
TECHNICAL REPORT

Report No. CS2009-01
Date: December 2009

Resource-Bounded Runtime
Verification of Java Programs with
Real-Time Properties

Christian Colombo
Gordon J. Pace
Gerardo Schneider

University of Malta

Department of Computer Science
University of Malta
Msida MSD 06
MALTA

Tel: +356-2340 2519
Fax: +356-2132 0539
http://www.cs.um.edu.mt

Resource-Bounded Runtime Verification
of Java Programs with Real-Time

Properties

Christian Colombo
Department of Computer Science

University of Malta
Msida, Malta

christian.colombo@um.edu.mt

Gordon J. Pace
Department of Computer Science

University of Malta
Msida, Malta

gordon.pace@um.edu.mt

Gerardo Schneider
Department of Applied IT
University of Gothenburg,

Gothenburg, Sweden
(Department of Informatics
University of Oslo, Norway)

gersch@chalmers.se

Abstract: Given the intractability of exhaustively verifying soft-
ware, the use of runtime verification, to verify single execution paths
at runtime, is becoming increasingly popular. Undoubtedly, the over-
head introduced by runtime verification is a concern for system de-
velopers planning to introduce this technique in their work. By using
Lustre to write security-critical properties, we exploit the language’s
guarantees on bounded resources. We translate these properties into
the existing monitoring framework Larva, making monitoring of
programs both easily applicable to Java programs and at the same
time guarantee to use bounded-resources. We use a subset of Quan-
tified Discrete-time Duration Calculus (QDDC) as an alternative
specification notation for real-time properties because it is translat-
able into Lustre. Thus, QDDC also enjoys the same guarantees given
when using Lustre.

Resource-Bounded Runtime Verification
of Java Programs with Real-Time

Properties∗

Christian Colombo
Department of Computer Science

University of Malta
Msida, Malta

christian.colombo@um.edu.mt

Gordon J. Pace
Department of Computer Science

University of Malta
Msida, Malta

gordon.pace@um.edu.mt

Gerardo Schneider
Department of Applied IT
University of Gothenburg,

Gothenburg, Sweden
(Department of Informatics
University of Oslo, Norway)

gersch@chalmers.se

Abstract: Given the intractability of exhaustively verifying soft-
ware, the use of runtime verification, to verify single execution paths
at runtime, is becoming increasingly popular. Undoubtedly, the over-
head introduced by runtime verification is a concern for system de-
velopers planning to introduce this technique in their work. By using
Lustre to write security-critical properties, we exploit the language’s
guarantees on bounded resources. We translate these properties into
the existing monitoring framework Larva, making monitoring of
programs both easily applicable to Java programs and at the same
time guarantee to use bounded-resources. We use a subset of Quan-
tified Discrete-time Duration Calculus (QDDC) as an alternative
specification notation for real-time properties because it is translat-
able into Lustre. Thus, QDDC also enjoys the same guarantees given
when using Lustre.

∗The research work disclosed in this publication is partially funded by Malta Government Schol-
arship Scheme grant number ME 367/07/29 and by the Malta National Research and Innovation
(R&I) Programme 2008 project number 052.

1

1 Introduction

When monitoring a system, the system’s behaviour is indirectly also modified, which
may have undesirable effects, especially if the system has to react instantaneously
to its environment. Modification is even more undesirable when monitoring real-
time properties which are sensitive to delays and overheads. Although it is virtually
impossible to monitor a system without introducing overheads, one would like to, at
least, quantify the induced overhead load. For this purpose we suggest a specification
framework based around the language Lustre, for which required runtime resources
can be computed statically.

Synchronous languages, such as Lustre and Esterel, have been designed to be used
to implement reactive systems, in which the underlying system has to react instan-
tanously to the inputs — sometimes called the synchrony hypothesis. Since this is
obviously impossible to implement in practice, these languages have been designed
such that the computation required at each step could be quantified statically at
compile time.

