-paritytest [FvDFH96℄.In ertain ases, using kernel information, we an answer reahability ques-tions using the information gathered without any further analysis. In otherases, we use semi-separatries and ontrollability kernels to redue the sizeof the SPDI under analysis.Our work is obviously restrited to planar systems, whih enables us to om-pute these kernels exatly. In higher dimensions and hybrid systems withhigher omplexity, alulation of kernels is not omputable. Other relatedwork is thus based on alulations of approximations of these kernels (e.g.,[ALQ+01b, ALQ+01a, SP02℄). We are not aware of any work using kernelsand semi-separatries to redue the state-spae of the reahability graph aspresented in this paper.We have built a toolset SPeeDI [APSY02℄ for the analysis of SPDIs. We have24



reently extended this toolset to SPeeDI+ [PS06℄ whih alulates kernels ofSPDIs. We are urrently exploring the implementation of the optimizationspresented in this paper to improve the e�ieny of SPeeDI+. We are alsoinvestigating other appliations of these kernels in the model-heking ofSPDIs.Referenes[AD94℄ R. Alur and D.L. Dill. A theory of timed automata. TheoretialComputer Siene, 126:183�235, 1994.[ALQ+01a℄ J.-P. Aubin, J. Lygeros, M. Quinampoix, S. Sastry, andN. Seube. Towards a viability theory for hybrid systems. InEuropean Control Conferene, 2001.[ALQ+01b℄ J.-P. Aubin, J. Lygeros, M. Quinampoix, S. Sastry, andN. Seube. Viability and invariane kernels of impulse di�erentialinlusions. In Conferene on Deision and Control, volume 40 ofIEEE, pages 340�345, Deember 2001.[APSY02℄ E. Asarin, G. Pae, G. Shneider, and S. Yovine. SPeeDI: averi�ation tool for polygonal hybrid systems. In CAV'2002,volume 2404 of LNCS, pages 354�358, Copenhagen, Denmark,July 2002. Springer-Verlag.[ASY01℄ E. Asarin, G. Shneider, and S. Yovine. On the deidabilityof the reahability problem for planar di�erential inlusions. InHSCC'2001, number 2034 in LNCS, pages 89�104, Rome, Italy,2001. Springer-Verlag.[ASY02℄ E. Asarin, G. Shneider, and S. Yovine. Towards omputingphase portraits of polygonal di�erential inlusions. In HSCC'02,pages 49�61. LNCS 2289, Springer, 2002.[Aub01℄ J.-P. Aubin. The substratum of impulse and hybrid ontrolsystems. In HSCC'01, volume 2034 of LNCS, pages 105�118.Springer, 2001.[DV95℄ A. Deshpande and P. Varaiya. Viable ontrol of hybrid systems.In Hybrid Systems II, number 999 in LNCS, pages 128�147, 1995.
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