
Formalising Privacy Policies in Social Networks

Raúl Pardoa, Musard Balliua, Gerardo Schneiderb

aDepartment of Computer Science & Engineering, Chalmers University of Technology, Sweden
bDepartment of Computer Science & Engineering, University of Gothenburg, Sweden

Abstract

Social Network Services (SNS) have changed the way people communicate, bring-
ing many benefits but also new concerns. Privacy is one of them. We present a
framework to write privacy policies for SNSs and to reason about such policies
in the presence of events making the network evolve. The framework includes a
model of SNSs, a logic to specify properties and to reason about the knowledge
of the users (agents) of the SNS, and a formal language to write privacy policies.
Agents are enhanced with a reasoning engine allowing the inference of knowl-
edge from previously acquired knowledge. To describe the way SNSs may evolve,
we provide operational semantics rules which are classified into four categories:
epistemic, topological, policy, and hybrid, depending on whether the events un-
der consideration change the knowledge of the SNS’ users, the structure of the
social graph, the privacy policies, or a combination of the above, respectively.
We provide specific rules for describing Twitter’s behaviour, and prove that it is
privacy-preserving (i.e., that privacy is preserved under every possible event of
the system). We also show how Twitter and Facebook are not privacy-preserving
in the presence of additional natural privacy policies.

Keywords: Social Networks, Epistemic Logic, Privacy

1. Introduction

Over the past decade, the use of Social Network Services (SNS) like Facebook
and Twitter has increased to the point of becoming ubiquitous. A recent survey
shows that nearly 70% of the Internet users are active on SNSs [1]. Empirical
studies show that the number of privacy breaches is keeping pace with this growth

Email addresses: pardo@chalmers.se (Raúl Pardo), musard@chalmers.se
(Musard Balliu), gerardo@cse.gu.se (Gerardo Schneider)

Preprint submitted to Journal of Logical and Algebraic Methods in Programming May 30, 2017



and users’ requirements are much higher than the privacy guarantees offered by
SNSs [2, 3, 4, 5, 6].
Motivation: In this paper we are concerned with privacy issues in SNSs. Ac-
cording to Boyd and Ellison [7] SNSs have three distinguishing characteristics
that differentiate them from other services: i) A public profile; ii) A set of con-
nections between users; iii) The ability for users to see certain information about
others they are connected to, including meta-information such as others’ connec-
tions. These features make SNSs susceptible to privacy breaches at different lev-
els. Though the users of an SNS control much of the information disclosed about
themselves, to date it is not clear whether such controls match the users’ privacy
intentions [8]. An additional concern is whether the privacy settings currently
available in SNSs are suitable for capturing the needs of most users through a
good privacy policy language. Privacy policies should also take into account that
the networks evolve, for instance, when introducing new users or sending posts
to other users. Many desirable privacy policies can already be enforced by SNSs;
for instance, in Facebook users can state policies like “Only my friends can see
posts on my timeline”. Many other policies, however, are not possible to enforce,
although they might be important from a user’s privacy perspective. Again, in
Facebook users can not specify privacy policies like “I do not want to be tagged
in pictures by anyone other than myself” (P1) or “Nobody apart from myself can
know my child’s location” (P2). Although SNSs put more and more effort in im-
proving users’ privacy, the increasing amount of information that SNSs have to
deal with and the continuous policy changes make this task cumbersome and hard
to accomplish.

SNSs use different flavours of access control mechanisms to constrain the ac-
cess to some piece of information and thus enforce the privacy policies. In par-
ticular, these mechanism would enforce policies like P1 and P2 by restricting the
audience of the information or by defining the set of users that can perform some
action, respectively. Unfortunately, these solutions come at the price of reducing
the amount of information that can be shared in the SNS, hence making it less
usable and attractive. Moreover, access control is not enough. Consider a Face-
book user who sets the default audience of the pictures to her friends only. In
Facebook, whenever a user is tagged on a picture, the audience of that picture is
extended with the friends of the tagged user, hence the friend-only strategy can
easily be infringed by tagging. Many other actions allow for implicit disclosure
of knowledge; e.g. when joining an event users implicitly disclose their location
to other participants of the event, or when commenting on a post the audience of
the comment becomes the same as the audience of the post.

2



Our proposal: Our aim in this paper is to provide a suitable formalism for writ-
ing and reasoning about privacy policies in dynamic SNSs, and to enable a formal
assessment on whether these policies are properly enforced by the SNSs. Our
starting point is the definition of a formal framework for privacy policies con-
sisting of: i) a generic model for social networks, ii) a knowledge-based logic to
reason about the social network and privacy policies; iii) a formal language to de-
scribe privacy policies (based on the logic above).
Epistemic logic has been successfully used as a formal specification language
in many settings [9, 10, 11]. Here, we advocate that this logic is natural for
privacy in SNSs. We start with first-order logic to represent connections be-
tween users and enrich it with epistemic (K) and deontic (P ) operators to ex-
press knowledge and permissions, respectively. For instance, if the logical for-
mula PAlice

Bob tag specifies that “Bob is permitted to tag Alice in any picture”, then
we can write J¬Pme

othertagKme to model the policy P1 above. The wrapper J Kme
is used to specify the owner of the privacy policy, in this case me. Similarly, if
SAll location(me) stands for “Someone among all users in the SNS knows my
location”, we can write J¬SAll\{me}location(myChild)Kme to specify the policy
P2. Moreover, we can express more precise policies by nesting knowledge opera-
tors. Suppose Charlie is organising an event ev and he wants both Alice and Bob
to participate; however, Alice will not participate if she knows that Bob is going.
Then, Charlie, who definitively wants Alice to participate, can write the formula
J¬KAliceKBobevKCharlie to express the policy “Alice can not know that Bob knows
about the event ev”.

We do not explicitly use the standard Kripke semantics to define satisfaction
of a formula in our logic. Mainly, this is because we aim at providing a model that
preserves the inherent structure of an SNS, whereas Kripke semantics requires a
technical machinery that is far from a real model of social networks. Our frame-
work directly captures the underlying structure of SNSs and thus brings out a
faithful model of reality. On the other hand, we borrow traditional epistemic logic
axiomatisations to define a deductive engine which determines the knowledge of
the users. This enables us to, firstly, reuse existing theorem provers for checking
whether a user knows some information, and secondly, choose weaker axiomati-
sations of knowledge that in turn are known to be more efficient to compute [9],
thus paving the way for automated enforcement of privacy policies.

We extend the reasoning machinery with generic operational semantics rules
which are used to model the dynamics of SNSs. The rules are divided in four
categories depending on how the knowledge, the permissions, the social graph

3



topology, the policy or a combination of them evolve as the users perform actions.
We then give a full instantiation of our framework for Twitter and formally prove
that it is privacy-preserving. We also consider desirable privacy policies that are
currently not supported by SNSs, and show that Twitter is not privacy-preserving
under those policies.