In this paper, we propose the use of reactive synchronous languages for runtime verifi-
cation, to enable computation of overheads at compile time. In particular, we present
the use of Lustre as a specification language for Larva — a runtime verification
tool for Java programs — thus guaranteeing a bound on the resources required for
verification for each event the system produces. We further extend the framework
so that Lustre can be used to represent some real-time properties through the use of
timestamps. Moreover, apart from Lustre, we also use a deterministic fragment of
quantified discrete-time duration calculus (QDDC) for which a translation to Lustre
exists. This configuration makes our monitoring framework versatile, allowing spec-
ification of properties in different formalisms but at the same time with guaranteed
overheads. Finally, we use a case-study of a network intrusion detection system to
illustrate the practicality of our approach.

2 Background

In this section we will first introduce dynamic automata with timers and events
(DATEs), used for the specification of properties. Subsequently, we give a brief
overview of the tool Larva which is an embodiment of DATEs with a complementing
framework enabling runtime verification of Java programs. We then present quantified
discrete-time duration calculus, and Lustre.

2

2.1 Dynamic Automata with Timers and Events

The underlying logic we will use to define the specification of properties of the system
to be monitored will be based on communicating symbolic automata with timers,
whose transitions are triggered by events — referred to as dynamic automata with
timers and events (DATEs). Events are built as a combination of visible system
actions (such as method calls or exception handling), timer events and channel syn-
chronisation. For full definitions, refer to [CPS08].

Definition: A symbolic timed automaton (STA) running over a system with state
of type Θ, is a quintuple 〈Q, q0, →, B, A〉 with set of states Q, initial state
q0 ∈ Q, transition relation →, bad states B ⊆ Q, and accepting states A ⊆ Q (with
A ∩ B = ∅). Each transition is labelled with: (i) an event expression which triggers
the transition; (ii) an enabling condition on the system state and timer configuration;
(iii) a timer action performed when the transition is taken; (iv) a set of channels upon
which to signal an event; and (v) code which may change the state of the underlying
system. We assume a total ordering <, giving a priority to transitions, to ensure
determinism.

The behaviour of an STA M , upon receiving a set of events, consists of: (i) choosing
the enabled transition with the highest priority; (ii) performing the transition (pos-
sibly triggering a new set of events); and (iii) repeating until no further events are
generated, upon which the automaton waits for a system or timeout event.

Dynamic Automata with Timers and Events (DATE) are essentially networks of STAs
allowing the creation of new automata during execution.

Definition: A DATEM is a pair (M0, ν) consisting of: (i) an initial set of STAs M0;
and (ii) a set of automaton constructors ν.

DATEs are more general than integration automata [AYR95] and timed automata
[AD94] since in DATEs it is possible to enable reset, pause and resume actions on
timers. Unlike integration automata, our automata can read and modify the underly-
ing system state. In practice, this can be used to access and modify variables making
the transitions more symbolic than enumerative in nature. Full definitions can be
found in [CPS08].

Consider a system where one needs to monitor the number of successive bad logins
and the activity of a logged in user. By having access to badlogin, goodlogin and
interact events, one can keep a successive bad-login counter and a clock to measure
the time a user is inactive. Fig. 1(left) shows the property that allows for no more
than two successive bad logins and 30 minutes of inactivity when logged in, expressed
as a DATE. Upon the third bad login or 30 minutes of inactivity, the system reverts to
a bad state. In the figure, transitions are labelled with events, conditions and actions,

3

interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

interact\\t.reset();

goodlogin

\\t.reset();

logged out

badlogin\\c++;
badlogin\c>=2

\c=0;blockUser();

logged in

logout\\c=0;

t@30*60\\logout();c=0;

Figure 1: Left: An automaton monitoring the bad logins occurring in a system; Right:
The same automaton with recovery actions.

separated by a backslash. It is assumed that the bad login counter is initialised to
zero.

Fig. 1(right) shows how actions can be used to remedy the situation when possible,
instead of going to a bad state. For example, after too many bad logins, one can
block the user from logging in for a period of time, and upon 30 minutes of inactivity,
the user may be forced to logout.

