
A Framework for Conflict Analysis of Normative Texts
Written in Controlled Natural Language

Krasimir Angelov, John J. Camilleri, and Gerardo Schneider∗

Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden

Abstract

In this paper we are concerned with the analysis of normative conflicts, or the
detection of conflicting obligations, permissions and prohibitions in normative
texts written in a Controlled Natural Language (CNL). For this we present
AnaCon, a proof-of-concept system where normative texts written in CNL are
automatically translated into the formal language CL using the Grammatical
Framework (GF). Such CL expressions are then analysed for normative conflicts
by the CLAN tool, which gives counter-examples in cases where conflicts are
found. The framework also uses GF to give a CNL version of the counter-
example, helping the user to identify the conflicts in the original text. We detail
the application of AnaCon to two case studies and discuss the effectiveness of
our approach.

Key words: normative texts, e-contracts, legal contracts, controlled natural
language, CLAN, CL, conflict analysis, grammatical framework

Contents

1 Introduction 2

2 Background 4
2.1 The Contract Language CL . 5

2.1.1 Example . 6
2.2 CLAN . 7
2.3 Controlled Natural Languages (CNLs) 8
2.4 The Grammatical Framework . 9

IThe research leading to these results has partly received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. FP7-
ICT-247914.

∗Corresponding author’s address: Chalmers University of Technology, Dept. of Computing
Science and Engineering. SE-412 96 Gothenburg, Sweden.

Email address: {krasimir, john.j.camilleri}@chalmers.se,
gerardo.schneider@gu.se (Krasimir Angelov, John J. Camilleri, and Gerardo Schneider)

Preprint submitted to The Journal of Logic and Algebraic Programming March 4, 2013

3 The AnaCon framework 10
3.1 System workflow . 11
3.2 About the CNL . 12
3.3 Linearisation and parsing in GF 15

4 Case studies 19
4.1 Case Study 1: Airline check-in process 20
4.2 Case Study 2: Internet Service Provider 24
4.3 Some reflections concerning the case studies 29

5 Related work 30

6 Conclusion 32
6.1 Limitations . 33
6.2 Future work . 34

A Cases study 1: Airline check-in process 38
A.1 Contract CNL . 38

A.1.1 First version . 38
A.1.2 Second version . 39
A.1.3 Third version . 39

A.2 Generated action dictionaries . 40
A.2.1 First version . 40
A.2.2 Second version . 41
A.2.3 Third version . 41

B Case study 2: Internet service provider 42
B.1 Contract CNL . 42

B.1.1 First version . 42
B.1.2 Second version . 43
B.1.3 Third version . 44

B.2 Generated action dictionaries . 45
B.2.1 First version . 45
B.2.2 Second and third version 45

1. Introduction

Descriptions and prescriptions of procedures and behaviour are normally
presented in a language that end users understand, and thus written in natural
languages (NL) like English, Swedish or Spanish. In particular we refer here to
normative texts: documents containing a set of norms prescribing procedures
and behaviours often collected together as the notions of obligation, permission
and prohibition. This covers a wide a range of documents including traditional

2

legal contracts, requirement specifications, work descriptions, regulations and
service-level agreements (SLAs), just to mention a few.1

Our main interest in this paper is the formal representation and analysis
of such documents, in particular being able to detect and solve normative con-
flicts. By this we mean cases where a document contains one or more clauses
contradicting themselves in the sense that they stipulate conflicting obligations
and/or permissions, or the simultaneous prohibition and obligation/permission
of performing a task. Such conflicts in real-world contracts can easily have
adverse legal implications, and the motivation for writing contracts which are
conflict-free is clear. Yet avoiding such conflicts when writing such documents
is non-trivial, in particular because of the often ambiguous language in which
they are written.

It is well known that NL texts can have multiple interpretations due to
context sensitivity, underspecified terminology, or simply bad use of language.
Documents written in NL are thus in general difficult to analyse algorithmically
(automatically or semi-automatically). In order to do so, such texts need to
be translated into a language having formal syntax and semantics, that is into
a formal language. The advantage of using formal languages is that they are
precise and unambiguous, and in many cases tools are available which provide
the possibility of (semi-) automatic analysis. The drawback is that the use
of formal languages often requires a high level of expertise, not only at the
syntactic level in the use of the language for specifying properties, but also in
the interpretation of the results from such analysis tools. This is also the case
for the so-called “push-button technologies” such as model checking, where one
still needs to write the properties in a logic and interpret the counter-examples,
which are usually given as a long formula representing the trace leading to the
problematic case.

The ideal situation for an end user would be to have the benefit of both
worlds; the simplicity and familiarity of NL combined with the power of formal
methods, without having to be involved in the technical details of the latter.
The current state-of-practice is however far from this ideal situation. Though
the state-of-the-art on NL processing has advanced quite a lot in recent years,
we still have to depend on the use of formal languages and techniques to analyse
such normative texts. A relatively new trend is to restrict the use of NL in order
to get something that “looks like a NL” but having a better structure, and if
possible avoiding ambiguity. We call such constrained languages restricted or
controlled natural languages (CNLs) [1]. The syntax of a CNL resembles the
syntax of a NL, but it includes only some of the syntactic constructions that
are allowed in the full language. This also makes it possible to have a precise
semantics for the CNL, which would be impossible for the full NL. By using
CNL instead of pure logic, users who are not experts in the underlying logic
can easily both create and read new formal contracts, while at the same time

1In the rest of the paper we use the word ‘contract’ to refer not only to legal contracts,
but to this more general class of normative texts.

3

not being forced to deal with the issues that arise when unrestricted natural
language is used.

In this paper we present the AnaCon framework as a proof-of-concept system
for the analysis of normative texts. We start by considering NL contracts taken
from the real world, and describe a CNL which attempts to represent them in
a meaningful way. We then explain and demonstrate the use of the AnaCon
framework to transform such CNL contracts into expressions in a formal lan-
guage which can then be analysed with a conflict detection tool. AnaCon also
allows the translation of counter-examples (witnessing the existence of conflict-
ing clauses) back into our CNL, facilitating the identification of the problem in
the original text.

A conceptual model of AnaCon was first introduced in the workshop paper
[2]. In this work we keep the same fundamental idea introduced there and
consider the same class of contracts—namely those which can be expressed as
formulae in the formal language CL and thus processed with the CLAN analysis
tool. We have thus not changed the name of the framework, though most of
the system design and implementation of the individual sub-modules has been
changed significantly (cf. related work section). In summary, the contributions
of this paper are:

1. The definition and implementation of a CNL for writing normative texts.
The CNL analyser implemented allows the parsing of full sentences by
identifying relevant verbs—in particular those connoting obligations, per-
missions and prohibitions.

2. A formal syntax for the input file format to AnaCon, along with a parser
that automatically extracts action names from the CNL text, taking away
from the user the burden of including an action dictionary.

3. A complete implementation of AnaCon. We provide fully-working versions
of all the modules described in the framework, including the translation
from resulting counter-examples in the formal language CL back into our
CNL.

4. The application of AnaCon to 2 case studies: i) A work description pro-
cedure for an airport check-in desk ground crew, and ii) A legal contract
between an Internet provider and a client.

The paper is organised as follows. In the next section we recall the necessary
technical background the rest of the paper is based on, including CL, CLAN,
CNLs and GF. In Section 3 we present our framework in general terms, and
provide some details on the implementation of AnaCon. We then go into the
application of the framework on two separate case studies in Section 4, as proof-
of-concepts to show the feasibility of our approach. Before concluding in the
last section, we discuss related work in Section 5.

2. Background

In this section we present the background relevant to understanding the
main components of AnaCon. We first introduce the contract language CL, and
continue with a description of the conflict analysis tool CLAN. We then discuss

4

C := CO | CP | CF | C ∧ C | [β]C | > | ⊥
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α)
α := 0 | 1 | a | α&α | α.α | α+ α

β := 0 | 1 | a | β&β | β.β | β + β | β∗

Figure 1: CL syntax.

controlled natural languages in general and finish with a presentation of the
Grammatical Framework.

2.1. The Contract Language CL
The formal language CL has been designed for specifying contracts con-

taining clauses determining the obligations, permissions and prohibitions of the
involved parties [3, 4, 5]. CL is inspired by dynamic, temporal, and deontic logic,
and combines concepts from each. Being action-based, modalities in CL are ap-
plied to actions and not to state-of-affairs. Complex actions can be expressed in
the language by using operators for choice, sequence, conjunction (concurrency)
and the Kleene star. CL also allows the expression of what penalties (repara-
tions) apply when obligations and prohibitions are not respected, which form a
central part of how contracts are defined and used.

For these reasons, CL was chosen for the underlying representation of the
class of contracts in which we are interested. Combined with the availability of
the conflict-detection tool CLAN (section 2.2), CL forms the formal basis of the
AnaCon framework.

In what follows we present the syntax of CL, and give a brief intuitive ex-
planation of its notations and terminology, following [4]. A contract in CL may
be obtained by using the syntax grammar rules shown in Fig. 1.
CL contracts in general consist of a conjunction of clauses representing (con-

ditional) normative expressions, as specified by the initial non-terminal C in
the definition. A contract is defined as an obligation (CO), a permission (CP),
a prohibition (CF), a conjunction of two clauses or a clause preceded by the
dynamic logic square brackets. > and ⊥ are the trivially satisfied and violating
contracts respectively. O , P and F are deontic modalities; the obligation to
perform an action α is written as OC (α), showing the primary obligation to
perform α, and the reparation contract C if α is not performed. This represents
what is usually called in the deontic community a Contrary-to-Duty (CTD), as
it specifies what is to be done if the primary obligation is not fulfilled. The
prohibition to perform α is represented by the formula FC (α), which not only
specifies what is forbidden but also what is to be done in case the prohibition
is violated (the contract C); this is called Contrary-to-Prohibition (CTP). Both

5

CTDs and CTPs are useful to represent normal (expected) behaviour, as well
as alternative (exceptional) behaviour. P(α) represents the permission of per-
forming a given action α. As expected there is no associated reparation, as a
permission cannot be violated.

In the description of the syntax, we have also represented what are the al-
lowed actions (α and β in Fig. 1). It should be noted that the usage of the
Kleene star (∗)—which is used to model repetition of actions—is not allowed
inside the above described deontic modalities, though they can be used in dy-
namic logic-style conditions. Indeed, actions β may be used inside the dynamic
logic modality (the bracket [·]) representing a condition in which the contract
C must be executed if action β is performed. The binary constructors (&, .,
and +) represent (true) concurrency, sequence and choice over basic actions
(e.g. “buy”, “sell”) respectively. Compound actions are formed from basic ones
by using these operators. Conjunction of clauses can be expressed using the
∧ operator; the exclusive choice operator (⊕) can only be used in a restricted
manner. 0 and 1 are two special actions that represent the impossible action
and the skip action (matching any action) respectively.

The concurrency (or synchrony) action operator & should only be applied to
actions that can happen simultaneously. CL offers the possibility to explicitly
specify such actions by defining the following relation between actions: a#b if
and only if it is not the case that a&b. We call such actions mutually exclusive
(or contradictory). An example of such actions would be “the ground crew
opens the check-in desk” and “the ground crew closes the check-in desk”, which
intuitively cannot occur at the same time.