Contributions: More concretely, our contributions in this paper are:
1. An epistemic first-order framework FPPF for defining and reasoning

about privacy policies (Section 2), having the following features: i) A so-
cial network model (SNM), empowered with a deductive engine and closed
under an axiom system for (first-order) epistemic logic, to generate implicit
knowledge from existing knowledge in a knowledge base; ii) A first-order
(relational) structure allowing for the modelling of rich relations and pred-
icates; iii) A non-standard knowledge-based logic defined with the usual
epistemic operators; iv) A formal language for defining expressive privacy
policies, including nested knowledge.

2. A generic operational semantics for describing the behaviour of SNSs. The
rules are of four different types (Section 3.3): i) Epistemic, concerned with
changes in the knowledge of a user; ii) Topological, concerned with changes
in the structure of the network graph; iii) Policy, concerned with changes in
the privacy policies; iv) Hybrid, a combination of the above three types of
rules. We instantiate the generic semantics rules with rules for describing
Twitter’s behaviour (Section 3.4).

3. A proof that Twitter is privacy-preserving with respect to all modelled events
and privacy policies; a proof that Facebook is privacy-preserving with re-
spect to a subset of events (Section 4).

4. A proof that Twitter and Facebook are not privacy-preserving with respect
to new desirable policies (Section 4).

We are not the first to apply epistemic reasoning in the context of privacy for
SNSs. A precursor of our approach is the framework proposed earlier by two of
the authors in [12]. That framework only considers a static picture of SNSs and,
besides the general template of PPF (see Definition 1), the two are fundamen-
tally different. Our work redefines PPF entirely and introduces a novel approach
to reason about the dynamic behaviour of SNSs. We use first-order structures
enriched with the epistemic modality to increase the expressiveness of the logic
and the policy language. We remark that the satisfaction relation uses a deductive
engine over the user’s knowledge base, which fixes unnecessary complications in
the semantics given in [12]. We discuss the differences between our work and the

4



work in [12] in more detail in Section 5.

2. Privacy Policy Framework

In this section we present a novel Privacy Policy Framework for social net-
works. As we will see, the framework is powerful enough to capture the features
of today’s social networks and at the same time it allows one to reason about pri-
vacy policy requirements of the users in a precise and formal manner. The frame-
work is initially defined for generic social networks, however, not all SNSs have
the same particularities. Due to this, we introduce the concept of instantiation,
and show how to use it to instantiate Twitter.

The first-order privacy policy framework is equipped with several components.
Firstly, we define models which leverage the well-known model for SNSs, the so-
cial graph [13]. We enrich these models with the knowledge and the permission
that users have in an SNS. We represent the knowledge using a first-order epis-
temic (knowledge-based) structure, very much in the style of interpreted systems
[9], and the permissions as links between users in the graph, similar to connec-
tions. Secondly, we introduce a knowledge-based logic to reason about the prop-
erties of the model. Finally, based on the logic, we provide an expressive language
to write privacy policies. Formally, we define the framework as follows:

Definition 1 (First-Order Privacy Policy Framework). The tuple 〈SN ,KBL,�,
PPL,�C〉 is a first-order privacy policy framework (denoted by FPPF), where
• SN is the set of all possible social network models;
• KBL is a knowledge-based logic;
• � is a satisfaction relation defined for KBL;
• PPL is a formal language for writing privacy policies;
• �C is a conformance relation defined for PPL.

High-level overview Figure 1 provides an overview of the structure and rela-
tion between the components of the framework. The ultimate goal of our work is
to define a privacy policy language, PPL, for writing expressive privacy policies
and checking their satisfaction for a social network model. To this end, we define
a conformance relation, �C , that determines whether a privacy policy is in confor-
mance with a given social network model. As shown in Figure 1, the conformance
relation relies on the satisfaction relation � of a more general logic, KBL. We
convert privacy policies to KBL formulae, since, as we will see, the syntax of
PPL is a restricted form of the syntax of KBL. We define the satisfaction re-
lation � to check KBL formulae in a social network model, therefore reducing

5



PPL - Privacy Policy Language

KBL - Knowledge-based Logic

SN - Social Network Model

�C

�

`

`

`

PPF - Privacy Policy Framework

Figure 1: Structure of PPF

�C to �. Social network models consist of nodes that represent users and arrows
that represent connections and permissions between users. We will describe social
network models in full detail in the next section. In a nutshell, each node (user)
i contains a local knowledge base and a derivability relation `, which we use to
determine whether the user i knows some information ϕ, namely the satisfaction
of formulae Kiϕ. We define this by requiring that ϕ is derivable (using `) from
the set of facts in the user’s knowledge base. The derivability relation borrows the
axioms and derivation rules from the S5 axiomatisation defined by Fagin et al. in
[9]. By using the S5 axiomatisation for our notion of derivability (inside the users’
knowledge bases), we can obtain an axiomatisation of the KBL logic that corre-
sponds to the KD45 axiomatisation and it is sound with respect to social network
models [14]. In what follows we provide a detailed description of the components
and their relations.

2.1. Social Network Models
Social networks are usually modelled as graphs, where nodes represent users—

referred to as agents—and edges represent different kinds of relationships among

6



users, for instance, friendship or family. These graphs are traditionally called so-
cial graphs [13]. A social network model is a social graph which includes the
knowledge that the agents have accumulated as a set of logic formulae in their
knowledge base. Moreover, we model possible inferences of knowledge that the
agents can make from the knowledge that they already possess. Additionally, we
use new types of edges to represent certain permission that the agents may have.
We write AU to denote a universe of agents.

Definition 2. Given a set of formulae F , a set of privacy policies Π, and a finite
set of agents Ag ⊆ AU , a social network model (SNM) is a social graph of the
form 〈Ag ,A,KB , π〉, where

• Ag is a nonempty finite set of nodes representing the agents in the SNS.

• A is a first-order structure over the social network model. As usual, it
consists of a set of domains; and a set of relations, functions and constants
interpreted over their corresponding domain.

• KB : Ag → 2F is a function denoting the knowledge base of an agent,
namely the accumulated knowledge of an agent. We write KB i to denote
KB(i).

• π : Ag → 2Π is a function specifying the set of privacy policies of each
agent. We write πi for π(i).

In Definition 2, the shape of the relational structure A depends on the type
of the social network under consideration. We represent the connections and the
permission actions between social network agents, i.e., edges of the social graph,
as families of binary relations, respectively {Ci}i∈C ⊆ Ag × Ag and {Ai}i∈Σ ⊆
Ag×Ag over the domain of agents. We use {Di}i∈D to denote the set of domains.
The set of agents Ag is always included in the set of domains. We use C,Σ and D
to denote sets of indexes for connections, permissions and domains, respectively.
Sometimes, we use predicates, e.g. friends(A,B), to denote that the elements
A,B ∈ Ag belong to the binary relation friends defined over pairs of agents as
expected.