The tool Larva accepts a textual description of a DATE and automatically generates
runtime monitors so that the DATE is executed in parallel with an intended Java
system. A part of the code corresponding to Fig. 1(left) is shown below:

GLOBAL {
VARIABLES { Clock t; int c = 0; }
EVENTS {

interact() = {*.action()}
t30() = {t@30*60}
...

}
PROPERTY users {

STATES {
BAD { inactive badlogins }
NORMAL { loggedin }
STARTING { loggedout }

}
TRANSITIONS {
loggedout -> loggedin [goodlogin\\t.reset();]
loggedout -> loggedout [badlogin\\c++;]

4

...
} } }

Upon running the monitored system, the underlying automata are created and ini-
tialised. Through the use of aspect-oriented programming techniques [KLM+97],
whenever an event is captured, control is passed back onto the DATE structure.
Such an event may be a method call, an invocation of exception handler, or the
throwing of an exception. Each transition may include an action in the form of Java
code. Thus, upon the trigger of a transition, the DATE performs a full-step, after
which control is returned back to the system to proceed. If the system reaches a bad
state in any of the properties, appropriate action is taken to terminate or remedy the
situation as specified by the user.

2.2 QDDC

A number of relevant real-time properties can be represented using an interval-based
logic such as Quantified Discrete-Time Duration Calculus QDDC [Pan01]. QDDC is
a subset of duration calculus [ZCA91, HC97] based on a discrete-time model. In this
work, we are particularly interested in a deterministic fragment of QDDC [GHR06]
which can be expressed as Lustre acceptors.

The bases of QDDC are the state variables which vary over discrete time. Let
Pvar = {p, q, . . .} be the set of propositional variables; Prop = {P,Q, . . .} the set of
propositions; and F , F1, F2 range over QDDC formulae. The constantly true and false
state variables are denoted using 1 and 0 respectively. The set of propositions Prop
is inductively defined on state variables with the usual propositional logic operators:
Prop ::= 0 | 1 | p | Prop ∧ Prop | ¬Prop.
Given a path σ (a function from time to basic proposition evaluations), one can define
a satisfaction relation σt � P , meaning that P holds at time t in path σ.

The deterministic QDDC fragment we use in this paper is defined inductively as
follows:

G ::= begin(P) | ddP e | η ≤ c | ΣP ≤ c | age(P) ≤ c (1)

| G1 ∧G2 | G1 ∨G2

F ::= G | end(P) | G then F | F1 ∧ F2 | ¬F (2)

Note the two-level definition, which is mainly used to restrict the use of the then
constructor. The intuitive meaning is as follows:

5

σ[b, e] � begin(P)
def
= σb � P

σ[b, e] � ddP e def
= b < e and ∀i, b ≤ i < e, σi � P

σ[b, e] � η ≤ c
def
= (e− b) ≤ c

σ[b, e] � ΣP ≤ c
def
= #{i | b ≤ i < e, σi � P} ≤ c

σ[b, e] � end(P)
def
= σe � P

σ[b, e] � F1 ∧ F2
def
= σ[b, e] � F1 and σ[b, e] � F2

σ[b, e] � F1 ∨ F2
def
= σ[b, e] � F1 or σ[b, e] � F2

σ[b, e] � ¬F def
= σ[b, e] 2 F

σ[b, e] � G then F
def
= ∃m : N · b ≤ m < e, σ[b,m]

� G ∧ σ[b,m+1] 2 G ∧ σ[m+1,e] � F

σ[b, e] � age(P) ≤ c
def
= e− n ≤ c, where:

n =

{
max{i | b ≤ i ≤ e, σi � ¬P} if ¬P occurred in [b,e]
b− 1 otherwise

Figure 2: Formal semantics of deterministic QDDC.

• begin(P): given a variable P , returns true if the variable is true at the beginning
of the interval;
• ddP e: returns true if P is true throughout the interval being considered excluding

the final state;
• η: returns the length of the interval being considered;
• ΣP : counts the positive occurrences of P (in number of discrete time points in

the interval);
• age(P): returns the duration for which a given variable P has been continuously

true up to the end of the interval;
• end(P): given a variable P , returns true if the variable is true at the end of the

interval;
• G then F : it is satisfied if there is a way of splitting the interval into two such

that G holds over all prefixes of the first subinterval but no further, and F holds
over the second subinterval (it is a deterministic chop operator).