It is worth mentioning that much care has been taken when designing CL
to avoid deontic paradoxes, as this is a common problem when defining a lan-
guage formalising normative concepts (cf. [6]). Besides, CL enjoys additional
properties concerning the relation between the different normative notions, as
for instance that obligations implies permissions, and that prohibition may be
defined as the negation of permission. It has also been proven that some un-
desirable properties do not hold, such as that the permission of performing a
simple action does not imply the permission of performing concurrent actions
containing that simple action (similarly for prohibitions). See [3, 7] for a more
detailed presentation of CL, including a proof of how deontic paradoxes are
avoided as well as the properties of the language.

2.1.1. Example
As an example of how CL can be used to represent contracts, let us consider

the following sample clause:

The ground crew is obliged to open the check-in desk and request the
passenger manifest two hours before the flight leaves.

Taking a to represent “two hours before the flight leaves”, b to be “the ground
crew opens the check-in desk”, and c to be “the ground crew requests the passen-
ger manifest”, then this clause could be written in CL as [a]O(b&c). We may
also wish to include an additional reparation clause, such as:

6

If the ground crew does not do as specified in the above clause then
a penalty should be paid.

This penalty must be applied in case the ground crew does not respect the above
obligations. Assuming that p represents the phrase “paying a fine”, one would
capture all the above in CL as [a]OO(p)(b&c).

This example serves not only to provide samples of normative statements
written in CL, but also to highlight the significant gap between natural language
descriptions and formal representations of contracts. This paper attempts to
bridge this gap through the introduction of an intermediary controlled natural
language (CNL) to reconcile these two distinct representations. More back-
ground on CNLs can be found in section 2.3.

2.2. CLAN
CLAN2 is a tool aimed at the detection of normative conflicts in contracts

written in CL, giving the possibility for automatically generating a monitor for
the CL formula [8]. There are four main kinds of conflicts in normative systems.
The first arises when there is an obligation and a prohibition to perform the
same action. Such cases will inevitably lead to a violation of the contract,
independently of what the performed action is. The second type of conflict
happens when there is a permission and a prohibition on the same action, which
may or may not lead to a contradicting situation. The other two cases occur
when there is an obligation to perform mutually exclusive actions, and when
there exist both a permission and an obligation to perform mutually exclusive
actions.

The core of CLAN is implemented in Java, consisting of just over 700 lines
of code. The tool provides a graphical user interface as shown in the screen shot
depicted in Fig. 2(a). CLAN allows the user to input a CL contract together
with a list of the actions to be considered mutually exclusive. If a conflict is
detected, CLAN gives a counter-example trace “explaining” where the conflict
arises and giving a sequence of actions realising the path to that conflict state.
It is possible to visualise the corresponding automaton, as for instance shown
in Fig. 2(b). The complexity of the automaton increases exponentially on the
number of actions, since all the possible combinations to generate concurrent
actions must be considered.

The analysis provided by CLAN enables the discovery of undesired conflicts.
This is particularly useful both when a contract is being written, as well as
before adhering to a given contract (to ensure its unambiguous enforcement).
AnaCon uses CLAN as its “back-end” conflict analyser, yet abstracts over both
the input to and output from CLAN via the CNL interface described in section
3.2.

2http://www.cs.um.edu.mt/~svrg/Tools/CLTool

7

(a)

(b)

Figure 2: (a) Screenshot of the CLAN tool; (b) Automaton generated for [c]O(b)∧ [a]F (b). [8]

2.3. Controlled Natural Languages (CNLs)
CNLs are artificial languages engineered to be simpler versions of “full”

(or “plain”) natural languages such as English. Such simplified languages are
obtained through careful selection of vocabulary and restriction of grammatical
rules, and are normally tailored to be used in a particular domain.

Among other applications, CNLs are useful when considering human-machine
interactions which aim for an algorithmic treatment of language. Unlike plain
natural languages, the simplifications applied to CNLs usually allow them to be

8

expressed and processed formally, while remaining easy to understand and use
for speakers of the original parent natural language. This idea of using a CNL
as a natural language-like interface for a formal system is not new [2, 9, 10],
and is also the solution chosen in AnaCon.

In general, the richer a CNL is, the more complex is its automation. So, it is
a challenge when designing CNLs to find a good trade-off between expressiveness
(i.e. how close they are to natural languages) and formalisation. This trade-off
is also affected by the richness of the parent NL and the formalism in which the
CNL is defined [1].

As an example of the kinds of restrictions found in CNLs, consider again the
following natural language clause:

The ground crew is obliged to open the check-in desk and request the
passenger manifest two hours before the flight leaves.

Using the CNL introduced later in this paper, such a clause would be re-written
as:

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check -in desk}

- {the ground crew} must request {the passenger

manifest}

Even though the structure of the CNL version is noticeably less natural,
it is sufficient for our purposes to be merely close enough to English as to
be understood by any non-technical person, while retaining the possibility of
being unambiguously translated into an equivalent CL expression. It is worth
mentioning that the conversion of NL to CNL is not necessarily a trivial process,
owing to the ambiguities and potential for misinterpretation in NL. Conversely
however, CNLs should be immediately understandable to any speaker of the
parent NL, as the former is very much a subset of the other. This means that
while it may require some training to convert a contract in NL to CNL, once
that conversion has been made then anyone should be able to easily understand
that CNL version of the contract. Further details about the design of the CNL
for AnaCon is explained in section 3.2.

2.4. The Grammatical Framework
With both the formal language CL and a controlled natural language for the

framework in place, what remains is the software implementation for performing
this bi-directional translation between representations. As in [2], we retain the
use of the Grammatical Framework (GF) as a grammar formalism and runtime
parser/lineariser for converting between CNL and CL.

GF is a logical framework in the spirit of Harper, Honsell and Plotkin [11],
which lets us define logics tailored for specific purposes, rather than trying to fit
everything in a single model. At the same time, GF is also equipped with mech-
anisms for mapping abstract logical expressions to a concrete language. This is
a distinct feature since most other logical frameworks come with a predefined

9

syntax. This same feature is a notable characteristic of GF as a linguistic frame-
work. While the logical framework encodes the language-independent structure
(ontology) of the current domain, all language-specific features can be isolated
in the definition of the concrete language. In other words, the definitions in the
logical framework comprise the abstract syntax of the domain, while the con-
crete syntax is kept clearly separated [12]. This is a realisation of the separation
between tectogrammatical and phenogrammatical features as was first proposed
by Curry [13].

Furthermore, it is usual and actually very common to equip the same ab-
stract syntax with several concrete syntaxes. Since GF has both a parser and a
lineariser, in this case, the abstract syntax can serve as an interlingua. When a
sentence is parsed from the source language, then the meaning of the sentence is
extracted as an expression in the abstract syntax. The abstract expression then
can be linearised back into some other language and this gives us bi-directional
translation between any two concrete languages. Most of the time the concrete
languages are natural languages, but it is also possible to define a linearisation
into some formal language. In AnaCon, we have two concrete syntaxes—one for
English (CNL) and one for the source language of CLAN (CL). Thanks to the
bi-directionality of GF we can go freely from CNL to logic and vice versa.

Another important advantage of GF from an engineering point of view is the
availability of the Resource Grammar Library (RGL) [14]. Since every domain
is logically different, it is also necessary to define different concrete syntaxes.
When these are natural languages, then it means that a lot of tedious low-level
details like word order and agreement have to be implemented again and again
for each application. Fortunately, RGL provides general linguistic descriptions
for several natural languages which can be reused by using a common language
independent API. We implemented the AnaCon syntax for English by using this
library, which both simplifies the development and makes it easy to port the
system to other languages.

The GF runtime system also features an incremental parser, which can parse
partial sentences and suggest valid completions according the underlying gram-
mar [15]. While not used in the current version of AnaCon, this feature becomes
very useful when composing sentences in CNL, as users do not necessarily need
to know the specific grammar rules which define the language. In other words,
the incremental parser can be used to provide a guided user-input experience.
This feature was a further motivator for choosing GF as the framework for the
implementation of AnaCon’s CNL.

3. The AnaCon framework

In this section we start with the presentation of our framework, AnaCon, in
general terms. We then discuss some issues concerning the particular CNL we
are using as an input language for the framework, and present some details on
the linearisation and parsing processes via GF.

10

[clauses]

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check -in desk}

- {the ground crew} must request {the passenger manifest}

[/ clauses]

[contradictions]

{the ground crew} open {the check -in desk} # {the ground

crew} request {the passenger manifest} ;

[/ contradictions]

Figure 3: Sample contract file in AnaCon format

Contract
(Natural Language)

Contract
(AnaCon format)

 Manual re-writing

GF translation

 Clauses (CNL)

CLAN Input (XML)

 Exclusive
actions

Dictionary

 Dictionary
extraction

 Clauses (CLAN)

GF translation

CNL Output

 Contradictory clause
(CNL)

Dictionary

 Action
renaming

CLAN analysis

CLAN analysis

CLAN Output

 Contradictory clause
(CLAN)

Figure 4: AnaCon processing workflow

3.1. System workflow
AnaCon takes as input a text file containing the description of a contract in

two parts: (i) The contract itself written in CNL; (ii) A list of mutually exclusive
actions.3 Fig. 3 shows a sample of the input file to the framework, containing
part of the description of what an airline ground crew should do before flights
leave (details on the CNL syntax will be given in Section 3.2).

The entire system is summarised in Fig. 4 where arrows represent the flow of
information between processing stages. AnaCon essentially consists of a trans-
lation tool written in GF, the conflict analysis tool CLAN, and some script files

3AnaCon can be downloaded from: http://www.cse.chalmers.se/~gersch/anacon/.

11

http://www.cse.chalmers.se/~gersch/anacon/

used to connect these different modules together. The typical system workflow
is as follows:

1. The user starts with a contract (specification, set of requirements, etc.)
in plain English, which must be rewritten in CNL. This is primarily a
modelling task, and it must be done manually. It requires no technical
skills from the user, but does demand a knowledge of the CNL syntax and
the set of allowed verbs.

2. The CNL version of the contract in AnaCon text format (Fig. 3) is then
passed to the AnaCon tool, which begins processing the file.

3. The clauses in the contract are translated into their CL equivalents using
GF. This translation is achieved by parsing the CNL clauses into abstract
syntax trees, and then re-linearising these trees using the CL concrete
syntax (see Section 3.3).

4. From the resulting CL clauses, a dictionary of actions is extracted. Each
action is then automatically renamed to improve legibility of the resulting
formulae, and a dictionary file is written. The list of mutually exclusive
actions from the CNL contract is verified to make sure that each individual
action actually does appear in the contract.

5. Using the renamed CL clauses from the previous step and the list of mutu-
ally exclusive actions, an XML representation of the contract is prepared
for input into the CLAN tool.

6. This XML contract is then passed for analysis to CLAN via its command-
line interface, which checks whether the contract contains any normative
conflicts. If no such conflicts are found, the user is notified of the success.
If CLAN does detect any potential conflicts, the counter-example trace
it provides is linearised back into CNL using the GF translator in the
opposite direction. The dictionary file is used to re-instate the original
action names.

7. The user must then find where the counter-example arises in the original
contract. This last step must again be carried out manually, by following
the CNL trace and comparing with the original contract.

3.2. About the CNL
Wyner et al. [1] have identified the following general questions one should

ask when designing a CNL: (i) Who are the intended users? (ii) What is the
main purpose of the language? (iii) Is the language domain-dependent? In
our particular case we have the following answers to these questions: (i) The
intended user is any person writing normative texts; (ii) The main purpose of
the language is that it is close enough to English as to be understood by any
person, yet at the same time structured in such a way that its translation into
CL is feasible; (iii) The language is not specifically tailored for an application
domain, however, it should be easy to parse it in such a way that obligations,
permissions and prohibitions are easily identified.