We provide agents with reasoning capabilities that allow them to infer new
knowledge. For instance, in Facebook, events include the location where the event
takes place. Imagine that Alice knows that Bob is attending an event. Given that
the event information includes the location, she must also know Bob’s location.

7



The reasoning capabilities for the agents help us to make these type of inferences
in the framework.

Since the knowledge of the agents is represented using epistemic logic for-
mulae, we use standard properties of knowledge to model the reasoning capabil-
ities of agents. We introduce a set of axioms and rules for an agent to infer new
knowledge from the one present in their knowledge base. In particular, we use
the knowledge axiomatisation S5 from first-order epistemic logic [9, 15]. S5 is
a standard and widely used axiomatisation for epistemic logic. Moreover, there
exist several tools to check validity of epistemic formulae for S5. These tools can
be used to implement an enforcement mechanism based on our framework. Nev-
ertheless, we are not restricted to S5. Given the modularity of our approach, we
could consider other axiomatisations.

We now define the language for first-order epistemic logic, Ln:

ϕ ::= p(
#»
t ) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | Kiϕ.

where i is an agent from a set of agents Ag and p( #»
t ) is a predicate over terms #»

t .
For now it is enough to assume that a term is either a constant symbol, a function
symbol (with implicit arity), or a variable. The intuitive reading for the formula
Kiϕ is “agent i knows ϕ”. Hence we can use predicates to denote concrete pieces
of information, e.g. Bob’s location can be written as location(Bob) and the state-
ment “Alice knows Bob’s location” can be written as KAlice location(Bob).

Now we introduce the set of properties of knowledge as defined by the S5 ax-
iomatisation.

Definition 3 (First-Order S5 [9, 15]). Given the formulae ϕ and ψ written in
Ln and some agent i, the axiom system S5 consists of the following axioms and
derivation rules:

Axioms

(A1) All (instances of) first-order tautologies

(A2) (Kiϕ ∧Ki(ϕ =⇒ ψ)) =⇒ Kiψ

(A12) ∀x1, · · · , xk.Kiϕ =⇒ Ki∀x1, · · · , xk.ϕ
(A3) Kiϕ =⇒ ϕ

(A4) Kiϕ =⇒ KiKiϕ

(A5) ¬Kiϕ =⇒ Ki¬Kiϕ

8



Derivation rules

(Modus Ponens)
ϕ ϕ =⇒ ψ

ψ

(Necessitation)
ϕ

Kiϕ
where ϕ must be provable from no assumptions.

(Generalisation)
ϕ

∀x.ϕ(x)
where x does not occur in ϕ.

We also introduce the notion of derivation in the axiom system S5 as follows:

Definition 4 ([15]). A derivation of a formula ϕ ∈ Ln is a finite sequence of for-
mulae ϕ1, ϕ2, . . . , ϕn = ϕ, where each ϕi, for 1 ≤ i ≤ n, is either an instance
of the axioms (A1, A2, A12, A3, A4 or A5) or the conclusion of one of the deriva-
tion rules of which premises have already been derived, i.e., appear as ϕj with
j < i. Moreover when we can derive ϕ from a set of formulae {ψ1, ψ2, . . . ψn},
if we take the set Γ as the conjunction of all the formulae from the previous set,
Γ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn we write Γ ` ϕ.

Consider again the previous example about Alice and Bob. We can formalise
the statement “Alice knows that if a user is going to an event, then she knows the
location of that user during the event” as

KAlice(going(u, η) =⇒ location(u, η)) (1)

for each u ∈ Ag and η ∈ N. Hence if Alice knows that Bob is going to the event
η,

KAlicegoing(Bob, η) (2)

she can apply the axiom (A2) together with (1) and (2) to infer Bob’s location
during the event, i.e., KAlice location(Bob, η).

Finally, we introduce the closure function Cl for the axiom system S5, which
generates all the knowledge that agents can infer given the set formulae repre-
senting the explicit knowledge that they already have. This is formally defined as
follows:

Definition 5. Given a set of formulae Φ ⊆ Ln the knowledge base closure func-
tion is Cl(Φ) = {ϕ | Φ ` ϕ}.

9



post(Bob, 1)
∀η.(post(Bob, η) =⇒ location(Bob, η))

Alice

∀x.(bYear(x) ∧ bMonth(x) ∧ bDay(x) =⇒ age(x))
location(Bob, 1) bMonth(Alice) bDay(Alice)

Bob

location(Bob, 1)
bYear(Alice)

Charlie

Friendship Blocked

friendRequest

Figure 2: Example of Social Network Model

Cl is the closure of an input set of formulae under the axiom system S5. Differ-
ent axioms may hold when FPPF is instantiated with a concrete social network
model. To this end we define the minimal Cl using the axioms and derivation rules
from S5 and, in order to provide the agents with more targeted deductive engines,
we remain open to extend this set of axioms. We ensure that the local knowl-
edge of each agent is always consistent by checking that false is never derived. In
Section 2.4 we will show how Cl can be extended to meet the requirements of a
concrete SNS.

Example 1. Consider an SN ∈ SN which consists of three agents Alice, Bob and
Charlie, Ag = {Alice,Bob,Charlie}; two connections Friendship and Blocked,
C = {Friendship,Blocked}; and a friend request action, Σ = {friendRequest}.

Figure 2 shows a graphical representation of the aforementioned SN . In this
model the dashed arrows represent connections. Note that the Friendship connec-
tion is bidirectional, i.e., Alice is friend with Bob and vice versa. On the other
hand, it is also possible to represent unidirectional connections, as Blocked; in
SN Bob has blocked Charlie. Permissions are represented using a dotted arrow.
In this example, Charlie is able to send a friend request to Alice.

The predicates inside each node represent the agents’ knowledge base. In this
SNM, Charlie and Bob have the predicate location(Bob, 1)1 in their knowledge
bases, meaning that they both know location number 1 of Bob. Moreover, the

1Since a user can have several locations we use an index to differentiate them, location(Bob, 1)
represents location 1 of Bob.

10



knowledge bases may contain not only predicates, but also other formulae. These
formulae may increase the knowledge of the agents. For instance, Alice knows
location(Bob, 1) implicitly. Alice can derive location(Bob, 1) by Modus Ponens,
from post(Bob, 1) and ∀η.post(Bob, η) =⇒ location(Bob, η).

2.2. Knowledge-based Logic
We use the logic KBL to reason about the knowledge and the permissions of

agents over social network models. The logic allows us to leverage all the ex-
pressive power of first-order epistemic reasoning to formally express and verify
privacy policies. As usual in first-order logic, we start with a vocabulary con-
sisting of a set of constant symbols, variables, function symbols and predicate
symbols, which are used to define terms as follows:

Definition 6 (Terms). Let x be a variable and c a constant and {fi} for i ∈ I
(where I is a set of indexes) a family of functions with implicit arity. Then the
terms are inductively defined as:

t ::= c | x | fi(
#»
t )

where #»
t denotes a tuple of terms respecting the arity of fi.