The formal semantics is given in Fig. 2, defining σ[b, e] � F , meaning that F holds
over the time interval between time b and time e on trace σ.

As an example, let us consider the following QDDC formula: (age(Danger) < 5) ∨
(age(Alarm) > 0). This simply states that either the Danger signal has been on for
less than 5ms or the Alarm should have started to sound.

6

2.3 Lustre

In real-time systems, one usually requires reactivity — instantaneous response to the
stimuli of the environment, to ensure that the input sampling occurs fast enough.
Synchronous languages are a class of languages specifically designed for programming
reactive systems. The synchronous nature of these languages lies in the assumption
that the reaction time of the system is considered to be negligible — the system
outputs are available before the next inputs become available. One such language is
Lustre [CPHP87], for which time and memory requirements of the generated code
can be calculated at compile time. This is crucial in critical systems since it enables
us to give guarantees on the upper bound of the monitoring overhead.

Lustre programs are defined in terms of nodes, which process streams of values chang-
ing over discrete time. Only two time-dependant operators are available in Lustre.
Through the use of the pre operator, one can access the value of a stream one time-
tick in the past, and the -> operator is used to create a stream behaving like the first
parameter at the first time unit, and like the second in the remaining time. A simple
Lustre example is shown below:

node BadAccess (w,r,i,o:bool) returns (bw,br:bool);
var l:bool;
let
l = not o and (i or (false->pre(l)));
bw = w and not(l);
br = r and not(l);

tel

The above piece of code monitors four events: write (w), read (r), login (i) and logout
(o). Essentially, it keeps track of whether a user is logged in or not (using the variable
l); if a read or write event occurs while the user is logged out, br (or bw respectively)
is set to true. Note that no mutual recursion may be used in a Lustre program unless
going through a pre operator.

Lustre can also be considered as an executable temporal logic, which has motivated
the specification of both the system and its properties to be done in the language
[HLR92], similar to the concept of observers [HLR93]. An observer is a program
which checks that the main program keeps to its specification. Hence, the verification
problem involves (i) the composition of the two Lustre programs, and (ii) ensuring
that the observer never reaches an undesired state.

7

2.3.1 Monitoring QDDC using Lustre

The conversion from QDDC into Lustre has been given in [GHR06]. Here we give
an idea of the process without going into details. For each QDDC formula we can
construct a Lustre node which returns true if the formula is satisfied and false if oth-
erwise. Such a node is referred to as an acceptor. An acceptor is activated by a special
input begin which signals the start of the interval being considered. Subsequently,
the acceptor returns true for as long as the QDDC formula is satisfied.

To illustrate this construction let us consider an example: Let begin(p) be a QDDC
formula which is satisfied if the first state of an interval satisfies p. To mark the start
of an interval we use the variable b such that the first occurrence of b is considered
as the first state of the interval. The acceptor of begin(p) should return true if at
the beginning of the interval (i.e. when b is true) p is true. Thereafter, the acceptor
should return true till the end of the interval. For this purpose, we apply a standard
node after on the conjunction of p and b: after(b and p), which returns true on the
point where its input is true and thereafter. To be more generic, p can in fact be the
outcome of another acceptor. Hence, the acceptor of begin(p) may require a number
of additional inputs I. Thus, the resulting acceptor, denoted by Abegin(P)

(b, I), will

be defined by after(b and AP (I)), where AP represents the acceptor of P .

The above example of creating the begin acceptor shows how acceptors are used by
other acceptors. Adopting this approach, we can recursively define acceptors for all
QDDC formulas by starting from a number of basic Lustre nodes.