Actions. The most primitive element in CL is the action and this is the starting
point in the design of our CNL. While in CL these are just variable names, in

12

natural language they correspond to sentences stating who is doing what. As a
very rough approximation, every English sentence has the structure:

<subject > <verb > <object >

as for instance in the following sentence:

the ground crew opens the check-in desk
subject verb object

This is what we take as the basic syntax for actions in our CNL. Obvi-
ously, if this is taken directly, it will rule out many natural language construc-
tions like the usage of adverbs and the attachment of prepositional phrases.
These constructions usually express different moods for performing the action
(e.g. quickly, slowly, immediately, etc.) or define time and space locations for
the action (e.g. at the airport). As this kind of information cannot be expressed
in CL, we omit it from the CNL altogether. Still, since we permit the subject
and the object to be free text, the user has the freedom to include more infor-
mation than just the noun phrase of the subject or the object. It is also possible
to have ditransitive verbs, i.e. verbs with more than one object. In this case
we simply insert both objects in the free text slot for the object. If the verb is
intransitive (without objects) then we can just leave the object slot empty.

The slot for the verb is not free text and must come from a set of predefined
verbs. While we do not have to analyse the subject and the object slots, the
ability to analyse the verb is important since we use modal verbs like must and
may to indicate obligation, prohibition and permission. The restriction to use
known verbs is not so hard since the grammar has a lexicon with all verbs from
the Oxford Advanced Learners Dictionary [16, 17]. A given user will almost
certainly find the verb that is needed—or a synonym of it—in the lexicon. The
verb should be always in the present tense, and it can be in first, second or
third person, in singular or plural. We check the tense but we cannot check the
agreement with number and person, since we do not analyse the subject of the
sentence. The only exception is when the verb is used with some of the modal
verbs, then it must be in the infinitive.

When analysing the action, we must be able to correctly identify the begin-
ning and the end of each slot, which is difficult when there are free text slots.
Our simple solution is to require that the object and subject must be surrounded
with curly braces, i.e. the user actually writes:

{the ground crew} opens {the check -in desk}

In some cases, the system can do the splitting even without the help of the
curly braces since from the context it knows where each slot starts, and can
guess the end of the slot by looking for known words. For instance we can guess
the end of the slot for the ground crew since the next word opens is a known
verb. Unfortunately, with the big verb lexicon this is often ambiguous since for
instance ground is also a verb although here it is used as an adjective. The
guessing can be made more sophisticated by using statistical part of a speech
tagger which will try to predict whether ground is used as a verb or as an

13

adjective. Unfortunately even the best part of speech taggers are still far from
perfect, with precision of about 95%–97% (the precision of the Stanford Tagger,
for instance, is 96.86% [18]). Instead, we opted for a solution that is simple and
predictable. Integration of statistical tools can be done later, while still keeping
bracketing as a safe alternative.

Connectives over actions. The two main operations on actions are concurrency
(&) and choice (+). In natural language, they are represented by joining the
sentences for the different actions with the conjunctions and and or. When
there are more than two actions the usual English rules apply, i.e. the first ac-
tions are separated by comma and the last two with the conjunction. When
the same expression mixes concurrency and choice, then in order to avoid am-
biguities we use the usual conventions in logic and we give higher priority to
the concurrency. In other words, if we have the expression a and b or c, then
it will be interpreted as (a and b) or c. The user can also use parenthesis to
override the default priorities.

A sequence of actions (.) in the CNL is introduced with the keyword first,
followed by a list of actions. The actions are separated by commas except the
last two which are separated with a comma followed by the conjunction then.
For example:

first {the ground crew} opens {the desk},

then {the ground crew} closes {the desk}

We omit from the CNL the two special actions 0 and 1 since they have no
obvious equivalent in English. Although they have useful algebraic properties
in the logic, they do not appear naturally in any real contracts. A notable
exception is the construction [1∗]C which means that the clause C must be
enforced at any state. For this purpose, we added the keyword always which can
be used in front of any clause, which adds the condition [1∗] in the corresponding
CL formula. Similarly we did not include the Kleene star in our CNL, except
for its use in relation to always.

Deontic modalities. On the next level, from every action, we can construct a
clause expressing the obligation, the prohibition or the permission to perform an
action. For representing the modalities we use the modal verbs must, shall and
may, and the adjectives required and optional. In this way we implement the
Internet recommendation RFC 21194 for requirement levels. The only difference
is that they also define the verb should which is used for recommendations. Since
the CL logic does not support this modality, we do not have it in the CNL either.

More concretely, if we take for example the action “the ground crew opens the
desk”, then in the different modalities it can be written in one of the following
ways:

4http://www.ietf.org/rfc/rfc2119.txt

14

http://www.ietf.org/rfc/rfc2119.txt

• Obligation:
{the ground crew} must open {the desk}

{the ground crew} shall open {the desk}

{the ground crew} is required to open {the desk}

• Permission: {the ground crew} may open {the desk}

it is optional for {the ground crew} to open {the desk}

• Prohibition: {the ground crew} must not open {the desk}

{the ground crew} shall not open {the desk}

The two operations on clauses—conjunction (∧) and the exclusive choice
(⊕)—are rendered in English with the keywords both (or each of) and either,
followed by a bullet list of clauses. Each list item starts on a new line and
begins with a dash. If some of the list items contain clauses which themselves
contain conjunction or exclusive choice, then the list items for such clauses must
be indented with more spaces than the spaces before the dash of the “parent”
clause. Contrary to the case with the concurrency and choice over actions, here
we do not have any risk of ambiguity since the indentation level clearly indicates
the nested structure of the logical formula.

Reparations. In the case of obligation and prohibition, the user can specify a
reparation clause which must be hold if the contract is violated. In the CNL
the reparation is introduced with comma and the keyword otherwise after the
main action. For example:

{the ground crew} must open {the desk}, otherwise

{the ground crew} must pay {a fine}

Here we can have an arbitrarily long list of clauses, which are applied in the
order in which they are written. The last clause is not followed by otherwise,
which is an indication its reparation is ⊥. This is also the only way to introduce
⊥ in the logic. Similarly to 0 and 1 for actions, the clauses > and ⊥ cannot be
used directly in the CNL.

The last thing to mention about the CNL is the syntax for conditions. As
already mentioned, the syntax for the special condition [1∗]C is introduced
with the keyword always followed by the content of the clause C. The general
conditions are introduced with the usual if . . . then statements in English, for
example:

if {the ground crew} opens {the desk}

then {the ground crew} must close {the desk}

Note that here the verb opens is not used with a modal verb; this is an indication
that this is an action and not a clause. In fact the expression between if and
then can be a combination of many actions joined with the different action
operators.

3.3. Linearisation and parsing in GF
In what follows we present how the major features of CL are represented in

the abstract syntax, and look at how these features are handled in the concrete

15

syntax for our CNL and the symbolic language for CLAN. As the chosen CNL
covers a subset of CL’s full expressivity, some CL operators are accordingly
absent from the grammars—namely >, 0, 1 and a∗. With the GF grammars
for our two representations, the framework provides parsing and linearisation
to and from the abstract syntax for free. In this way we can achieve two-way
translation between the CNL and the CLAN language by having one concrete
syntax for each, with shared abstract syntax.

To begin with, we define the following categories based on the BNF of CL
(square brackets denote lists over a category). These correspond to the left-
hand-side of the productions in Fig. 1.

cat

Act; [Act]; Clause; [Clause]; ClauseX;

ClauseO; [ClauseO]; ClauseP; [ClauseP]; ClauseF;

Conjunction of clauses. In the abstract syntax, conjunction over clauses is de-
fined as a function collapsing a list of heterogeneous clauses into one.

fun

andC : [Clause] -> Clause ;

Our CNL as defined in Section 3.2 dictates that two or more clauses joined
by conjunction should be bulleted and indented (for legibility and to avoid
ambiguity), and preceded with a keyword token both or each of. As there are no
other binary operations over clauses, operator precedence is not an issue (unlike
for the action operators) and our code is fairly simple:

lin

andC lst = indentS ("both "|" each of")

(mkS bullet_Conj lst) ;

oper

indentS : Str -> S -> S = \keyword ,sen -> lin S {

s = keyword ++ "[" ++ sen.s ++ "]" ;

} ;

bullet_Conj = mkConj "-" "-" ;

A few different things are happening here. Firstly, the linearisation of andC
is delegated to the indentS operation5, which prefixes our list with either of the
variants both or each of, and encloses the rest of the term in square brackets.
The role of the brackets is to encode the beginning and the end of an indentation
level. Since GF grammars work on token level and the spaces and the new lines
are ignored, they cannot handle the indentation directly. Instead a custom lexer
and unlexer are used to convert between the square brackets and the indentation
levels. In this way the indentation is handled outside of the grammars. We also
see the reference to mkS, an operation defined in the GF Resource Grammar

5 oper judgements in GF are operations which can be re-used by linearisation judgements,
but do not themselves represent linearisations of syntactic constructors.

16

Library (RGL). This library call does all the work of joining our clauses into a
single token list using a hyphen symbol as a delimiter (bullet_Conj).

Conditionals. The modality [β]C is used to express conditional obligations, per-
missions and prohibitions, where the condition is a simple or compound action.
The abstract syntax declaration and CNL linearisation are given below:

fun

when : Act -> Clause -> Clause ;

lin

when act c =

mkS if_then_Conj (act.s ! Default) c ;

This example makes use of another version of the overloaded mkS operation
from the RGL, which constructs an English if . . . then sentence given the appro-
priate arguments. The linearisation of such a clause in the CL concrete syntax
is a simple string concatenation:

lin

when act c = "[" ++ act.s ++ "]" ++ "(" ++ c.s ++ ")" ;

Obligations, Permissions and Prohibitions. Obligations, permissions and prohi-
bitions have a similar implementation as they all follow the same pattern. Each
is built from an action and a reparation clause (CTP or CTD) where appro-
priate. Choice over obligations and permissions is defined in the same way as
conjunction of clauses above.

fun

O : Act -> ClauseX -> ClauseO ;

P : Act -> ClauseP ;

F : Act -> ClauseX -> ClauseF ;

choiceO : [ClauseO] -> ClauseO ;

choiceP : [ClauseP] -> ClauseP ;

Understanding the linearisation of an obligation also requires a look at the
reparation clauses. While CL uses the bottom symbol ⊥ to indicate a null CTD,
in natural language it sounds very awkward to say something like “one is obliged
to pay a fine, otherwise nothing”. It is much more natural to simply omit the
“otherwise nothing” altogether. So, the linearisation of obligations is dependent
on the type of the reparation clause (the ty field, where False indicates a null
CTD).

lincat

ClauseO = S ;

ClauseX = {s : S; ty : Bool} ; -- CTD/CTP

lin

O act cl = case cl.ty of {

True => mkS (mkConj ", otherwise ") (act.s ! Obligation)

cl.s ;

False => lin S {s = cl.s.s ++ (act.s ! Obligation).s}

17

} ;

reparation c = { s = c ; ty = True } ;

failure = { s = lin S {s=""} ; ty = False } ;

Actions. Atomic actions are defined as a “triple” containing a subject, a verb
and an object, e.g. <the crew, requests, the boarding pass>. These are covered
by the lexical categories NP (noun phrase), V (verb) and NP respectively:

flag

literal = NP ;

cat

NP ; V ;

fun

atom : NP -> V -> NP -> Act ;

By specifying the literal = NP flag, the GF compiler is instructed to treat
NP as a literal category, which means its linearisation is that of a simple string.
To achieve a degree of modularity between the logical and the linguistic, all
verbs are defined in a separate abstract GF module Verbs.gf. In this case, the
CNL concrete syntax VerbsEng.gf is also imported in the CL concrete syntax,
exhibiting how GF’s module system may help avoid duplication of code. The
verbs themselves are also defined using the RGL, such that all that is required
in our linearisation is a call to the mkV smart paradigm:

fun

close_V : V;

request_V : V;

...

lin

close_V = mkV "close" "closes" "closed" "closed" "closing

";

request_V = mkV "request ";

...