We use terms to define predicates. For instance, friends(Alice,Bob) is a pred-
icate that can be used to express that Alice and Bob are friends. The syntax of the
logic is then defined as follows:

Definition 7 (Syntax). Given i, j ∈ Ag , the relation symbols an(i, j), cm(i, j),
p(

#»
t ) ∈ A where m ∈ C and n ∈ Σ, and a nonempty set G ⊆ Ag , the syntax of

the knowledge-based logic KBL is inductively defined as:

ϕ ::= p(
#»
t ) | cm(i, j) | an(i, j) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | Kiϕ | DGϕ| CGϕ

The remaining epistemic modalities are defined as SGϕ ,
∨
i∈GKiϕ and EGϕ ,∧

i∈GKiϕ.

We choose to discriminate between predicates encoding permissions between
agents, i.e., an(i, j), predicates encoding connections between agents, i.e., cm(i, j),
and other types of predicates, e.g. p( #»

t ), in order to stay as close as possible to the
social network models. FKBL will represent the set of all well-formed formulae
of KBL according to the category ϕ above. The epistemic modalities stand for:
Kiϕ, agent i knows ϕ; EGϕ, everyone in the group G knows ϕ; SGϕ, someone in

11



SN � p(
#»
t ) iff p(

#»
t ) ∈ KB e

SN � cm(i, j) iff (i, j) ∈ Cm
SN � an(i, j) iff (i, j) ∈ An

SN � ¬ϕ iff SN 6� ϕ
SN � ϕ ∧ ψ iff SN � ϕ and SN � ψ
SN � ∀x.ϕ iff for all v ∈ Do, SN � ϕ[v/x]

SN � Kiϕ iff ϕ ∈ Cl(KB i)
SN � CGϕ iff SN � Ek

Gϕ for k = 1, 2, . . .
SN � DGϕ iff ϕ ∈ Cl(

⋃
i∈G KB i)

Table 1: KBL satisfaction relation

the group G knows ϕ; DGϕ, ϕ is distributed knowledge in the groupG; CGϕ, ϕ is
common knowledge in the group G. We use the following operators as syntactic
sugar in the logic KBL: P j

i an := an(i, j) , agent i is permitted to execute action
an to agent j; SP j

Gan :=
∨
i∈G an(i, j), at least one agent in G is permitted to ex-

ecute action a to agent j; GP j
Gan :=

∧
i∈G an(i, j), all agents in G are permitted

to execute action a to agent j. When we write “agent i is permitted to execute
action an to agent j”, it means that agent i allows j to perform an action an which
directly involves i, e.g. PAlice

Bob friendRequest would mean that Bob is allowed to
send a friend request to Alice. We define Ek+1

G as EGEk
Gϕ, where E0

Gϕ is equal
to ϕ. The logical operators→ and ∨ are defined in terms of ∧ and ¬ as usual.

In what follows we define the satisfaction relation for KBL formulae, inter-
preted over social network models.

Definition 8. Given a social network model SN = 〈Ag ,A,KB , π〉, the agents
i, j, u ∈ Ag , ϕ, ψ ∈ FKBL, a nonempty set of agents G ⊆ Ag , m ∈ C, n ∈ Σ,
o ∈ D and k ∈ N, the satisfaction relation � ⊆ SN × KBL is defined as shown
in Table 1.

Predicates are interpreted as relations over the respective domains in the model,
e.g., connections and permissions. Additionally, we introduce a special agent e,
called environment, that defines the truth of atomic formulae of the type p( #»

t ).
The environment’s knowledge base (KB e) contains all predicates p( #»

t ) that are
true in the real world, but the other agents may not know about. Intuitively, the
environment agent can be seen as an oracle that knows all the true facts in the
real world, for instance, Alice 6= Bob or Alice 6∈ {Bob,Charlie}. For simplicity,

12



sometimes we use predicates to represent pieces of information. These predicates
are always present in KB e. For instance, in Example 1, we use the predicate
location(Bob, 1) to represent location 1 of Bob, which allows us to write formu-
lae such as KAlice location(Bob, 1) to state that “Alice knows location 1 of Bob”.
As usual, ϕ[v/x] denotes the capture-free substitution in first-order logic and we
tacitly assume that each variable x is mapped to its own domain.

The intuition behind the semantic definition of the knowledge modality Ki

is as follows: a user i knows ϕ (denoted as Kiϕ) iff either the user knows ϕ
explicitly, i.e., ϕ is in the knowledge base (KB i), or ϕ can be derived (using
the axiomatisation S5) from the existing formulae in the knowledge base (ϕ ∈
Cl(KB i)). This definition is better illustrated by an example.

Example 2. Let SN be the SNM in Figure 2. As we described in Example 1, Alice
knows post 1 of Bob, meaning that

SN � KAlicepost(Bob, 1)

holds, since post(Bob, 1) is explicitly in the knowledge base of Alice, i.e.

post(Bob, 1) ∈ KBAlice . (3)

We also mentioned that Alice implicitly knows location 1 of Bob, which means
that

SN � KAlice location(Bob, 1) (4)

should hold. According to the semantics we have provided for Ki, the previous
statement is true iff location(Bob, 1) ∈ Cl(KBAlice). Figure 2 shows that, in SN ,
the following formula is in KBAlice

∀η.post(Bob, η) =⇒ location(Bob, η) (5)

where η ∈ N, hence

post(Bob, 1) =⇒ location(Bob, 1) (6)

is also in KBAlice . From (3) and (6) we know that the knowledge base of Alice
contains at least the following elements,

KBAlice = {post(Bob, 1), post(Bob, 1) =⇒ location(Bob, 1), . . .}.

Finally, by the definition of Cl (Definition 5), modus ponens can by applied for
(6) and (3) to derive location(Bob, 1), i.e. location(Bob, 1) ∈ Cl(KBAlice) and
therefore (4) holds.

13



The interpretation of distributed knowledge, DG, is similar to the one for Ki,
but it considers the knowledge of all agents in G instead of accounting only for
the knowledge of agent i.

We can use the logic KBL to reason about combinations of what the agents
know and what actions they are allowed to perform in an SNM.

Example 3. Consider again the SNM SN in Figure 2. We can check whether the
statement

SN � E{Bob,Charlie}location(Bob, 1) =⇒ PAlice
Charlie friendRequest

holds for i ∈ {Alice,Bob,Charlie}. As in Example 1, Bob and Charlie both
know location 1 of Bob, therefore it holds that location(Bob, 1) ∈ Cl(KBBob)
and location(Bob, 1) ∈ Cl(KBCharlie). Hence

SN � KBob location(Bob, 1) ∧KCharlie location(Bob, 1),

it implies that
SN � E{Bob,Charlie}location(Bob, 1).

Also (Charlie,Alice) ∈ AfriendRequest , meaning that Charlie is permitted to send
a friend request to Alice, therefore it holds

SN � PAlice
Charlie friendRequest .

Finally we can conclude that our original implication holds for SN .