2.3.2 Example of Monitoring using Lustre

Let us consider a mine pump where an alarm must be triggered within five time units
after a sensor sends a signal Danger. This property can be written in deterministic
QDDC as: age(Danger) < 5 ∨ age(Alarm) > 0

We show next part of the code obtained by using the translation given in [GHR06]:

acceptor(b:bool; Danger:bool; Alarm:bool) returns(p:bool);
let
node_after_1 = (b)?(true):(pre_after_1);
node_age_1 = (node_after_1 && Danger)?(pre_age_1 + 1):(0);
node_after_2 = (b)?(true):(pre_after_2);
node_age_2 = (node_after_2 && Alarm)?(pre_age_2 + 1):(0);
p = node_age_1 < 5 || node_age_2 > 0;
pre_age_1 = node_age_1;
pre_after_1 = node_after_1;

8

pre_age_2 = node_age_2;
pre_after_2 = node_after_2;

tel

The above Lustre code can be translated into Larva as explained in the next section.

3 Resource-Bounded Monitoring of Duration For-

mulae using Larva

Given the computability of resources of a Lustre program at compile time, one can use
Lustre to write properties in special Lustre nodes known as acceptors. An acceptor
observes a number of state variables and returns true or false depending on whether
the current state satisfies a given property or not. By faithfully translating Lustre
acceptors into Larva, we can give an upper-bound guarantee of the resources required
by that program. Effectively, we would have resource upper-bound guarantee on
properties monitored by Larva on Java programs.

3.1 Going from Lustre to Larva

A Lustre program can be considered as a group of modules known as nodes. Each
node includes one or more assignments of output streams in terms of input streams.
These assignments are executed upon system events which generate a new value
for each input stream. Using standard Lustre compiling techniques, the nodes in
a Lustre program can be automatically merged into one (a process known as node
flattening). The end result of a complete flattening is a single node with all the as-
signments in the flattened nodes. Let v̄ represent a vector 〈v1, v2, . . . vn〉 of variables,
ē a vector 〈e1, e2, . . . en〉 of expressions, and p̄ a vector 〈p1, p2, . . . pm〉 of variables stor-
ing past values of other variables. Then, the above-mentioned assignments can be
mathematically expressed as a conjunction of expressions being assigned to variables:∧

1≤i≤n vi := ei(v1, . . . , vn, p1, . . . , pm). Together, the vectors v̄ and p̄ constitute the
memory required by the program. Assuming that the first m variables in v̄ require
their previous value to be stored in a corresponding variable in p̄, the following as-
signments are required:

∧
1≤i≤m pi := pre(vi). To resolve the order of execution of

the assignments, a topological sort is applied, allowing a computer to execute them
sequentially. Then using standard techniques from [HCRP91] one can generate an
executable version of the Lustre program as a DATE. The next step is to decide
when this transition is to be taken and to connect the Lustre variables to the system

9

all_events\\main();

initialize_event
\\initialize();

start main

Figure 3: The DATE equivalent to a Lustre program.

events. For this purpose, we basically identify Larva events, upon which the Lustre
variables may change their values. These same events will be used on the transition
as a trigger. For simplicity, we have so far ignored the fact that some Lustre variables
require an initialisation.

The result of the translation process is shown in Fig. 3, where the initialisation code
occurs on the first transition (from start to main) while the code of the flattened
node occurs on the other transition (from main to main).

3.2 Example of Monitoring in Lustre

As an example of a translation from Lustre to Larva, we will consider the code given
in Section 2.3. The original code is given on the left hand side while the equivalent
list of assignments is shown on the right:

l = not o and (i or (false->pre(l))) l = e1(o,i,p1)
p1 = pre(l)

bw = w and not(l); bw = e2(w,l)
br = r and not(l); br = e3(r,l)

Note that each statement is represented by an expression in ē (e1, e2, e3), and that
a new variable p1 has been introduced to store the previous value of l. Also note that
the expressions are in the correct sequence because bw and br, which depend on l, are
evaluated after the evaluation of l. Therefore, the above four lines of code should be
placed as an action on the main transition of the resultant DATE. Furthermore, the
previous value of l requires an initialisation to false. Thus, p1 should be initialised
as such on the first transition. On a final note, the events which should be used
as triggers would include login, logout, read, and write. The resultant Larva script
would be as follows:

GLOBAL {
VARIABLES { boolean l, p1; }
EVENTS {

login(boolean i, boolean o, boolean bw, boolean br) = {*.login()}

10

where { i = true; o = false; bw = false; br = false; }
logout(boolean i, boolean o, boolean bw, boolean br) = {*.logout()}

where { i = false; o = true; bw = false; br = false; }
...
all(boolean i, boolean o, boolean bw, boolean br)
= {login | logout | ...}

}
PROPERTY access {

STATES { NORMAL { main } STARTING { start } }
TRANISITIONS {
start -> main [init\\p1 = false;]
main -> main [all\\l = e1(o,i,p1); bw = e2(w,l);

br = e3(r,l); p1 = pre(l);]
} } }

3.3 Real-Time Events

In Lustre, a body of code is executed upon the arrival of new values of variables.
However, the arrival of new values need not be synchronised with a regularly beating
clock. A substantial class of real-time properties can be runtime-verified through the
addition of timestamps to the incoming events and variable values. We extend Lustre
nodes to include an additional parameter (a real valued stream rt clock), which will
contain the system time at the point when new variable values are generated.

To incorporate this with the work done in [GHR06], one can now easily give definitions
for real-time integrals and real-time age of expressions. The real-time integral given
in the code below returns the total number of time units for which the boolean
expression P was true.

node rt_integral (rt_clock:time; P:bool; b:bool)
returns (realtime:time);
let
realtime = if (strict_after(b) and false -> pre P)
then (0 -> pre(realtime)) + rt_clock - (0 -> pre(rt_clock))
else (0 -> pre(realtime));

tel

The real-time age gives the amount of (real) time during which a proposition has
been continuously true, and can similarly be defined as follows:

node rt_age (rt_clock:time; P:bool; b:bool) returns (realtime:time);

11

var temptime: time;
let
temptime = if (not (after(b) and (p))) then rt_clock

else (0->pre(temptime));
realtime = rt_clock - temptime;

tel

4 Case Study

To illustrate the use of QDDC and Lustre we will consider a network intrusion de-
tection system. This consists of monitoring four properties: (i) one written in deter-
ministic QDDC (initiating connections), (ii) one using Lustre (gathering statistics),
(iii) one using a construct we define (redirection of messages), and (iv) another us-
ing Lustre with multiple nodes (port scan). We also discuss other properties and
scenarios.

Initiating Connections. For strict security concerns, one may wish to disable any
incoming TCP packets which do not belong to connections initiated by the host ma-
chine being monitored. The initialisation of a TCP connection requires a complete
three-way handshake: first a synchronisation packet from the client, then a synchro-
nisation and acknowledgement packet from the server and another acknowledgement
from the client. If the host machine receives a synchronisation packet without having
sent one beforehand, then an outsider is trying to open a connection.

Monitoring for incoming connections can be easily represented in QDDC as

dd¬sendSYN ∧ ¬receiveSYNee then begin(receiveSYN),

where the definition of ddP ee is taken to be ddP e ∧ end(P). This formula can be
automatically translated into Larva and monitored on Java programs. The only
manual intervention required is to connect the variables to Java method calls. Also
note that this formula should ideally be monitored for each IP address. In this case,
the generated Larva code should be modified to include context and replicate the
monitoring automaton for each IP address.

Gathering Statistical Data. By its reactive nature, Lustre code is triggered by
inputs from the environment. This makes it ideal to gather statistical data. For
standard statistics, the arithmetic operations available in Lustre even suffice to ma-
nipulate and extract conclusions while gathering the data itself. Consider the case
where we want to limit the number of maximum open connections to one IP address:

node max_limit (b:bool; connect:bool) returns (p:bool);

12

var count:int;
let
count = if after(b) then

if (connect) then 0->pre(count)+1 else 0->pre(count)
else 0;

p = if (count > maximum) then false else (true->pre p);
tel

Note the usefulness of the idea of using count. In fact, in our implementation, this is
defined as a separate node. Sometimes it is also useful to count only the number of
times when the input becomes true (i.e. rising edges).