The CNL linearisation of actions is defined as a table parametrised with a
mode. This essentially reflects the idea that a single action can be realised in
four different modalities:
• Default: the crew requests the boarding pass
• Obligation the crew must request the boarding pass
• Permission: the crew may request the boarding pass
• Prohibition: the crew shall not request the boarding pass

With this approach, each atomic action internally contains each of these possi-
ble linearisations, which must be selected elsewhere in the grammar using the
selection operator !.

To add a degree of naturalness to the grammar, we also introduce the con-
cept of linearisation variants. Variants are a way of adding alternative, non-
deterministic linearisations to an abstract syntax tree, and are defined in GF
using the pipe symbol |. Using variants, we allow the single abstract syntax
tree O (atom (np "the crew") close_V (np "the check-in desk")) to have any
of the following linearisations:

18

1. the crew is required to close the check-in desk
2. the crew shall close the check-in desk
3. the crew must close the check-in desk

param

Mode = Default | Obligation | Permission | Prohibition ;

lincat

Act = {s : Mode => S; p : Prec} ;

lin

atom = mkAtom 0 | mkAtom 1 | mkAtom 2 ;

oper

mkAtom : Ints 2 -> NP -> V -> NP -> {s : Mode => S; p :

Prec} ;

mkAtom n s p o = {

s = table {

Default => mkS (mkCl s (mkVP (mkV2 p) o)) ;

Obligation => case n of {

0 => mkS ...

1 => mkS ...

2 => mkS ...

} ;

Permission => ...

Prohibition => ...

} ;

p = highest

} ;

Operations over actions are defined in the abstract syntax in a way which we
are already familiar with. As CL defines more than one operator over actions, an
order of precedence must be enforced to avoid ambiguities in phrases involving
compound actions. With the help of the RGL’s Precedence module, this is
achieved by including a precedence field (p : Prec) in the linearisation type of
actions. The linearisations of the operators are then explicitly given precedence
levels, where conjunction is the highest (p = 2) and sequence is the lowest
(p = 0).

fun

andAct , choiceAct , seqAct : [Act] -> Act ;

lin

andAct as = {s = \\m => mkS and_Conj (as!2!m); p=2} ;

choiceAct as = {s = \\m => mkS or_Conj (as!1!m); p=1} ;

seqAct as = {s = \\m => mkS then_Conj (as!0!m); p=0} ;

4. Case studies

In this section we apply AnaCon to two case studies, as a proof-of-concept
of the feasibility of our approach. The first is concerned with the workflow
description of an airline check-in, including the penalties applicable when the

19

1. The ground crew is obliged to open the check-in desk and request the passenger manifest
from the airline two hours before the flight leaves.

2. The airline is obliged to provide the passenger manifest to the ground crew when opening
the desk.

3. After the check-in desk is opened the check-in crew is obliged to initiate the check-in
process with any customer present by checking that the passport details match what is
written on the ticket and that the luggage is within the weight limits. Then they are
obliged to issue the boarding pass.

4. If the luggage weighs more than the limit, the crew is obliged to collect payment for the
extra weight and issue the boarding pass.

5. The ground crew is prohibited from issuing any boarding passes without inspecting that
the details are correct beforehand.

6. The ground crew is prohibited from issuing any boarding passes before opening the
check-in desk.

7. The ground crew is obliged to close the check-in desk 20 minutes before the flight is due
to leave and not before.

8. After closing check-in, the crew must send the luggage information to the airline.
9. Once the check-in desk is closed, the ground crew is prohibited from issuing any boarding

pass or from reopening the check-in desk.
10. If any of the above obligations and prohibitions are violated a fine is to be paid.

Figure 5: Airline contract case study [19].

work is not carried out as prescribed. The second case study is a legal con-
tract concerning the provision of Internet services. We finish the section with a
discussion on the lessons learned from the case studies.

4.1. Case Study 1: Airline check-in process
Our first case study has been taken from [19]. It consists of the description

of the check-in process of an airline company, given in Fig. 5.
To show the modelling and re-writing process, we will first consider two

clauses from this contract and show their equivalent CNL representations. Note
that in our CL expressions, the actions have been renamed for brevity. This
replacement is performed automatically by AnaCon and is completely reversible.
You may find a listing of the generated dictionary file in Appendix A.2.

Original: The ground crew is obliged to open the check-in desk and
request the passenger manifest from the airline two hours before the
flight leaves.

CNL:

if {the flight} leaves {in two hours} then {the

ground crew} must open {the check -in desk} and {

the ground crew} must request {the passenger

manifest from the airline}

For this clause, AnaCon gives the following CL formula as output:

CL: [b3]O(a7&b2)

where from the dictionary file (see Appendix A.2) we see that:

20

b3 = {the flight} leave {in two hours}

a7 = {the ground crew} open {the check -in desk}

b2 = {the ground crew} request {the passenger

manifest from the airline}

In the example above we see an obligation over two concurrent actions, which
only become effective after an initial constraint is met—i.e. if it is two hours
before the flight leaves. Note how this constraint is moved to the beginning of the
clause and expressed using the if keyword. As defined by our CNL, conjunction
over actions is expressed by joining together the individual actions with the
keyword and. Conjunction over clauses however must be handled differently, as
shown in the second example below:

Original: Once the check-in desk is closed, the ground crew is pro-
hibited from issuing any boarding pass or from reopening the check-in
desk.

CNL:

if {the ground crew} closes {the check -in desk} then

both

- {the ground crew} must not issue {boarding pass}

- {the ground crew} must not reopen {the check -in

desk}

AnaCon gives the following CL formula as output (again generating the cor-
responding action names in the dictionary file; see Appendix A.2):

CL: [b6]((F(a1))∧(F(a4)))

In this case, using and to separate our clauses would be ambiguous with the
conjunction over actions (shown above). Thus the bullet syntax is used here to
clearly indicate the “level” of the conjunction.

While we have taken the above two examples individually, in real contracts
clauses often refer to and depend on each other. When read in NL the reader
can easily make the connections between the different clauses, but when it comes
to modelling the contract formally these need to be handled explicitly.

Firstly, it is a common assumption that all the individual clauses in a con-
tract are active together and thus there is an implicit conjunction between them.
Furthermore, note how clause 10 in the example specifies a CTD for violating
any part of the contract. Thus combining clauses 1, 8, 9, and 10 from the
contract in Fig. 5 we end up with:

CNL:

if {the flight} leaves {in two hours} then each of

- {the ground crew} must open {the check -in desk}

and {the ground crew} must request {the

passenger manifest from the airline}

21

- if {the ground crew} closes {the check -in desk}

then each of

- {the ground crew} must send {luggage

information to airline}

- {the ground crew} must not issue {boarding

pass}

- {the ground crew} must not reopen {the check -

in desk}

which results in the following CL formula:

CL: [b4]((O(b1&a2))∧[b6]((O(b2))∧((F(a1))∧(F(a4)))))

For full versions of the CNL contracts please refer to Appendix A.1. When
processed with AnaCon, the first conflicting state reported was reached after a
single action:

1 counter example found

Clause:

(((O(a7&b2))_(Oa3))^(((Oa2)_(Ob1))^(([a7]((O(a6

.(b4.(a8.a5))))_(Ob7)))^(((F(b5)_(Oa3))^(((

Ob6)_(Oa3))^(([b6](Oa9))^(([b6](Fa1))^([b6](

Fa4)))))))))

Trace:

1. the flight leave in two hours

Note that the counter-example above contains 2 parts: (i) a CL formula,
and (ii) a trace in CNL. The first part is the formula representing the state of
the automaton where the normative conflict happens, which is not particularly
helpful for the end user. The second part is a linearisation of the output of
CLAN showing what is the sequence of actions leading to the conflict; in this
case only one.

A quick analysis of the original contract reveals that the two mutually ex-
clusive actions opening the check-in desk and closing the check-in desk were
erroneously obliged at the same level in the contract. This is a modelling error,
and is corrected in a second version of the case study CNL (see Appendix A.1).

When rewriting the second version we have not only addressed the issue of
the arrangement of the actions corresponding to opening and closing the check-in
desk, but we have also added more mutually exclusive actions. Such actions are
considered mutually exclusive because they are logically contradictory and thus
cannot happen at the same time, or because they cannot occur simultaneously
due to physical constraints (e.g. “the check-in crew issue the boarding pass” and
“the check-in crew check that the passport details match what is written on the
ticket”). By adding such pairs of mutually exclusive (contradictory) actions we
are avoiding some possible unnatural traces and at the same time reducing the
size of the CLAN automaton, improving its time and space requirements.

22

By executing AnaCon a third time and analysing the counter-example given,
it becomes apparent that there is something wrong with clause 5 (cf. Fig. 5).
In effect, this clause has two problems: (i) it is ambiguous as the whether the
so-named “details” refer to the passport or to the ticket; (ii) it is redundant as
it is somehow contained in clause 3. The latter adds some complexity to the
analysis, so we decided to eliminate clause 5, without changing the intended
meaning of the description.

Re-running AnaCon on this new contract also reveals another conflict, relat-
ing to the initiation of check-in and the closing of the gate being obliged at the
same level in the contract:

CNL:

if {the airline crew} provides {the passenger

manifest to the ground crew} then each of

- first {the check -in crew} must initiate {the

check -in process} ...

- {the ground crew} must close {the check -in desk

20 mins before flight leaves} ...

- if {the ground crew} closes {the check -in desk

20 mins before flight leaves} then ...

CL: [a5]((O(a8&...))∧((O(b5))∧[b5](...)))

Resulting AnaCon output:

4 counter examples found (only showing first)

Clause:

((((Oa8)_(Ob6))^([a8]((O(b4.(a7.a6)))_(Ob6))))

^(((Ob5)_(Oa3))^(([b5](Ob1))^(([b5](Fa1))^([

b5](Fa4))))))

Trace:

1. the flight leave in two hours

2. the ground crew open the check -in desk 2

hours before

3. the ground crew request the passenger

manifest from the airline

4. the airline crew provide the passenger

manifest to the ground crew

This leads to yet another re-writing of this final part of the contract, where the
closing of the gate is now properly obliged after the initiation of the check-in
process (note that by adding a new action, the re-written action names have
changed):

CNL:

if {the airline crew} provides {the passenger

manifest to the ground crew} then each of

23

- first {the check -in crew} must initiate {the

check -in process} ...

- if {the flight} leaves {in 20 mins} then both

- {the ground crew} must close {the check -in

desk}

- if {the ground crew} closes {the check -in desk

} then each of

- {the ground crew} must send {the luggage

information to the airline}

- {the ground crew} must not issue {boarding

pass}

- {the ground crew} must not reopen {the

check -in desk}

Generated CL: [a6]((O(a9&...))∧
([a5]((O(b6))∧[b6]((O(b2))∧((F(a7))∧(F(a4)))))))

In order to truly cut down the size of the generated automaton to a bare
minimum, a cross product of all possible mutually exclusive actions is generated
using a simple shell script. From this, only the actions that are allowed to occur
concurrently are removed; namely all those including the paying of fines, since
a fine can be paid at any time. As this case study turns out to have a highly
sequential nature, it makes sense that the list of mutually exclusive actions
should be quite large.