Not all SNSs have the same knowledge and permission properties. Different
properties hold in different SNSs. As we have seen, using the satisfaction relation
�, we can determine whether a KBL formula holds in an SNM. These knowledge
and permission properties can be expressed in KBL, and consequently, we can
check whether they hold in a specific SNM as we show in the following example.

Example 4. In Facebook, as soon as a user has access to a post, she can see all
the users who liked the post. This means that when any member clicks the “like”
button, all the users with access to the post will know about it. Let o be some
agent and η some post, the predicate post(o, η) representing the post η by agent
o and the predicate like(i, o, η) representing the fact that agent i liked the post η
by o, we can check whether the property holds in a given SN ∈ SN using the
satisfaction relation:

SN � ∀j.∀o.∀i.∀η.Kjpost(o, η) ∧Kilike(i, o, η) =⇒ Kj like(i, o, η)

14



Properties of the framework. The logic KBL leverages the deductive en-
gine by applying the axioms and derivation rules from the axiomatisation S5 to
infer new knowledge. We remark that the same axiomatisation can not be used
for KBL, since the predicates, e.g. connection and permission, are interpreted
differently depending on whether or not they occur inside a knowledge modality.
For instance, satisfaction of the connection predicate friendship(Alice,Bob) will
only depend on the condition (Alice,Bob) ∈ AFriendship . Nonetheless, checking
the formula KAlice friendship(Alice,Bob) requires that friendship(Alice,Bob) ∈
Cl(KBAlice). This is in line with the fact that agents may know facts that are
not true in the real world. As a result, this unconventional interpretation of predi-
cates prevents us from using axiomatisations defined for classical epistemic logic.
However, when checking if a formula is in the knowledge base of an agent, all
predicates are treated equally, even when they are connection or permission pred-
icates. Hence the individual knowledge of each agent in SNMs can be modelled
using a classical Kripke model, meaning that it can be seen as a set of formulae
in Ln. Because of this, we assume that they can infer new knowledge using the
axiomatisation S5, which is sound and complete for classical epistemic logics [9].

The example above shows that we are concern with agents’ belief instead of
knowledge. In fact, we can use the KD45 axiomatisation for belief [9] to check
properties of the logic KBL [14]. Intuitively, we can think of SNMs as models
that combine two logics. On the one hand, we use KBL to reason about the
global knowledge and permission of the SNS. On the other hand, agents can have
their local knowledge represented using Ln and use S5 to infer new knowledge.
The KBL logic is closely related to traditional Kripke models as discussed in
Section 5.

Finally, the logic relies on the assumption that the knowledge bases of the
agents are always consistent in the sense that falsehood is never derived. In prac-
tice this assumption can be relaxed either by checking that false is never derived
whenever adding new facts to a knowledge base, or by extending predicates with
indexes/timestamps the discriminate between predicates added at different stages
to a knowledge base.

2.3. The Privacy Policy Language
One of the objectives of FPPF is to provide a way to express complex and

fine-grained privacy policies. We introduce PPL as a formal language for writing
privacy policies based on KBL.

Definition 9. Given the agents i, j ∈ Ag , the relation symbols an(i, j), cm(i, j),
p(

#»
t ) ∈ A where m ∈ C and n ∈ Σ, a nonempty set G ⊆ Ag and ϕ ∈ FKBL, the

15



syntax of the privacy policy language PPL is inductively defined as follows:

δ ::= δ ∧ δ | ∀x.δ | Jϕ =⇒ ¬αKi | J¬αKi
α ::= α ∧ α | ψ | γ′ | ∀x.α
γ′ ::= Kiγ | EGγ | SGγ | DGγ| CGγ
γ ::= γ ∧ γ | ¬γ | p( #»

t ) | γ′ | ψ | ∀x.γ
ψ ::= cm(i, j) | an(i, j)

In PPL privacy policies are written in a negative way in order to specify who
is not allowed to know a fact or who is not permitted to perform an action. Note
that in δ, α is always preceded by negation. The syntactic category α represents
the restrictions that must be enforced in the social network; the set of well-formed
formulae of this category is denoted as FRPPL. The category γ′ corresponds to a
restricted version of FKBL where the first element is a positive knowledge modal-
ity. This forces policies to be written in a negative way, since no double negation
is possible in the first knowledge modality. Also, we always refer to the agents’
knowledge, since γ′ starts with a knowledge modality. The category ψ gives a
special treatment of predicates for actions and connections to express restrictions
over the connections and the actions that agents are involved in. In δ we wrap pri-
vacy policies using J Ki, where i ∈ Ag, to denote the owner of the privacy policy.
We write FPPL for the set of well-formed PPL formulae given by δ. As a result,
there are two main types of privacy policies that users can write:

• Direct restrictions - J¬αKi These are restrictions which allow users to ex-
plicitly specify the audience which has no access to some piece of informa-
tion or who is permitted to execute an action. For instance, in PPL agent i
can write J¬S{m,n,o}p(

#»
t )Ki, meaning that none of the agents m,n, o ∈ Ag

can know p(
#»
t ).

• Conditional restrictions - Jϕ =⇒ ¬αKi A restriction α is enforced depend-
ing on some knowledge or permission state (see Example 5).

Example 5. Let us consider the following policy:

∀j.J¬P i
j joinevent(i) =⇒ ¬Kjevent(i, descp)Ki (7)

The intuitive meaning of this policy is that if a user i ∈ Ag creates an event
event(i, descp) (where descp is the description of the event) and she gives per-
mission to join it (the action of joining the event is represented by joinevent(i))

16



to a certain group of people, then the event cannot be accessed by people other
than the ones who are allowed to join it. Similarly, a user can choose to limit the
event’s audience to her friends only. This can be expressed in PPL as

J¬SAg\friends(i)event(i, descp)Ki (8)

Unlike (7), this policy is enforced in most SNSs. However (8) is much more coarse-
grained than (7) and, as a result, it will not allow some users to access the event
if they are able to join it. Therefore, (8) unnecessarily reduces the audience of the
event.

We now give an example of a privacy policy which uses the distributed knowl-
edge modality.

Example 6. The distributed knowledge operator DG makes possible to protect
users’ against intricate leaks of information in groups of agents. Consider the
social network model presented in Figure 2, where Bob knows the day and the
month of Alice’s birthday, denoted by bDay(Alice) and bMonth(Alice), respec-
tively, and he can also infer the age of a user whenever he knows the user’s full
date of birth, i.e.,

∀x.bDay(x) ∧ bMonth(x) ∧ bYear(x) =⇒ age(x).

Moreover, Charlie knows the year of Alice’s birth, represented by the predicate
bYear(Alice). Therefore, if Bob and Charlie combine their knowledge, Alice’s
age will become distributed knowledge between the two. This is because the dis-
tributed knowledge operator considers the combination of the knowledge of the
group of agents and applies the deductive engine to infer new knowledge. Fortu-
nately, in PPL Alice can write the privacy policy

J¬D{Bob,Charlie}age(Alice)KAlice

to prevent this leak. Note that the social network model considered in this example
(Figure 2) violates the policy.