Redirect Messages. In the case of a machine with a routing table, a lot of ICMP
redirect messages can cause the system to slow down. If this happens in a relatively
short time interval, this may be considered as a threat to the system. The property
can be easily written using the added construct bounded which is violated if the
number of occurrences of a proposition exceeds a particular limit within a given
period of time. For example, if we want to disallow more than five redirect messages
within one thousand milliseconds, we write it as bounded(redirect, 5, 1000), where the
acceptor of bounded can be defined as follows:

node bounded (b:bool; rt_clock:time; redirect:bool; const n:int;
period:time) returns (p:bool);
var now:bool; count:int; prev_n:time^n;
let
now = redirect and after(b);
count = if (now) then (0->pre count)+1 else (0->pre count);
prev_n = rt_clock | prev_n[0..n-2];
p = if (count > n and now

and (rt_clock-(0-> pre(prev_n[n-1])) <= period))
then false else (true->pre p);

tel

Note that the variables b and rt clock need not be specified by the user because they
depend on the underlying system. Also, we are assuming that each time that redirect
is true, a redirect message has been received.

Port Scan. A port scan is the discovery of open ports on a system by trying to
initialise connections on a range of (usually) well-known ports. To monitor a port
scan one should monitor frequent unsuccessful connections from an IP address to
different ports. This is not possible to write in QDDC because we need to distinguish
among different port numbers. Therefore, in this case we will use two Lustre nodes.

13

A node will receive a port number and returns true if the port number is different
from the last three port numbers received. The second node returns true if three
packets with unique ports are received with less than 2000 milliseconds between each
two subsequent packets. A final node will be used to connect the two nodes together.
The code is as shown below:

node uniqueport (receive: bool; port: int) returns (unique:bool);
var port1, port2, port3: int; cnt: int;
let ... tel

node portscan (_rt_clock:int; unique:bool) returns (violated:bool);
var cnt: int; time: int;
let ... tel

node main (_rt_clock:int; receive: bool; port: int)
returns (violated:bool);
let ... tel

Other Properties and Scenarios. The above examples of properties are only in-
tended to give an idea of what can be done using Lustre and QDDC. A more extensive
account of the case-study can be found in [Col08]. Other properties that can be writ-
ten for the above scenario may include, for instance, specialised properties to monitor
different aspects of a server, with a higher-level property receiving information from
the other monitors. Specialised monitors may be used to keep track of pending, open
and active connections, etc. Such specialised monitors can also be used to gather
statistics and information from different parts of a system.

For instance, in a scenario with a web server, one may want to gather statistics
concerning user access to web pages including the sequence of access to web pages,
the most frequently accessed pages, and so on — all valuable information to build
user models, improve website linkage, identify the most important pages, and so on.
In the case of a file transfer protocol, one may want to gather statistics concerning
the actual throughput delivered to the user.

Computing Resource Bounds. Given a Lustre program, we know the exact num-
ber of arithmetic operations, assignments and variables. Thus, it is easy to calculate
the number of CPU cycles and memory required for the execution of a Lustre program.
Obviously, the actual numbers of CPU time and memory depend on the underlying
architecture. Considering the above properties which were monitored, the number of
operations and variables do not even exceed a hundred. Thus, the overhead incurred
is quite small.

14

5 Conclusions and Related Work

To our knowledge, the only bounded resources guarantee tool for runtime verification
is Lola, presented by D’Angelo et al. [DSS+05]. Lola is a synchronous language
which allows the user to specify the properties of a program in past and future LTL.
Although a synchronous language, Lola differs in that it is able to refer to future
values in a stream. This is not possible in other executable synchronous languages
(such as Lustre) — Lola is descriptive rather than executable. Lola allows the user
to collect statistics at runtime and to express numerical queries. Also, triggers can be
defined to generate notifications when a particular boolean expression becomes true,
but the tool does not support real-time properties.

