
Detection of Conflicts in Electronic Contracts∗

Stephen Fenech, Gordon J. Pace
Dept. of Computer Science

University of Malta, Msida, Malta
{sfen002,gordon.pace}@um.edu.mt

Gerardo Schneider
Dept. of Informatics

University of Oslo, Norway
gerardo@ifi.uio.no

1 Introduction
Today’s trend towards service-oriented architectures, in
which different decoupled services distributed not only on
different machines within a single organisation but also
outside of it, provides new challenges for reliability and
trust. Since an organisation may need to execute code pro-
vided by third parties, it requires mechanisms to protect
itself. One of such mechanisms is the use of contracts.
Since services are frequently composed of different sub-
services, each with its own contract, there is a need to
guarantee that each single contract is conflict-free. More-
over, one needs to ensure that the conjunction of all the
contracts is also conflict-free —meaning that the contracts
will never lead to conflicting or contradictory normative
directives.
CL [5] is a formal language to specify deontic electronic
contracts. A trace semantics for the language was pre-
sented in [4], useful for runtime monitoring of CL con-
tracts. Such semantics, however, lacks the deontic infor-
mation concerning the obligations, permissions and prohi-
bitions of the involved parties in the contract, and thus it
is not suitable for conflict analysis.
We present here an extension of the trace semantics of CL
given in [4] to support conflict analysis. Based on that
semantics we have developed a decision procedure to au-
tomatically detect conflicts in contracts written in CL. We
have implemented such an algorithm into an ad hoc model
checker. Due to space restriction we only present in what
follows the CL syntax, the extended trace semantics, and a
brief discussion on the automata construction basis of our
model checker.

2 Deontic Logic and CL
Deontic logic [6] enables reasoning about non-normative
and normative behaviour (e.g., obligations, permissions
and prohibitions), including not only the ideal behaviours
but also the exceptional and actual behaviours. One of the
main problems of the logic is the difficulty theoreticians
have to define a consistent yet expressive formal system,
free from paradoxes.
Instead of trying to solve the problem of having a com-
plete paradox-free deontic logic, CL has been designed

∗Partially supported by the Nordunet3 project COSoDIS: “Contract-
Oriented Software Development for Internet Services”.

with the aim to be used on a restricted application do-
main: electronic contracts. In this way the expressivity
of the logic is reduced, resulting in a language free from
most classical paradoxes, but still of practical use. CL
is based on a combination of deontic, dynamic and tem-
poral logics, allowing the representation of obligations,
permissions and prohibitions, as well as temporal aspects.
Moreover, it also gives a mean to specify exceptional be-
haviours arising from the violation of obligations (what
is to be demanded in case an obligation is not fulfilled)
and of prohibitions (what is the penalty in case a prohibi-
tion is violated). These are usually known in the deontic
community as Contrary-to-Duties (CTDs) and Contrary-
to-Prohibitions (CTPs) respectively.
CL contracts are written using the following syntax:

C := CO|CP |CF |C ∧ C|[β]C|>|⊥
CO := OC(α)|CO ⊕ CO
CP := P (α)|CP ⊕ CP
CF := FC(δ)|CF ∨ [α]CF
α := 0|1|a|α&α|α · α|α+ α

β := 0|1|a|β&β|β · β|β + β|β∗

A contract clause C can be either an obligation (CO), a
permission (CP) or a prohibition (CF) clause, a conjunc-
tion of two clauses or a clause preceded by the dynamic
logic square brackets. OC(α) is interpreted as the obli-
gation to perform α in which case, if violated, then the
reparation contract C must be executed (a CTD). FC(α)
is interpreted as forbidden to perform α and if α is per-
formed then the reparation C must be executed (a CTP).
[β]C is interpreted as if action β is performed then the con-
tractC must be executed — if β is not performed, the con-
tract is trivially satisfied. Compound actions can be con-
structed from basic ones using the operators &, ·, + and
∗ where & stands for the actions occuring concurrently, ·
stands for the actions to occur in sequence, + stands for
a choice between actions and ∗ is the Kleene star. It can
be shown that every action expression can be transformed
into an equivalent representation where & appears only at
the innermost level. This representation is referred to as
the canonical form. In the rest of this paper we assume
that action expressions have been reduced to this form. 1
is an action expression matching any action, while 0 is the
impossible action. In order to avoid paradoxes the opera-
tors combining obligations, permissions and prohibitions

1

are restricted syntactically. See [5, 4] for more details on
CL.
As a simple example, let us consider the following
clause from an airline company contract: ‘When check-
ing in, the traveller is obliged to have a luggage within
the weight limit — if exceeded, the traveller is obliged
to pay extra.’ This would be represented in CL as
[checkIn]OO(pay)(withinWeightLimit).