Finally, after the iteration process described above we arrive at a final version
of the contract without conflicts. This can be found in Appendix A.1. It should
be noted that for this case study we modelled the contract as a single instance
of a sequence of events, i.e. considering a single airline and ground crew, a single
check-in desk and indeed a single passenger. Extending the example with the
always operator to model multiple check-ins occurring simultaneously introduces
a number of difficulties and moreover reveals certain shortcomings of CL and
CLAN. These are discussed further in sections 4.3 and 6.

4.2. Case Study 2: Internet Service Provider
We apply AnaCon here to part of a contract between an Internet provider

and a client, taken from [20]. The contract (reproduced in Fig. 6) stipulates
the obligations and rights of an Internet provider and a client of the service.
For simplicity of presentation we will consider only the following clauses of the
contract:

7.1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.

7.2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

7.4. If the Client does not lower the Internet traffic immediately, then the Client will have to
pay 3 ∗ [price].

7.5. The Client shall, as soon as the Internet Service becomes operative, submit within seven
(7) days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

24

We also add clause 11.2 as it is strongly related to clause 7.1 and the two
should be taken together:

11.2. Provider may, at its sole discretion, without notice or giving any reason or incurring any
liability for doing so:
b) Suspend Internet Services immediately if Client is in breach of Clause 7.1;

The first clause imposes a prohibition for the client to give false information,
while clauses 7.2 through 7.5 stipulate the obligations of the client in what
concerns keeping the use of Internet below a certain limit (here specified as high)
and the penalties to be paid in case these clauses are not respected. Clause 11.2
refers to the right of the provider to suspend the service if the client provides
false information.

In what follows we rewrite the above clauses into our CNL and apply AnaCon.
Our first attempt to analyse our CNL contract produces a parsing error on the
following fragment:

CNL:

if {Internet traffic} becomes {high} then either

- {the Client} must pay {price P}

- each of

- {the Client} must notify {the Provider ...}

- if {the Client} notifies {the Provider ...} then {

the Client} must lower {Internet traffic to the

normal level}, otherwise {the Client} is required

to pay {price 3P}

- if first {the Client} notifies {the Provider ...},

then {the Client} lowers {Internet traffic to the

normal level} then {the Client} must pay {price 2P

}

The syntax error in this example stems from the use of disjunction (either on
line 1) over clauses, which this is not allowed by CL and therefore in our CNL.
The solution in this case is to treat this disjunction as a reparation, which is
indeed the intended meaning in such cases:

CNL:

if {Internet traffic} becomes {high} then {the Client}

must pay {price P}, otherwise first {the Client} must

notify {the Provider ...}, {the Client} must lower {

Internet traffic to the normal level}, then {the

Client} must pay {price 2P}, otherwise {the Client} is

required to pay {price 3P}

CL: [a4]((O(a8) ((O(a2.b1.a9) ((O(a3)))))))

Note how rewriting the above clauses actually leads to a neater implementation,
both in terms of the CNL and in the underlying CL expression.

25

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. [name], from now on referred to as the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
5. DEFINITIONS

5.1. j) Internet traffic may be measured by both Client and Provider by means of Equip-
ment and may take the two values high and normal.

OPERATIVE PART
7. CLIENT’S RESPONSIBILITIES AND DUTIES

7.1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.

7.2. Whenever the Internet Traffic is high then the Client must pay [price] immediately,
or the Client must notify the Provider by sending an e-mail specifying that he will pay
later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he must imme-
diately lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

7.4. If the Client does not lower the Internet traffic immediately, then the Client will have
to pay 3 ∗ [price].

7.5. The Client shall, as soon as the Internet Service becomes operative, submit within seven
(7) days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

8. CLIENT’S RIGHTS
8.1. The Client may choose to pay either:

a) each month; b) each three (3) months; c) each six (6) months;
9. PROVIDER’S SERVICE

9.2. As part of the Service offered by the Provider the Client has the right to an e-mail
and an user account.

9.3. Provider is obliged to offer with no limitation and within a period of seven (7) days
a password and any other Equipment Specific to Client, necessary for the correct usage of
the user account, upon receiving of all the necessary data about the client from the Client
Relations Department of the Provider.

9.4. Each month the Client pays the bill the Provider is obliged to send a Report of Internet
Usage to the Client.

10. PROVIDER’S DUTIES
10.1. The Provider takes the obligation to return the personal data of the client to the

original status upon termination of the present Agreement, and afterwards to delete and
not use for any purpose any whole or part of it.

10.2. The Provider guarantees that the Client Relations Department, as part of his admin-
istrative organisation, will be responsive to requests from the Client or any other Depart-
ment of the Provider, or the Provider itself within a period less than two (2) hours during
working hours or the day after.

11. PROVIDER’S RIGHTS
11.1. The Provider takes the right to alter, delete, or use the personal data of the Client

only for statistics, monitoring and internal usage in the confidence of the Provider.
11.2. Provider may, at its sole discretion, without notice or giving any reason or incurring

any liability for doing so:
b) Suspend Internet Services immediately if Client is in breach of Clause 7.1;

13. TERMINATION
13.1. Without limiting the generality of any other Clause in this Agreement the Client may

terminate this Agreement immediately without any notice and being vindicated of any of
the Clause of the present Agreement if:
a) the Provider does not provide the Internet Service for seven (7) days consecutively.

13.2. The Provider is forbidden to terminate the present Agreement without previous writ-
ten notification by normal post and by e-mail.

13.3. The Provider may terminate the present Agreement if:
a) any payment due from Client to Provider pursuant to this Agreement remains unpaid

for a period of fourteen (14) days;
16. GOVERNING LAW

16.1. The Provider and the present Agreement are governed by and construed according
to the Law Regulating Internet Services and to the Law of the State.
a) The Law of the State stipulates that any ISP Provider is obliged, upon request to

seize any activity until further notice from the State representatives.

Figure 6: A contract between an Internet provider and a client [20]

26

Running this corrected version of the contract with AnaCon, we are returned
with a list of no fewer than 473 counter-examples which CLAN determined
would lead to a state of conflict. An excerpt of the full output from CLAN
shown below indicates that there is no proper handling of inherent sequence
of the preliminary steps in the contract—i.e. those referring to customer data
and the application procedure—which should apply before any clauses about
the Internet traffic are even considered.

473 counter examples found (only showing first)

Clause:

((((F(a7)_(Pa1))^([1]([(*1)]((F(a7)_(Pa1)))))^((((Oa9)

(Oa3))^(((Oa8)(((Oa2)_(Oa3))^(([a2]((Ob1)_(Oa3))

)^([a2]([b1]((Oa9)_(Oa3)))))))^(([a4]((Oa8)_(((Oa2

)_(Oa3))^(([a2]((Ob1)_(Oa3)))^([a2]([b1]((Oa9)_(

Oa3))))))))^([1]([(*1)]([a4]((Oa8)_(((Oa2)_(Oa3))

^(([a2]((Ob1)_(Oa3)))^([a2]([b1]((Oa9)_(Oa3)))))))

))))))^(([a5](Oa6))^([1]([(*1)]([a5](Oa6)))))))

Trace:

1. Internet traffic become high

2. the Client provide false information to the Client

Relations Department of the Provider and the

Internet Service become operative

3. the Client notify the Provider ... and the Internet

Service become operative and the Client submit

... the Personal Data Form ...

4. the Client notify the Provider ... and the Internet

Service become operative and the Client submit

... the Personal Data Form ...

5. the Internet traffic become high and the Client

lower Internet traffic to the normal level and the

Client submit ... the Personal Data Form ...

More than a modelling problem, this tends to indicate some underlying as-
sumptions in the original contract which need to be explicitly handled. This
leads to the restructuring of the contract, as shown in Appendix B.1. In particu-
lar, the new contract was conceptually split into two sections, where all clauses
referring to the application process form a prefix to the rest of the contract,
which subsequently deals with the service once it has been activated. This is
shown below (the corresponding CL formula has been omitted):

CNL:

if {the Client} submits {the data} then each of

- {the Provider} must check {the data}

- if first {the Provider} checks {the data}, then {the

Provider} disapproves {the data} then {the Provider}

may cancel {the contract}

- if first {the Provider} checks {the data}, then {the

Provider} approves {the data} then each of

27

- {the Internet Service} must become {operative}

- if {the Internet Service} becomes {operative} then

always ...

It should be noted that this rewriting of the contract may in fact depart from the
original meaning of the natural language contract we began with. This however
should not be seen as a flaw; indeed the very aim of contract analysis tools like
AnaCon is to help identify weaknesses in existing contracts and facilitate their
improvement.

Running this new contract through AnaCon produces a reduced—though
still large—set of counter-examples from CLAN:

147 counter examples found (only showing first)

Clause:

(((Ob1)_(Oa2))^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(

Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))^(([a9]((Oa6)_

(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((

Ob1)_(Oa2))))))))^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(

Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))

)))))))))))

Trace:

1. the Client submit the data

2. the Provider check the data

3. the Provider approve the data

4. the Internet Service become operative

5. Internet traffic become high

6. Internet traffic become high

7. Internet traffic become high and the Client pay

price P and the Client notify the Provider ...

8. Internet traffic become high and the Client pay

price P and the Client notify the Provider ...

9. Internet traffic become high and the Client pay

price P and the Client lower Internet traffic to

the normal level

The initial reaction to this large number of counter-examples is to explicitly
add more mutually exclusive actions to the contract to reduce the size of the
automaton produced. While adding 5 pairs of exclusive actions reduces the
number of possible counter-examples to just 18, a new issue with the contract
emerges. In the new trace produced by CLAN it can be seen that if the action
of the Internet traffic becoming high occurs twice (or more) in succession, the
contract will always end in conflict, as shown in the counter-example below.

18 counter examples found (only showing first)

Clause:

((Oa2)^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([

a1]([b2]((Ob1)_(Oa2)))))))^(([a9]((Oa6)_(((Oa1)_(

Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))

))))))^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1

]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))))))))

28

Trace:

1. the Client submit the data

2. the Provider check the data

3. the Provider approve the data

4. the Internet Service become operative

5. Internet traffic become high

6. Internet traffic become high

7. the Client pay price P and the Client notify the

Provider ...

8. the Client notify the Provider ...

9. Internet traffic become high

Further analysis of CLAN output indicates that this issue is actually due to the
use always operator, which essentially allows for parallel branches to be created
in the contract automaton which cannot then both be satisfied. This ultimately
points to a weakness in CL. In our case we were able to achieve a contract-
free contract by removing the always keyword on line 10, however this would
arguably result in a non-intended meaning. A proper solution would require
further remodelling or even augmenting CL itself.

4.3. Some reflections concerning the case studies
The two case studies examined in this paper come from unrelated domains.

However they both share the property that they treat norms, and thus fall into
the general group of texts which we are interested in analysing. While we do not
claim that AnaCon is yet general enough to handle any such contract, we believe
that these two case studies serve as a good proof-of-concept of the framework.

Applying AnaCon to the above 2 case studies provides us with some inter-
esting insights on how to improve our framework.

The first observation is that our CNL is quite rich in terms of vocabulary
and it is suitable as a high level language to be translated into CL. However,
the contract author needs to know the CNL syntax and be able to mentally
convert NL clauses into valid CNL. This is for instance the case when writing
obligations over sequences: it is not possible to write that in our CNL, and
they must instead be written as a sequence of obligations, with only one CTD
associated to the whole sequence. Though this is a limitation at the CNL level,
it is not the case for CL, as sequences of obligations cannot be expressed directly.