Due to Larva’s replication mechanism, the upper-bound memory guarantee is rel-
ative to the number of distinct objects being monitored. Consider a scenario where
a server, instead of runtime verifying all the executions, delegated the monitoring to
the individual clients — each client would be responsible for the correct execution of
the code on his/her side. However, if the correct execution of code on the client side
affects the behaviour of the server, then we might need some proof that the client ac-
tually used runtime verification. There might be several approaches for this problem:
(i) provide some mechanism so the client can give evidence that monitoring has truly
been carried out; (ii) force the user to supply a log of the client side activities which
can be later verified by the server before anything is committed.

By using Lustre to write security-critical properties, we have exploited the language’s
guarantees on bounded resources. Translating these properties into an existing moni-
toring framework called Larva makes monitoring of programs both easily applicable
to Java programs and at the same time guarantee to use bounded-resources. This has
also been extended to handle real-time properties which are particularly sensitive to
changes in a system. Furthermore, a subset of QDDC has been suggested as an al-
ternative specification notation for real-time properties because it is translatable into
Lustre. Thus, QDDC also enjoys the same guarantees given when using Lustre. A
mixture of QDDC and Lustre was subsequently used for a case-study to demonstrate
the practicality of using the proposed framework.

The few examples in the case study have the aim to illustrate how non-trivial prop-
erties can be represented relatively easily through Lustre or QDDC. Although there
are some limitation as regards to the expressivity of both Lustre and QDDC, the
framework presented is quite flexible and additional constructs can easily be intro-
duced. This extensibility allows for more complex properties to be expressed using
few high-level constructs, which in turn can be defined using other lower-level one.
This idea is noteworthy given the fact that the properties for runtime verification
should be clearly and succinctly expressible so that the chance of error is minimised.

15

Undoubtedly, the overhead introduced by runtime verification is a concern, so hope-
fully resource upper-bound guarantees would help to heighten the confidence of the
developers. Another recurrent issue is the identification of appropriate notations to
represent properties. We tried to tackle this problem by offering a range of formalisms
which are expressive enough to handle most real-time properties.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AYR95] A. Bouajjani, Y. Lakhnech, and R. Robbana. From duration calculus to
linear hybrid automata. In CAV’95, volume 939, pages 196–210, Belgium,
1995.

[Col08] Christian Colombo. Practical runtime monitoring with impact guarantees
of java programs with real-time constraints. Master’s thesis, University of
Malta, 2008.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative
language for programming synchronous systems. In POPL ’87, pages
178–188, 1987.

[CPS08] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic
event-based runtime monitoring of real-time and contextual properties.
In Formal Methods for Industrial Critical Systems (FMICS), volume 5596
of Lecture Notes in Computer Science, pages 135–149, L’Aquila, Italy,
2008.

[DSS+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robin-
son, Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar
Manna. Lola: Runtime monitoring of synchronous systems. In TIME’05,
pages 166–174. IEEE Computer Society Press, June 2005.

[GHR06] Laure Gonnord, Nicolas Halbwachs, and Pascal Raymond. From discrete
duration calculus to symbolic automata. Electr. Notes Theor. Comput.
Sci., 153(4):3–18, 2006.

[HC97] Michael R. Hansen and Zhou Chaochen. Duration calculus: Logical foun-
dations. Formal Asp. Comput., 9(3):283–330, 1997.

16

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. Proceedings of the IEEE, 79:1305–
1320, 1991.

[HLR92] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Program-
ming and verifying real-time systems by means of the synchronous data-
flow language lustre. IEEE Trans. Softw. Eng., 18(9):785–793, 1992.

[HLR93] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous
observers and the verification of reactive systems. In AMAST, pages 83–
96, 1993.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In ECOOP’97, pages 220–
242, 1997.

[Pan01] P.K. Pandya. Specifying and deciding quantified discrete-time duration
calculus formulae using dcvalid. In RTTOOLS’2001, Aalborg, August
2001.

[ZCA91] Z. ChaoChen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, 1991.

17