The examples above show that the privacy policies we express in PPL give
users a fine-grained control over what information they share and with whom they
share it. In order to ensure that users’ privacy is not compromised, all their privacy
policies must be in conformance with the SNS.

17



SN �C δ1 ∧ δ2 iff SN �C δ1 ∧ SN �C δ2

SN �C ∀x.δ iff for all v ∈ Do, SN �C δ[v/x]
SN �C J¬αKi iff SN � ¬α
SN �C Jϕ =⇒ ¬αKi iff SN � ϕ then SN �C J¬αKi

Table 2: PPL conformance relation

Definition 10. Given a social network model SN = 〈Ag ,A,KB , π〉, an agent
i ∈ Ag , ϕ ∈ FKBL, α ∈ FRPPL, o ∈ D and δ, δ1, δ2 ∈ FPPL, the conformance
relation �C is defined as shown in Table 2.

Note that �C is defined using the satisfaction relation �. Due to this, privacy
policies can be seen as specific knowledge and permission conditions that must
hold in the SNM. Let us take as an example the policy (7) from Example 5 and an
SNM SN

SN �C ∀j.J¬P i
j joinevent(i) =⇒ ¬Kjevent(i, descp)Ki.

By applying the semantics defined in Table 2, checking whether SN is in confor-
mance with the policy is equivalent to checking that for all u ∈ Ag

SN �C J¬P i
ujoinevent(i) =⇒ ¬Kuevent(i, descp)Ki

which is also equivalent to

If SN � ¬P i
ujoinevent(i) then SN � ¬Kuevent(i, descp)

As we can see in Table 2, checking conformance of any formula in PPL boils
down to checking satisfaction of the corresponding formula in KBL.

2.4. Instantiation of the framework
So far we have described a generic framework applicable to general SNSs.

However, each SNS has its own features. For example, Foursquare has the fol-
lower connection and users can write tips related to places where they have been.
In Google+ users are grouped in circles and they share information depending
on those circles. Moreover, Google+ offers users the possibility of creating events
that other users can join, whereas this is not present in other SNSs like Foursquare,
Twitter or Instagram.

Here we introduce the concept of FPPF instantiation, which will be used to
model the specific characteristics of an SNS.

18



Definition 11 (FPPF instantiation). An FPPF instantiation for an SNS S is a
tuple of the form

FPPFS = 〈SNS ,KBL,�,PPL,�C〉
where SNS = 〈AgS ,AS ,KBS , πS〉 and

• AgS is the set of agents in the SNS;

• The structure AS contains a set of predicates PS , a set of connection rela-
tions CS , a set of permission relations ΣS , and a family of auxiliary func-
tions {fi}i∈I;

• The knowledge base contains a set of properties AS of the SNS, written in
KBL (these properties represent assumptions for the instantiated SNS);

• πS returns the set of privacy policies of an agent in S. We assume that the
set of privacy policies ΠS is consistent. We also assume that all privacy
policies in ΠS satisfy the admissibility condition ACS .

The admissibility condition ACS specifies the generic structure of privacy
policies for a particular instantiation (see Definition 12 for an example). Formally,
ACS is a predicate over the elements of FPPFS defining the well-formed poli-
cies for the instantiation. We write π′ ∈ ACS if π′ satisfies ACS . Independently
of the admissibility condition, we assume that all privacy policies are consistent.
For simplicity, when no confusion arises, we will not specify the subindex S in the
instantiation. Also, as mentioned before, the deductive engine of the knowledge
base, KB , is extended with the assumptions AS in the instantiation.

2.5. Instantiation of Twitter
Twitter is an SNS in which the interaction among users is carried out by means

of posting (or tweeting) 140 characters messages called tweets. Apart from text,
tweets can also include pictures and locations. If users want to re-share a tweet,
they can use the retweet functionality which shares an already published tweet
from another user. Users can also mark tweets as favourite, which is similar to
star emails, i.e., it marks the tweet with a star. It has recently become quite trendy
to use the favourite feature as a way to express that you like the content of the
tweet. The main relationship between users is called follower. It is a unidirectional
relation between users. When users follow another user, they get updates with all
the tweets of the user they follow.

In what follows we formally present the Twitter instantiation, denoted by
FPPFTwitter.

19



Predicates. Given o, u ∈ Ag and µ, η ∈ N, the set of predicates PTwitter ∈
FPPFTwitter is:

• tweet(o, η) - Tweet η tweeted by o.

• mention(u, o, η) - Mention of u in tweet(o, η).

• favourite(u, o, η) - u marked tweet(o, η) as favourite.

• retweet(u, o, η) - Retweet of tweet(o, η) by u.

• location(o, η) - Location of tweet(o, η)

• picture(o, η, µ) - A picture included in tweet(o, η).

• username(u), email(u), phone(u) - Username, email address and phone
number of user u.

The constants η and µ are indexes for tweets and pictures of a user, respec-
tively.

Connections. The set of connections include the follower and the block relation-
ships, CTwitter = {CFollower , CBlock}.

Actions. The actions are defined as:

ΣTwitter = {AaccessProf , AaccessProfRec, AsendAd}

where accessProf is the action of a user accessing other user’s profile; the action
accessProfRec represents a user’s profile can be accessed as a recommendation,
for example when a user installs the Twitter mobile app, the SNS recommends
other users which may be in the user’s contact list; and sendAd is the action of an
advertisement company sending advertisements to a user.

Constraints over privacy policies (Admissibility condition). In FPPFTwitter we
do not define constraints for the privacy policies per se. Instead we describe a
schema composed by the generic structure of the privacy policies that users in
Twitter can write. The schema is based on the set of Twitter privacy policies
presented in [12], which was shown to express all the policies that Twitter offers
in its privacy settings section nowadays.

Definition 12. Given u ∈ Ag and η ∈ N; the generic structure of the privacy
policies for Twitter is as follows:

20



P1(u) = J¬SAg\followers(u)\{u} tweet(u, η)Ku - Only u’s followers can access her
tweets.

P2(u) = J¬SAg\followers(u)\{u}retweet(u, tu, η)Ku - Only u’s followers can access
her retweets.

P3(u) = J¬SAg\{u} location(u, η)Ku - No tweet by u contains her location.
P4(u) = ∀i.J¬Ki (email(u) ∨ phone(u)) =⇒ ¬P u

i accessProfRecKu - No user
i can receive a recommendation to follow u, unless i knows u’s email or
phone number.

P5(u) = J¬SP u
Advertisers sendAdKu - No advertisement companies can send ads

to user u.

In addition, users in Twitter are not allowed to have more than one instance of
each type of privacy policy at the same time. Definition 12 formally describes the
structure of the privacy policies accepted by the admissibility condition ACTwitter.