A second observation is that it would be desirable to have causal/temporal
relationships among actions in addition to the declaration of mutual exclusive
actions (#). This would allow a radical reduction in the size of the underly-
ing CLAN automaton and thus improve efficiency and avoid some redundant
counter-examples which are eliminated by rephrasing the CNL document. This
redundancy is due to the semantics of &, discussed later in this section.

Concerning the output of CLAN, when a conflict is found the output pro-
duced by the CLAN tool consists of a list of tuples containing a conflict state
and an action trace, as shown in Fig. 7. In this output, CLAN is reporting all
possible combinations of actions that would lead to a state of contradictions. As

29

(((Ob1)_(Oa2))^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))

^([a1]([b2]((Ob1)_(Oa2)))))))^(([a9]((Oa6)_(((Oa1)_(Oa2))

^(([a1]((Ob2)_(Oa2)))^([a1]([b2]((Ob1)_(Oa2))))))))

^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)

))^([a1]([b2]((Ob1)_(Oa2)))))))))))))

b3,a7,a8 ,a5 ,a9 ,a9 ,a9&a6&a1 ,a9&a6&a1 ,a9&a6&b2

(((Ob1)_(Oa2))^((((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2)))^([a1]([

b2]((Ob1)_(Oa2))))))^(((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_

(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))^(([a9]((Oa6)_(((Oa1)

(Oa2))^(([a1]((Ob2)(Oa2)))^([a1]([b2]((Ob1)_(Oa2)))))))

)^([1]([(*1)]([a9]((Oa6)_(((Oa1)_(Oa2))^(([a1]((Ob2)_(Oa2

)))^([a1]([b2]((Ob1)_(Oa2))))))))))))))

b3,a7 ,a8 ,a5 ,a9 ,a9 ,a9&a6&a1 ,a9&a6&a1 ,a9&b2

Figure 7: Sample CLAN output

one can imagine this number could explode exponentially as the total number of
actions increases, and for this reason adding multiple mutually exclusive actions
to the CL contract helps to keep this under control. The two traces shown in
Fig. 7 end with the action expressions a9&a6&b2 and a9&b2 respectively, and it
is fairly obvious to notice that in this example the performing of action a6 along
with a9 and b2 is, for our purposes, irrelevant. From this observation, it follows
that we are not necessarily interested in all possible action combinations which
could lead to a state of conflict; rather, we are interested only in the minimal
subset of them. A fairly simple algorithm could be given to determine which are
minimal counter-examples knowing then that any other counter-example would
be thus redundant.

In fact, the above problem could easily be solved by eliminating the & action
operator in CL. After working on the above (and other small) case studies it
would seem that it is not needed, as in most practical cases actions happening
simultaneously are either uncommon, or can be expressed using interleaving.
The elimination of this action operator will not only simplify the syntax but
will radically reduce the complexity of CLAN (the main reason of exponential
blow-up in CLAN’s execution is due to such concurrent actions).

5. Related work

The basic ideas of this journal paper have appeared on the workshop paper
[2], where the conceptual model of AnaCon was first introduced. The only com-
monalities between our current version of AnaCon and the one in [2] are the use
of CL [4] and CLAN [8], besides the overall idea of the framework. In [2] it was
shown that it was possible to relate the formal language for contracts CL and a
restricted NL by using GF [12]. Our CNL, however, is based on a formal gram-
mar inspired from NL sentences (i.e. using a subject, verb and complement)
unlike that in [2] which was very much an “if-then-else” language enriched with

30

keywords for obligation, permission and prohibition. Besides this, we have made
extensive use of GF libraries and state-of-the-art constructions to make the defi-
nition of the abstract and concrete syntaxes much clearer and modular. We have
reimplemented all the modules and implemented the counter-example genera-
tion in CNL, not done in the previous paper. Though we do not have (formal)
experimental results to show the advantages of this new implementation, we do
claim an improvement in performance and clarity of presentation based on its
use in the case studies presented in this paper.

Using CNLs as a means to obtain a tractable language which is still human-
understandable is not new. To date at least 40 different CNLs have been defined
with different purposes and thus following different design decisions (cf. [1]).

A notable example of this is Attempto Controlled English (ACE) [21]. The
difference between Attempto and our CNL is that while ACE aims to be an
universal domain-independent language, we choose to make a language that is
specifically tailored for the description of normative texts. Although ACE has
syntactic constructions for expressing modalities, it also covers a lot of other
constructions that we cannot handle in CL. The proper handling of the whole
language would make the underling logic unnecessarily complicated. Further-
more, ACE tries to perform full sentence analysis, while in our case this is not
necessary since the semantics of the sentence would not be expressible in the
logical fragment of CL. Instead, we combine controlled language with free text
which allows us to analyse only the relevant structures, while taking the rest
as atomic literals. Another advantage of our choice is that the user does not
need, as in ACE, to add new words for each domain since there is already a
large lexicon of verbs and the nouns are just literals. A reimplementation of the
original ACE grammar in GF has been presented in [22] where this controlled
language was also ported from English to French, German and Swedish.

An initial exploratory design of another CNL specifically targeted for con-
tracts is presented in [23], where the underlying logic and a sketch for the
language are discussed. The chosen logic is actually close to CL except that
it is more liberal. This broader logic gives flexibility in the translation to and
from CNL, but it does not automatically exclude the possibility of paradoxes.
In addition, their logic adds to CL temporal features as well as test operators
for querying over the external game state. The logic is implemented with their
own custom-build reasoner instead of CLAN. The actual CNL, however, is not
implemented yet, and it remains only a sketch. Still, the initial design can be
traced in Camilleri et al. [10], where, in their implementation of the game of
Nomic, they employed a specialized CNL based on the same logic. The latter
also used GF to translate between natural and logical representations, but their
CNL involves only predefined actions and thus avoids the treatment of free-text,
verbs, and actions as triples as in our approach. This also means that the system
in [10] cannot be used for diverse contracts as in our case.

Our work is also similar to [24] where Hähnle et al. describe how to get a CNL
version of specifications written in OCL (Object Constraint Language). The pa-
per focuses on helping to solve problems related to authoring well-formed formal
specifications, maintaining them, mapping different levels of formality and syn-

31

chronising them. The solution outlined in the paper illustrates the feasibility
of connecting specification languages at different levels, in particular OCL and
NL. The authors have implemented different concepts of OCL such as classes,
objects, attributes, operations and queries. The difference with our work is that
CL is a more abstract and general logic, allowing the specification of normative
texts in a general sense. In addition, we are not interested only in logic to lan-
guage translation but rather in the use of the formal language to further perform
verification (in our case conflict analysis) which is then integrated within our
framework by connecting GF’s output into CLAN, and vice versa.

It is worth mentioning that there is a general interest in the application of
CNL for authoring and maintenance of legislative text. For instance [25] studies
the typical linguistics structures in the German laws and relates them to con-
structions in first-order logic and deontic logic. The ultimate goal is the creation
of Controlled Legal German as a human-oriented CNL for defining laws. Sim-
ilarly [26] studies the legislative drafting guidelines for Austria, Germany and
Switzerland, issued by the Professional Association for Technical Communica-
tion, from the perspective of controlled language. In both cases, however, the
controlled language is aimed for human-to-human communication and its level
of formalization is far from what is needed for computer based interpretation.

Rosso et al. [27] have used the passage retrieval tool JIRS to search for
occurrences of words from a counter-example in natural language legal texts. In
particular, they have applied their technique to a counter-example generated by
CLAN on the airline check-in desk case study (the very same we have presented
here as Case Study 1). JIRS is fed with a manual translation into English from
CL formulae representing the counter-example given by CLAN, and uses an n-
gram approach to automatically retrieve those sentences in the contract where
the conflict occurs. JIRS does this by returning a ranking list with the passages
found to be most similar to each query. We briefly discuss in next section how
our work could be combined with passage retrieval tools like JIRS.

Finally, in what concerns deontic logic, and a presentation on the classical
paradoxes, please refer to McNamara’s article [6], and references therein.

6. Conclusion

We have presented in this paper AnaCon, a framework aimed at analysing
normative texts containing obligations, permissions and prohibitions. We intro-
duced a CNL for writing such texts, and provided a new and complete imple-
mentation of the AnaCon framework. AnaCon automatically converts normative
texts written in CNL into the formal language CL, using GF as a technology
to perform bi-directional translations. The analysis performed on such texts is
currently limited to the detection of normative conflicts, using the tool proto-
type CLAN. In line with the aims listed in the beginning of this paper, we have
applied our framework to two case studies as a proof-of-concept of the system,
detailing the iterative process that writing and revising such contracts involves.
These two cases studies have been specifically chosen from unrelated domains
(one a document describing the working procedure of a check-in ground crew,

32

and the other a legal contract on Internet services) in order to demonstrate that
the CNL used is a general one. AnaCon is indeed agnostic in what concerns the
content or final intention of the document to be analysed; what is important is
that it contains clauses that could be analysed for normative conflicts.

While the mapping between CL and our CNL may seem trivial, we believe
that the use of an intermediary CNL has some important benefits. As the CNL
is more human-focused than the purely logical CL, certain unnatural logical
constructions have no equivalent representation in the CNL. In this sense, the
CNL is strictly less expressive than CL. Yet the nearness of CNL to regular
unrestricted natural language, when compared to a purely formal language like
CL can go a long way towards making the authoring of such contracts easier.
The use of our CNL also allows actions names to contain arbitrary strings,
which may convey valuable information for the human reading of the contract.
They can also be very helpful when it comes to understanding the output of the
conflict analysis step and identifying the source of conflicts within a contract.
This is in fact a general property of CNLs; while it is true that constructing
valid sentences in a CNL does require some training (although still less than
is required to write pure logical formulas), understanding something written in
CNL should be effortless for any speaker of the parent NL. In other words, the
benefits of using CNL as a verbalisation for some formal language can be felt
by both authors and readers.

6.1. Limitations
The intention for AnaCon is that it can become a general framework for anal-

ysis of any text which contains normative clauses. While the two case studies
presented in this paper make a good argument for the framework’s generalis-
ability, we recognize that more extensive work would be required for it to reach
that stage. Aside from this, we also identified a number of smaller issues with
the current implementation.

First, though CL can be used as a formal language to specify normative texts
in general, many aspects have to be abstracted away from, such as for instance
timing constraints. Other limitations of CL, and similar contract languages, are
described in [28].

Secondly, there is the issue of CLAN efficiency. The current version is not
optimised to obtain small non-redundant automata. The tool is very much a
specialised explicit model checker, where a high number of transitions is gener-
ated due to the occurrence of concurrent actions. One practical way to reduce
the size of the automaton created by CLAN is to try to identify and list as
many mutually exclusive actions as possible. Note that some of the actions in
our case studies are obviously mutually exclusive from the logical point of view
(e.g. open the check in desk and close the check in desk), while others are mu-
tually exclusive in a pragmatic sense, that is we know that they cannot occur
at the same time (for instance, issue a fine and issue the boarding pass, if we
consider that these actions are done by the same person). The performance of
CLAN might be considerably improved by reducing the size of the automaton

33

while building it, though a more fundamental way of improving it would be by
eliminating & from CL as discussed in Section 4.3.

Third, CLAN is limited to conflict analysis and clearly it could be replaced by
a more general model checker to check richer properties of normative documents
in general, and contracts in particular.