2.1 Trace Semantics

The trace semantics presented in [4] enables checking
whether or not a trace satisfies a contract. However, de-
ontic information is not preserved in the trace and thus it
is not suitable to be used for conflict detection. By a con-
flict we mean for instance that the contract permits and
forbids performing the same action at the same time (see
below for a more formal definition of conflict). We present
in what follows an extension of the trace semantics given
in [4].
We will use lower case letters (a, b . . .) to represent atomic
actions, Greek letters (α, β . . .) for compound actions, and
Greek letters with a subscript & (α&, β&, . . .) for com-
pound concurrent actions built from atomic actions and
the concurrency operator &. The set of all such concurrent
actions will be written A&. We use # to denote mutually
exclusive actions (for example, if a stands for ‘opening
the check-in desk’ and b for ‘closing the check-in desk’,
we write a#b).
In order for a sequence σ to satisfy an obligation,
OC(α&), α& must be a subset or equal to σ(0) or the rest
of the trace satisfies the reparation C, thus for the obli-
gation to be satisfied all the atomic actions in α& must
be present in the first set of the sequence. For a prohibi-
tion to be satisfied, the converse is required, that is, not
all the actions of α& are executed in the first step of the
sequence. One should note that permission is not defined
in this semantics since a trace cannot violate a permission
clause. An important observation is that the negation of
an action is defined as performing any other action except
the negated action.
In order to enable conflict analysis, we start by adding de-
ontic information in an additional trace, giving two paral-
lel traces — a trace of actions (σ) and a trace of deontic
notions (σd). Similar to σ, σd is defined as a sequence of
sets whose elements are from the set Da which is defined
as {Oa | a ∈ A} ∪ {Fa | a ∈ A} ∪ {Pa | a ∈ A}
where Oa stands for the obligation to do a, Fa stands for
the prohibition to do a and Pa for permission to do a.
Also, since conflicts may result in sequences of finite be-
haviour which cannot be extended (due to the conflict),
we reinterpret the semantics over finite traces. A con-
flict may result in reaching a state where we have only
the option of violating the contract, thus any infinite trace
which leads to this conflicting state will result not being
accepted by the semantics. We need to be able to check
that a finite trace has not yet violated the contract and
then check if the following state is conflicting. We use

a semicolon (;) to denote catenation of two sequences, and
len to return the length of a finite sequence. Two traces
are pointwise (synchronously) joined using the combine
operator where we will use the ∪ symbol and defined:
(σ ∪ σ′)(n) = σ(n) ∪ σ′(n). Furthermore, if α is a set
of atomic actions then we will use Oα to denote the set
{Oa | a ∈ α}.
The extended trace semantics for CL is given below, where
σ, σd �f C can be interpreted as ‘finite action sequence σ
and deontic sequence σd do not violate contract C’:

σ, σd 2f C if len(σ) 6= len(σd)
σ, σd �f > if len(σ) = 0 or ∀iσd(i) = ∅
σ, σd 2f ⊥
σ, σd �f C1 ∧ C2 if σ, σ′d �f C1 and σ, σ′′d �f C2

and σd = σ′d ∪ σ′′d
σ, σd �f C1 ⊕ C2 if σ, σd �f C1 or σ, σd �f C2

σ, σd �f [α&]C if len(σ) = 0 or σd(0) = ∅ and
(α& ⊆ σ(0) and σ(1..), σd(1..) �f C, or
α& * σ(0)))

σ, σd �f [β;β′]C if σ, σd �f [β][β′]C
σ, σd �f [β + β′]C if σ, σd �f [β]C ∧ [β′]C
σ, σd �f [β∗]C if σ, σd �f C ∧ [β][β∗]C
σ, σd �f [C1?]C2 if σ, σd 2f C1, or σ, σd �f C1 ∧ C2

σ, σd �f OC(α&) if len(σ) = 0 or σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) �f >) or
σ(1..), σd(1..) �f C)

σ, σd �f OC(α;α′) if σ, σd �f OC(α) ∧ [α]OC(α′)
σ, σd �f OC(α+ α′) if σ, σd �f O⊥(α) or

σ, σd �f O⊥(α′) or (σd(0) = (Oα or Oα′)
and σ, ∅;σd(1..) �f [α+ α′]C)

σ, σd �f FC(α&) if len(σ) = 0 or σd(0) = Fα and
((α& * σ(0) and σ(1..), σd(1..) �f >) or
(α& ⊆ σ(0) and σ(1..), σd(1..) �f C))

σ, σd �f FC(α;α′) if σd(0) = Fα and
(σ, σd �f F⊥(α) or σ, σd �f [α]FC(α′))

σ, σd �f FC(α+ α′) if σ, σd �f FC(α) ∧ FC(α′)
σ, σd �f [α&]C if σd(0) = ∅ and ((α& * σ(0) and

σ(1..), σd(1..) �f C) or α& ⊆ σ(0))
σ, σd �f [α;α′]C if σ, σd �f [α]C ∧ [α][α′]C]
σ, σd �f [α+ α′]C if σd(0) = ∅ and

(σσd �f [α]C or σ, σd �f [α′]C)
σ, σd �f P (α) if len(σ) = 0 or σd(0) = Pα and

σ(1..), σd(1..) �f >
σ, σd �f P (α;α′) if σ, σd �f P (α) ∧ [α]P (α′)
σ, σd �f P (α+ α′) if σ, σd �f P (α) ∧ P (α′)

Note that the conditions for a trace containing a permis-
sion not to violate the contract are defined on σd rather
than on the trace of actions. So, for any σ there exists a
σd which will not violate a permission clause. Also note

2

that in the absence of deontic notions the corresponding
element in σd is the empty set. We have proved that the
infinite and finite trace semantics are sound and complete
with respect to each other.