Auxiliary functions. The set of auxiliary functions consists of:

• followers : AgTwitter → 2AgTwitter - This function returns the followers of a
given user, i.e. for u ∈ AgTwitter, followers(u) = { i | (i, u) ∈ CFollower}.

• state : AgTwitter → St - This function returns the state of a user’s account,
which can be public or private. For u ∈ AgTwitter, it returns private if the
policies P1, P2 ∈ πu and public otherwise.

• inclocation : AgTwitter → Bool - This function returns the user’s preference
for revealing the location with the tweet. For u ∈ AgTwitter it returns false if
the policy P3 ∈ πu, and true otherwise.

• beingReco : AgTwitter → Bool - This function returns the user’s preference
about being recommended to be followed by other users who have access
her email or phone number. For u ∈ AgTwitter it returns false if the policy
P4 ∈ πu, and true otherwise.

• getTweetInfo : AgTwitter × N → 2PTwitter - This function extracts informa-
tion from a given tweet, for instance, the location (location(o, η)), the users
mentioned in the tweet (mention(u1, o, η) . . . mention(um, o, η)), and the
attached pictures (picture(o, η, 1) . . . picture(o, η, j)), where m, j ∈ N are
indexes. This information is returned as a set of predicates.

21



• audience : PTwitter → 2AgTwitter - This function returns the audience of some
piece of information, i.e. the agents who know that information. Given
p(

#»
t ) ∈ PTwitter, audience(p(

#»
t )) = { i | SN � Kip(

#»
t )}

• info : AgTwitter → 2PTwitter - This function returns all the information of a
given agent. Given an agent u ∈ AgTwitter, info(u) = {p(u, #»

t )|p(u, #»
t ) ∈

KBu}.

Properties of FPPFTwitter. The role of the properties is twofold. Firstly, they are
used to encode some of the properties of the specific SNS and, secondly, some of
these assumptions are added to the knowledge base KB of all the agents.

Note that, for the following set of properties, we write that an agent has ac-
cess to a predicate p( #»

t ) if she knows it, i.e., Kip(
#»
t ). The intuition behind this

choice is that if the agent “learnt” the predicate, it is because she had access to it.
ATwitter consists of the following properties:

• Property 1. If a user has access to a tweet, tweet(o, η), then she can access
all the information of that tweet. For all p( #»

t ) ∈ getTweetInfo(o, η),

∀i.∀o.∀η.(Kitweet(o, η) =⇒ Kip(
#»
t ))

• Property 2. If a user has access to another user’s tweet, tweet(o, η), she can
also access that user’s profile.

∀i.∀o.∀η.(Kitweet(o, η) =⇒ P o
i accessProf )

This property models the fact that there is a link to the profile of the user
who tweeted the tweet.

• Property 3. If a user has access to another user’s retweet, retweet(u, o, η),
she can also access that user’s profile and the owner of the tweet’s profile.

∀i.∀u.∀o.∀η.(Kiretweet(u, o, η) =⇒ P u
i accessProf ∧ P o

i accessProf )

• Property 4. If a user has access to another user’s favourite, favourite(u, o, η),
she can also access that user’s profile and the owner of the tweet’s profile.

∀i.∀u.∀o.∀η.(Kifavourite(u, o, η) =⇒ P u
i accessProf ∧ P o

i accessProf )

22



Properties 2-4 may not seem very intuitive. They come from a design choice
we make when implementing the behaviour of the SNS. In Twitter, when some-
one accesses another user’s tweet, retweet or favourite, the user has the possibility
of accessing the profiles of the owner of the tweet, retweet and favourite, respec-
tively. The user only gets a chance to access the profile, because if that profile is
not public only followers can access it, and this will be checked when the user is
actually trying to access the profile. In our instantiation, we chose to model this
using the permission operator and this is the reason why the mentioned properties
give the permission to access the profile. A different approach could have been
creating an attribute called profile(u), which as soon as it is learnt by a user, it
permits them to access u’s profile. Moreover, the designer of the SNS can de-
fine as many properties as she considers necessary for the SNS, beyond the four
properties introduced here.

3. Privacy Policies in Dynamic SNS

Social network users usually execute events. For example, they can post mes-
sages on a timeline, they can like a given post, share pictures, and so forth. Dif-
ferent events may change the knowledge, the permissions, or the connections be-
tween agents in the SNS. In this section, we formally incorporate the events that
can be executed in the SNS and give the operational semantics rules for mod-
elling the events’ behaviour in FPPF . These rules formally describe how SNMs
change when a particular event occurs. This leads to having sets of SNMs, which
represent the state of the SNS at a given moment in time. We also include a la-
belled transition system in FPPF , which contains all the information about the
evolution of the SNS. As in the previous section, we describe how these elements
are instantiated for particular social networks and we conclude by extending the
Twitter instantiation provided in Section 2.

3.1. Labelled Transition System
Labelled Transition Systems (LTSs) have extensively been used in computer

science to describe the behaviour of systems. In short, they are directed graphs
where nodes represent states and edges the transitions between states. The edges
are labelled with the name of the event which originates the transition between
state.

In order to represent the behaviour induced by the events of the SNS, we define
an LTS, and use it to keep track of the epistemic and deontic states as the SNS
evolves. Nodes in the LTS represent configurations, which are SNMs. The set of

23



all configurations in the LTS is a subset of all possible SNMs, SN , since the LTS
only contains the SNMs resulting from the execution of an event. Transitions in
the LTS represent the evolution from a configuration to another, as a result of the
execution of an event.

Definition 13. An SNS Labelled Transition System (SNSLTS) is a tuple 〈Conf ,
EVT ,→, c0〉, where

• Conf is a set of social network models, Conf ⊆ SN ;

• EVT is the set of all possible events which can be executed in the SNS;

• → ⊆ Conf × 2EVT × Conf is a transition relation;

• c0 ∈ Conf is the initial configuration of the social network.

Given a set of events E ⊆ EVT and the configurations c0, c1 ∈ Conf , we
write c0

E−→ c1 to denote that the SNS evolves from c0 to c1 by the execution (in
parallel) of the events in E. If E only contains one event, the transition represents
a regular sequential execution. Note that the type of→ allows for true parallelism
in the execution of events. However we do not study possible side effects of the
interleavings in the execution of parallel events, instead we will assume that the
result of the execution in parallel is independent of the interleaving, leaving this
issue as future work. For all configurations c it holds that c ∅−→ c.

Now we can formally define in FPPF dynamic SNSs as described by the
Labelled Transition System.

Definition 14 (Dynamic FPPF). The tuple 〈LT SSN , KBL, �, PPL, �C〉 is a
dynamic privacy policy framework (denoted by FPPFD), where

• LT SSN is the set of all possible SNS labelled transition systems;

• KBL is a knowledge-based logic;

• � is a satisfaction relation defined for KBL;

• PPL is a formal language for writing privacy policies;

• �C is a conformance relation defined for PPL.