As noted in sections 4.1 and 4.2, during the modelling and analysis of our
two case studies problems were encountered with the always operator, expressed
in CL as the prefix [1*]. While conceptually it is convenient and easy to think
of a clause applying at all times, when modelled in CL and interpreted in CLAN
it becomes clear that the true meaning of always in the natural sense is harder to
formalise than anticipated. In order to overcome these issues, in this paper we
were forced to exclude the use of this operator and instead model each contract
as only covering a single “instance”. The justification behind this is that if a
contract holds for a single sequence of events, then it could later be generalised to
run on concurrent instances of such sequences. In particular, we could consider
adding features to the language to being able to distinguish between different
instances of a contract, as done in the language FLAVOR [29].

6.2. Future work
Though in this paper we are not directly concerned with the translation from

NL into CNL, it is worth mentioning that such translations could be carried out
in a semi-automatic manner using guided-input techniques, or even better by
using machine-translation.

In what concerns the ease of using CNL (vs. the use of a formal language) it
could be very informative to perform experiments on different groups of users
to have a qualitative analysis on the use of CNL and CL. Evaluating CNL is
not easy in general, and any experiment to do so should be carefully designed
[30].

Another interesting future work concerns the use of passage retrieval tools
like JIRS [27, 31] to help finding the counter-examples in the original English
contract. This could be done by sending the CNL output from AnaCon to JIRS
to automatically get a list of possible clauses where a conflict may arise. We
envisage in this way a big increase in efficiency and precision when analysing
counter-examples.

Finally, we believe that the development of a legal corpus could improve
our CNL, giving the possibility to get a richer language even closer to natural
language and enhancing the potential for obtaining a semi-automatic translation
from NL documents into CNL.

Acknowledgements. We would especially like to thank Seyed Montazeri and
Nivir Roy for their work on implementing a first version of AnaCon. We also
thank Aarne Ranta for his help concerning GF, and Stephen Fenech for his
input concerning CLAN.

34

References

[1] A. Wyner, K. Angelov, G. Barzdins, D. Damljanovic, B. Davis, N. Fuchs,
S. Hoefler, K. Jones, K. Kaljurand, T. Kuhn, M. Luts, J. Pool, M. Rosner,
R. Schwitter, J. Sowa, On controlled natural languages: properties and
prospects, in: CNL’09, Vol. 5972 of LNCS/LNAI, Springer-Verlag, 2010,
pp. 281–289.

[2] S. M. Montazeri, N. Roy, G. Schneider, From Contracts in Structured En-
glish to CL Specifications, in: FLACOS’11, Vol. 68 of EPTCS, 2011, pp.
55–69.

[3] C. Prisacariu, G. Schneider, A Formal Language for Electronic Contracts,
in: FMOODS, Vol. 4468 of LNCS, Springer, 2007, pp. 174–189.

[4] C. Prisacariu, G. Schneider, CL: An Action-based Logic for Reasoning
about Contracts, in: WOLLIC’09, Vol. 5514 of LNCS, Springer, 2009, pp.
335–349.

[5] C. Prisacariu, A dynamic deontic logic over synchronous actions, Ph.D.
thesis, Department of Informatics, University of Oslo, Oslo, Norway (2010).

[6] P. McNamara, Deontic Logic, in: Gabbay, D.M., Woods, J., eds.: Hand-
book of the History of Logic, Vol. 7, North-Holland Publishing, 2006, pp.
197–289.

[7] C. Prisacariu, G. Schneider, A dynamic deontic logic for complex contracts,
Journal of Logic and Algebraic Programming 81 (4) (2012) 458–490.

[8] S. Fenech, G. J. Pace, G. Schneider, CLAN: A tool for contract analysis
and conflict discovery, in: ATVA’09, Vol. 5799 of LNCS, Springer, 2009,
pp. 90–96.

[9] N. E. Fuchs, K. Kaljurand, T. Kuhn, Attempto Controlled English for
Knowledge Representation, in: Reasoning Web, Vol. 5224 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2008, pp. 104–124.

[10] J. J. Camilleri, G. J. Pace, M. Rosner, Controlled Natural Language in a
Game for Legal Assistance, in: Controlled Natural Language, Vol. 7175 of
LNCS, Springer Berlin / Heidelberg, 2012, pp. 137–153.

[11] R. Harper, F. Honsell, G. Plotkin, A framework for defining logics, J. ACM
40 (1993) 143–184.

[12] A. Ranta, Grammatical Framework: Programming with Multilingual
Grammars, CSLI Publications, Stanford, 2011.

[13] H. B. Curry, Some logical aspects of grammatical structure, in: Structure of
Language and its Mathematical Aspects: Proceedings of the Twelfth Sym-
posium in Applied Mathematics, American Mathematical Society, 1963,
pp. 56–68.

35

[14] A. Ranta, The GF resource grammar library, Linguistic Issues in Language
Technology 2 (2).

[15] K. Angelov, Incremental parsing with parallel multiple context-free gram-
mars, in: Proceedings of the 12th Conference of the European Chapter of
the Association for Computational Linguistics (EACL ’09), Association for
Computational Linguistics, 2009, pp. 69–76.

[16] A. S. Hornby, Oxford Advanced Learner’s Dictionary of Current English,
Third Edition, Oxford University Press, 1974.

[17] R. Mitton, A partial dictionary of English in computer-usable form, Liter-
ary & Linguistic Computing 1 (1986) 214–215.

[18] K. Toutanova, C. D. Manning, Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger, in: Proceedings of the 2000 Joint
SIGDAT Conference EMNLP/VLC, Vol. 13 of EMNLP, Association for
Computational Linguistics, 2000, pp. 63–70.

[19] S. Fenech, G. J. Pace, G. Schneider, Automatic Conflict Detection on Con-
tracts, in: ICTAC’09, Vol. 5684 of LNCS, Springer, 2009, pp. 200–214.

[20] G. J. Pace, C. Prisacariu, G. Schneider, Model checking contracts –a case
study, in: ATVA’07, Vol. 4762 of LNCS, Springer-Verlag, 2007, pp. 82–97.

[21] N. E. Fuchs, U. Schwertel, R. Schwitter, Attempto controlled english (ACE)
language manual, version 3.0, Tech. Rep. 99.03, Department of Computer
Science, University of Zurich (August 1999).

[22] K. Angelov, A. Ranta, Implementing controlled languages in GF, in:
CNL’10, Vol. 5972 of LNCS, Springer, 2010, pp. 82–101.

[23] G. J. Pace, M. Rosner, A controlled language for the specification of con-
tracts, in: Workshop on Controlled Natural Language (CNL’09), Vol. 5972
of LNCS, Springer, 2010, pp. 226–245.

[24] R. Hähnle, K. Johannisson, A. Ranta, An authoring tool for informal and
formal requirements specifications, in: FASE, Vol. 2306 of LNCS, Springer,
2002, pp. 233–248.

[25] S. Höfler, A. Bünzli, Designing a controlled natural language for the rep-
resentation of legal norms, in: Second Workshop on Controlled Natural
Languages, 2010, p. online.

[26] S. Höfler, Legislative drafting guidelines: How different are they from con-
trolled language rules for technical writing?, in: Controlled Natural Lan-
guage - Third International Workshop, CNL 2012, no. 7427 in Lecture
Notes in Computer Science, Springer Verlag, Berlin Heidelberg, 2012, pp.
138–151, cNL 2012.

36

[27] P. Rosso, S. Correa, D. Buscaldi, Passage retrieval in legal texts, Journal
of Logic and Algebraic Programming 80 (35) (2011) 139 – 153.

[28] G. J. Pace, G. Schneider, Challenges in the specification of full contracts,
in: Integrated Formal Methods (iFM’09), Vol. 5423 of LNCS, 2009, pp.
292–306.

[29] R. Thion, D. L. Métayer, Flavor: A formal language for a posteriori veri-
fication of legal rules, in: POLICY’11, IEEE Computer Society, 2011, pp.
1–8.

[30] T. Kuhn, An evaluation framework for controlled natural languages,
in: Proceedings of the 2009 conference on Controlled natural language
(CNL’09), Vol. 5972 of LNCS, Springer, 2010, pp. 1–20.

[31] D. Buscaldi, P. Rosso, J. Gómez-Soriano, E. Sanchis, Answering Questions
with an n-gram based Passage Retrieval Engine, Journal of Intelligent In-
formation Systems 34 (2) (2009) 113–134.

37

A. Cases study 1: Airline check-in process

A.1. Contract CNL
A.1.1. First version

[clauses]

if {the flight} leaves {in two hours}

then each of

- {the ground crew} must open {the check -in desk 2 hours

before} and

{the ground crew} must request {the passenger manifest

from the airline}, otherwise

{the ground crew} must pay {a fine}

- {the airline crew} must provide {the passenger manifest

to the ground crew}, otherwise

{the airline crew} must pay {a fine}

- if {the ground crew} open {the check -in desk 2 hours

before}

then first {the check -in crew} must initiate {the check -in

process},

{the check -in crew} must check {that the passport details

match what is written on the ticket},

{the check -in crew} must check {that the luggage is within

the weight limits}, then

{the check -in crew} must issue {the boarding pass},

otherwise

{the check -in crew} must pay {a fine}

- {the ground crew} must not issue {any boarding passes

without inspecting that the details are correct

beforehand}, otherwise

{the ground crew} must pay {a fine}

- {the ground crew} must close {the check -in desk 20 mins

before flight leaves}, otherwise

{the ground crew} must pay {a fine}

- if {the ground crew} closes {the check -in desk 20 mins

before flight leaves} then

both

- {the ground crew} must send {the luggage information

to the airline}

- {the ground crew} must not issue {boarding pass}

- {the ground crew} must not reopen {the check -in desk}

[/ clauses]

[contradictions]

{the ground crew} open {the check -in desk 2 hours before}

{the ground crew} close {the check -in desk 20 mins

before flight leaves} ;

{the ground crew} open {the check -in desk 2 hours before}

{the ground crew} reopen {the check -in desk} ;

{the check -in crew} check {that the passport details match

what is written on the ticket} # {the check -in crew}

38

check {that the luggage is within the weight limits} ;

{the check -in crew} issue {the boarding pass} # {the check

-in crew} check {that the passport details match what

is written on the ticket} ;

[/ contradictions]

A.1.2. Second version

[clauses]

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check -in desk 2 hours

before}

- if {the ground crew} open {the check -in desk 2 hours

before} then both

- {the ground crew} must request {the passenger manifest

from the airline}, otherwise {the ground crew} must

pay {a fine}

- if {the ground crew} requests {the passenger manifest

from the airline} then both

- {the airline crew} must provide {the passenger

manifest to the ground crew}, otherwise {the

airline crew} must pay {a fine}

- if {the airline crew} provides {the passenger

manifest to the ground crew} then each of

- first {the check -in crew} must initiate {the check

-in process},

{the check -in crew} must check {that the passport

details match what is written on the ticket},

{the check -in crew} must check {that the luggage is

within the weight limits}, then

{the check -in crew} must issue {the boarding pass},

otherwise

{the check -in crew} must pay {a fine}

- {the ground crew} must close {the check -in desk 20

mins before flight leaves}, otherwise {the

ground crew} must pay {a fine}

- if {the ground crew} closes {the check -in desk 20

mins before flight leaves} then each of

- {the ground crew} must send {the luggage

information to the airline}

- {the ground crew} must not issue {boarding pass}

- {the ground crew} must not reopen {the check -in

desk}

[/ clauses]

[contradictions]

...