3 Conflict Analysis
Conflicts in contracts arise for 4 different reasons. First,
we can be obliged and forbidden to do the same action,
and second, we can be permitted and forbidden to perform
the same action. In the first conflict we would end up in
a state where whatever we do we will violate the contract.
The second conflict situation would not result in having a
trace that violates the contract since in the trace seman-
tics permissions cannot be broken, however, since we are
augmenting the original trace semantics with the deontic
notions we can still identify these situations. The remain-
ing two cases correspond to obligations (and permissions
and obligations) of mutually exclusive actions. Freedom
from conflict can be defined formally as follows (recall
that a#b if a and b are mutually exclusive actions):

Definition 3.1 A contract C is said to be conflict free if
for all traces σf and σd satisfying σf , σd �f C, there is
no conflict in σd, meaning that it is not the case that any
of the following are true:

1. ∃i · Oa ∈ σd(i) and Fa ∈ σd(i)

2. ∃i · Pa ∈ σd(i) and Fa ∈ σd(i)

3. ∃i · Oa ∈ σd(i) and Ob ∈ σd(i) and a#b

4. ∃i · Oa ∈ σd(i) and Pb ∈ σd(i) and a#b

By unwinding a CL formula according to the finite trace
semantics, we create an automaton which accepts all non
violating traces, and such that any trace resulting in a vio-
lation ends up in a violating state. Furthermore, we label
the states of the automaton with deontic information pro-
vided in σd, so we can ensure that a contract is conflict
free simply through the analysis of the resulting reachable
states (non-violating states).
States of the automaton contain a set of formulae still to be
satisfied, following the standard sub-formula construction
(as done for instance for CTL). Each transition is labelled
with the set of actions that are to be performed in order
to move along the transition. From the canonical form
assumption we can look at an action as a disjunction of
actions that must occur now and for each of these a com-
pound action that needs to occur in the next step. This
view is very helpful when processing the actions since a
compound action α can be seen as an array of possibilities
αi where for each entry we have the atomic actions which
need to hold now (αi.now) and the possibly compound or
empty actions that need to follow next (αi.next).
Once the automaton is generated we can go through all
the states and check for the four types of conflicts. If there
is a conflict of type one or three, then all transitions out
of the state go to a special violation state. In general we

might need to generate all possible transitions before pro-
cessing each sub-formula, resulting on a big automaton.
In practice, we improve the algorithm in such a way that
we create all and only those required transitions reducing
the size considerably.
Conflict analysis can also be done on-the-fly without the
need to create the complete automaton. One can process
the states without storing the transitions and store only sat-
isfied subformulas (for termination), in this manner, mem-
ory issues are reduced since only a part of the automaton
is stored in memory.

4 Final Remarks
In this paper, we have presented a finite trace semantics
for CL augmented with deontic information, and sketched
how it can be used for automatic analysis of contracts for
conflict discovery. The automaton we have created here
could also be used as a basis for other kinds of analysis
not just conflict analysis. These include the possibility of
performing queries, the detection of unreachable clauses,
and the identification of superfluous clauses. Based on the
construction presented in this paper, we have implemented
a model checker for detecting conflicts in CL [1]. In other
ongoing work using the semantics presented in this pa-
per, we have implemented a translation from the automa-
ton created from CL contracts into the runtime verifica-
tion tool LARVA [2]. This enables us to write contracts
about Java programs and automatically obtain monitors
to ensure conformance to the contracts at runtime. More
detailed trace semantics, the conflict analysis algorithm
(including proof of soundness, completeness and termi-
nation), as well as a description of the tool can be found in
[3].

References
[1] CLAN. CL ANalyser – A tool for Contract

Analysis. Available from www.cs.um.edu.mt/
∼svrg/Tools/CLTool/.

[2] C. Colombo, G. J. Pace, and G. Schneider. Dynamic
event-based runtime monitoring of real-time and con-
textual properties. In FMICS 2008, LNCS, 2008.

[3] S. Fenech. Conflict analysis of deontic contracts.
Master’s thesis, Dept. of Computer Science, Univ. of
Malta, 2008.

[4] M. Kyas, C. Prisacariu, and G. Schneider. Run-
time monitoring of electronic contracts. In ATVA’08,
LNCS. Springer-Verlag, Oct. 2008. To appear.

[5] C. Prisacariu and G. Schneider. A Formal Language
for Electronic Contracts. In FMOODS’07, volume
4468 of LNCS, pages 174–189. Springer, June 2007.

[6] G. von Wright. Deontic logic. Mind, (60):1–15, 1951.

3