[/ contradictions]

A.1.3. Third version

[clauses]

39

if {the flight} leaves {in two hours} then both

- {the ground crew} must open {the check -in desk 2 hours

before}

- if {the ground crew} open {the check -in desk 2 hours

before} then both

- {the ground crew} must request {the passenger manifest

from the airline}, otherwise {the ground crew} must

pay {a fine}

- if {the ground crew} requests {the passenger manifest

from the airline} then both

- {the airline crew} must provide {the passenger

manifest to the ground crew}, otherwise {the

airline crew} must pay {a fine}

- if {the airline crew} provides {the passenger

manifest to the ground crew} then both

- first {the check -in crew} must initiate {the check

-in process},

{the check -in crew} must check {that the passport

details match what is written on the ticket},

{the check -in crew} must check {that the luggage is

within the weight limits}, then

{the check -in crew} must issue {the boarding pass},

otherwise

{the check -in crew} must pay {a fine}

- if {the flight} leaves {in 20 mins} then both

- {the ground crew} must close {the check -in desk

}, otherwise {the ground crew} must pay {a fine

}

- if {the ground crew} closes {the check -in desk}

then each of

- {the ground crew} must send {the luggage

information to the airline}

- {the ground crew} must not issue {boarding

pass}

- {the ground crew} must not reopen {the check -

in desk}

[/ clauses]

[contradictions]

...

[/ contradictions]

A.2. Generated action dictionaries
A.2.1. First version

b4 = {the check -in crew} check {that the passport details

match what is written on the ticket}

b2 = {the airline crew} pay {a fine}

b7 = {the check -in crew} pay {a fine}

b3 = {the flight} leave {in two hours}

b6 = {the ground crew} close {the check -in desk 20 mins

before flight leaves}

40

a1 = {the ground crew} issue {boarding pass}

b5 = {the ground crew} issue {any boarding cards without

inspecting that the details are correct beforehand}

a3 = {the ground crew} pay {a fine}

a2 = {the ground crew} request {the passenger manifest from

the airline}

a5 = {the airline crew} provide {the passenger manifest to

the ground crew}

a4 = {the ground crew} reopen {the check -in desk}

a7 = {the check -in crew} check {that the luggage is within

the weight limits}

a6 = {the check -in crew} issue {the boarding pass}

a9 = {the ground crew} open {the check -in desk 2 hours

before}

a8 = {the check -in crew} initiate {the check -in process}

b1 = {the ground crew} send {the luggage information to the

airline}

A.2.2. Second version

b4 = {the check -in crew} check {that the passport details

match what is written on the ticket}

b2 = {the airline crew} pay {a fine}

b3 = {the flight} leave {in two hours}

b6 = {the check -in crew} pay {a fine}

a1 = {the ground crew} issue {boarding pass}

b5 = {the ground crew} close {the check -in desk 20 mins

before flight leaves}

a3 = {the ground crew} pay {a fine}

a2 = {the ground crew} request {the passenger manifest from

the airline}

a5 = {the airline crew} provide {the passenger manifest to

the ground crew}

a4 = {the ground crew} reopen {the check -in desk}

a7 = {the check -in crew} check {that the luggage is within

the weight limits}

a6 = {the check -in crew} issue {the boarding pass}

a9 = {the ground crew} open {the check -in desk 2 hours

before}

a8 = {the check -in crew} initiate {the check -in process}

b1 = {the ground crew} send {the luggage information to the

airline}

A.2.3. Third version

b4 = {the flight} leave {in two hours}

b2 = {the ground crew} send {the luggage information to the

airline}

b7 = {the check -in crew} pay {a fine}

b3 = {the airline crew} pay {a fine}

b6 = {the ground crew} close {the check -in desk}

41

a1 = {the ground crew} issue {boarding pass}

b5 = {the check -in crew} check {that the passport details

match what is written on the ticket}

a3 = {the ground crew} pay {a fine}

a2 = {the ground crew} request {the passenger manifest from

the airline}

a5 = {the flight} leave {in 20 mins}

a4 = {the ground crew} reopen {the check -in desk}

a7 = {the check -in crew} issue {the boarding pass}

a6 = {the airline crew} provide {the passenger manifest to

the ground crew}

a9 = {the check -in crew} initiate {the check -in process}

a8 = {the check -in crew} check {that the luggage is within

the weight limits}

b1 = {the ground crew} open {the check -in desk 2 hours

before}

B. Case study 2: Internet service provider

B.1. Contract CNL
B.1.1. First version

[clauses]

always each of

- {the Client} shall not provide {false information to the

Client Relations Department of the Provider},

otherwise

{the Provider} may suspend {the Internet service

immediately}

- if {the Internet traffic} becomes {high} then {the

Client} must pay {price P}, otherwise

first {the Client} must notify {the Provider by sending an

e-mail specifying that he will pay later},

{the Client} must lower {the Internet traffic to the

normal level}, then

{the Client} must pay {price 2P}, otherwise

{the Client} is required to pay {price 3P}

- if {the Internet Service} becomes {operative} then {the

Client} shall submit {within seven days the Personal

Data Form from his account on the Provider web page to

the Client Relations Department of the Provider}

[/ clauses]

[contradictions]

{the Internet traffic} become {high} # {the Internet

Service} become {operative} ;

{the Provider} suspend {the Internet service immediately}

{the Internet traffic} become {high} ;

{the Client} provide {false information to the Client

Relations Department of the Provider} # {the Internet

traffic} become {high} ;

42

{the Client} pay {price P} # {the Client} pay {price 2P} ;

{the Client} pay {price 2P} # {the Client} pay {price 3P}

;

{the Client} pay {price 3P} # {the Client} pay {price P} ;

{the Client} pay {price P} # {the Client} notify {the

Provider by sending an e-mail specifying that he will

pay later} ;

{the Client} pay {price 2P} # {the Client} notify {the

Provider by sending an e-mail specifying that he will

pay later} ;

{the Client} pay {price 3P} # {the Client} notify {the

Provider by sending an e-mail specifying that he will

pay later} ;

{the Client} provide {false information to the Client

Relations Department of the Provider} # {the Client}

submit {within seven days the Personal Data Form from

his account on the Provider web page to the Client

Relations Department of the Provider} ;

[/ contradictions]

B.1.2. Second version

[clauses]

{the Client} must submit {the data} ;

if {the Client} submits {the data} then each of

- {the Provider} must check {the data}

- if first {the Provider} checks {the data}, then {the

Provider} disapproves {the data} then {the Provider}

may cancel {the contract}

- if first {the Provider} checks {the data}, then {the

Provider} approves {the data} then each of

- {the Internet Service} must become {operative}

- if {the Internet Service} becomes {operative} then

always

if {the Internet traffic} becomes {high} then {the

Client} must pay {price P}, otherwise

first {the Client} must notify {the Provider by sending

an e-mail specifying that he will pay later},

{the Client} must lower {the Internet traffic to the

normal level}, then

{the Client} must pay {price 2P}, otherwise

{the Client} is required to pay {price 3P} ;

[/ clauses]

[contradictions]

{the Client} submit {the data} # {the Provider} check {the

data} ;

{the Provider} approve {the data} # {the Provider}

disapprove {the data} ;

{the Client} submit {the data} # {the Internet Service}

become {operative} ;

43

{the Provider} approve {the data} # {the Internet Service}

become {operative} ;

{the Provider} disapprove {the data} # {the Internet

Service} become {operative} ;

{the Client} pay {price P} # {the Client} pay {price 2P} ;

{the Client} pay {price 2P} # {the Client} pay {price 3P}

;

{the Client} pay {price 3P} # {the Client} pay {price P} ;

[/ contradictions]

B.1.3. Third version

[clauses]

{the Client} must submit {the data} ;

if {the Client} submits {the data} then each of

- {the Provider} must check {the data}

- if first {the Provider} checks {the data}, then {the

Provider} disapproves {the data} then {the Provider}

may cancel {the contract}

- if first {the Provider} checks {the data}, then {the

Provider} approves {the data} then each of

- {the Internet Service} must become {operative}

- if {the Internet Service} becomes {operative} then

always

if {the Internet traffic} becomes {high} then {the

Client} must pay {price P}, otherwise

first {the Client} must notify {the Provider by sending

an e-mail specifying that he will pay later},

{the Client} must lower {the Internet traffic to the

normal level}, then

{the Client} must pay {price 2P}, otherwise

{the Client} is required to pay {price 3P} ;

[/ clauses]

[contradictions]

{the Client} submit {the data} # {the Provider} check {the

data} ;

{the Provider} approve {the data} # {the Provider}

disapprove {the data} ;

{the Client} submit {the data} # {the Internet Service}

become {operative} ;

{the Provider} approve {the data} # {the Internet Service}

become {operative} ;

{the Provider} disapprove {the data} # {the Internet

Service} become {operative} ;

{the Client} pay {price P} # {the Client} pay {price 2P} ;

{the Client} pay {price 2P} # {the Client} pay {price 3P}

;

{the Client} pay {price 3P} # {the Client} pay {price P} ;

{the Client} pay {price P} # {the Internet traffic} become

{high} ;

44

{the Client} pay {price 2P} # {the Internet traffic}

become {high} ;

{the Client} pay {price 3P} # {the Internet traffic}

become {high} ;

{the Internet traffic} become {high} # {the Client} notify

{the Provider by sending an e-mail specifying that he

will pay later} ;

{the Internet traffic} become {high} # {the Client} lower

{the Internet traffic to the normal level} ;

[/ contradictions]

B.2. Generated action dictionaries
B.2.1. First version

a1 = {the Provider} suspend {the Internet service

immediately}

a3 = {the Client} pay {price 3P}

a2 = {the Client} notify {the Provider by sending an e-mail

specifying that he will pay later}

a5 = {the Internet Service} become {operative}

a4 = {the Internet traffic} become {high}

a7 = {the Client} provide {false information to the Client

Relations Department of the Provider}

a6 = {the Client} submit {within seven days the Personal

Data Form from his account on the Provider web page to

the Client Relations Department of the Provider}

a9 = {the Client} pay {price 2P}

a8 = {the Client} pay {price P}

b1 = {the Client} lower {the Internet traffic to the normal

level}

B.2.2. Second and third version

b2 = {the Client} lower {the Internet traffic to the normal

level}

b3 = {the Client} submit {the data}

a1 = {the Client} notify {the Provider by sending an e-mail

specifying that he will pay later}

a3 = {the Provider} disapprove {the data}

a2 = {the Client} pay {price 3P}

a5 = {the Internet Service} become {operative}

a4 = {the Provider} cancel {the contract}

a7 = {the Provider} check {the data}

a6 = {the Client} pay {price P}

a9 = {the Internet traffic} become {high}

a8 = {the Provider} approve {the data}

b1 = {the Client} pay {price 2P}

45

	Introduction
	Background
	The Contract Language CL
	Example

	CLAN
	Controlled Natural Languages (CNLs)
	The Grammatical Framework

	The AnaCon framework
	System workflow
	About the CNL
	Linearisation and parsing in GF

	Case studies
	Case Study 1: Airline check-in process
	Case Study 2: Internet Service Provider
	Some reflections concerning the case studies

	Related work
	Conclusion
	Limitations
	Future work

	Cases study 1: Airline check-in process
	Contract CNL
	First version
	Second version
	Third version

	Generated action dictionaries
	First version
	Second version
	Third version

	Case study 2: Internet service provider
	Contract CNL
	First version
	Second version
	Third version

	Generated action dictionaries
	First version
	Second and third version