24



{follow(Alice,Bob)}

{post(Bob, 1, Public),
 friendRequest(Charlie,Alice)}

p(Bob,1)

p(Bob,1)
fr(Charlie)

p(Bob,1)
sfr(Alice)

SN1

Alice

Charlie Bob

SN2

Alice

Charlie Bob

SN0

Alice

Charlie Bob

follow

friendRequest

Figure 3: Example of SNS Labelled Transition System

Example 7. In Figure 3 we give an example of an SNSLTS. This SNSLTS shows
a possible sequence of events that can be executed. The rectangles represent 3
configurations SN 0, SN 1, SN 2 ∈ Conf . Each configuration depicts the SNM at
different points in the execution. Since there are no events that involve the addition
or removal of any users, all configurations have the same set of agents Ag =
{Alice,Bob,Charlie}. SN 0 is the initial configuration. In this configuration, Bob
follows Charlie, which is represented by a unidirectional arrow between them.
The dashed arrow from Charlie to Alice expresses that Charlie is able to send a
friend request to Alice.

The transition from SN 0 to SN 1 represents that the SNS can evolve from
the configuration SN 0 to SN 1 by executing of the event follow(Alice,Bob), i.e.

SN 0
{follow(Alice,Bob)}−−−−−−−−−−−→ SN 1. This event creates a new relation between Alice and

Bob, which is modelled with a directed arrow between them in the resulting SNM,
SN 1. This transition comprises only one event, which means that no other event
was executed in parallel. In SNSLTSs, transitions are labelled with sets of events

25



representing the actions executed in parallel. In SN 1
{post(Bob,1,Public),friendRequest(Charlie,Alice)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SN 2 two events are executed in parallel. On one hand, Bob posts his first post
publicly in the SNS, post(Bob, 1,Public). As a consequence, all users in SN 2

have learnt p(Bob, 1), which is a predicate representing Bob’s post. Formally,
p(Bob, 1) ∈ KB i for all i ∈ Ag . In parallel, Charlie sends a friend request to
Alice. Let us assume, for the sake of this example, that this is needed to check
whether a friend request can be sent. Charlie is allowed to perform this event
since

SN 1 � P
Alice
Charlie friendRequest

holds. Finally, the result of executing this event is that, in SN 2, Alice knows that
Charlie sent her the friend request, fr(Charlie) ∈ KBAlice; and Charlie knows
that he has sent the friend to Alice, sfr(Alice) ∈ KBCharlie .

Note that in the LTS of the previous example we can only observe the conse-
quences of executing the events, but it is not possible to formally describe their
behaviour. In the following sections we will introduce the dynamic instantiation
of our framework and the operational semantics rules that formally define the be-
haviour of each event.

3.2. Dynamic FPPFS
As in the static case, the dynamic instantiation of an SNS requires the spec-

ification of each of the components of the FPPF tuple. In particular, different
SNSs will have different sets of events, EVT , which they can execute. Hence we
can extend the definition of FPPF as follows:

Definition 15. A dynamic FPPF instantiation, denoted as FPPFDS , for a so-
cial network service S is an FPPFS , in which the elements of the LT SSN are
instantiated:

FPPFDS = 〈LT SSSN ,KBL,�,PPL,�C〉
where LT SSSN = 〈Conf S , EV TS ,→S , c0〉 and

• Conf S ⊆ SNS is the set of all social network models for FPPFDS ;

• EV TS is the set of all possible events in FPPFDS ;

• →S is the transition relation determined by the operational semantics rules
for EV TS;

• c0 ∈ Conf S is the initial model of FPPFDS .

26



3.3. Operational Semantics Rules for SNS
The dynamic behaviour of an SNS is described in terms of a small step opera-

tional semantics. For every event in EV TS , there will be one or more operational
semantics rules which describe its behaviour. The generic form of the rules is as
follows:

Q1 . . . Qn

SN
e−→ SN ′

The premises Q1 . . . Qn may be predicates, side conditions or any other auxiliary
information used to describe the rule. They are defined by leveraging all the el-
ements of FPPF and the instantiation FPPFS in which the rules are defined.
The SNMs SN and SN ′ are tuples as defined in Definition 2, i.e., 〈Ag ,A,KB , π〉.
The only elements of A involved in definition of operational semantics rules
are connection predicates {Ci}i∈C , permission predicates {Ai}i∈Σ and the set of
generic predicates P . Therefore, we will write {{Ci}i∈C, {Ai}i∈Σ,P} to refer to
A. For the sake of clarity, we will not explicitly write the rest of the elements of
A. Any element of the SNM tuple which is not involved in the execution of the
rule will be replaced with “ ”. The operational semantics rules are divided in 4
types, as reported in Table 3. We use the superindex e whenever an update of the
SNM depends on event e. In what follows we first describe the intuition for each
type of rule and then we provide a detailed description of an epistemic rule.

Epistemic. These rules are used to specify events that change the knowledge
and/or the permissions of an SNM. As a result, the premises appearing in epis-
temic rules will only update the elements KB and Ai of the social network model
involved in those rules. Agents’ knowledge increases monotonically, for this rea-
son, KB will only grow after the execution of an epistemic rule (see the first
premise of the epistemic rule in Table 3). Unlike knowledge, permissions can be
granted or denied, which makes it possible for the pairs in the binary relations Ai
to be added or removed.

Sometimes SNSs release information by making a message available to a
group of users, e.g. tweets on Twitter or posts on Facebook. In dynamic epis-
temic logic this type of event is known as public announcement [16]. The result
of performing a public announcement is that the disclosed information becomes
common knowledge to the group of agents which are the audience of that an-
nouncement. We use common knowledge to accurately model what is known for
everyone in a group.

27



Epistemic
∀j ∈ Ag KB ′j = KB j ∪ Γej where Γej ⊆ FKBL

A′i = (Ai \ PerToRmv e) ∪ NewPer e where NewPer e ∈ 2Ag×Ag and PerToRmv e ∈ 2Ai

P1 . . . Pm ∈ P where m ∈ N
〈 , { , {Ai}i∈Σ,P},KB , 〉 e−→ 〈 , { , {A′i}i∈Σ,P},KB ′, 〉

Topological
Ag ′ = (Ag \ AgtToRmv e) ∪ NewAgte where NewAgte ∈ 2AU and AgtToRmv e ∈ 2Ag

C ′i = (Ci \ ConToRmv e) ∪ NewCone where NewCone ∈ 2Ag×Ag and ConToRmv e ∈ 2Ci

P1 . . . Pm ∈ P where m ∈ N
〈Ag , {{Ci}i∈C, ,P}, , 〉

e−→ 〈Ag ′, {{C ′i}i∈C, ,P}, , 〉

Policy
∀j ∈ Ag π′j = (πj \ PolToRmv ej) ∪ NewPol ej where NewPol ej ∈ 2πj and PolToRmv ej ⊆ FPPL

P1 . . . Pm ∈ P where m ∈ N
〈Ag , { , ,P}, , π〉 e−→ 〈Ag , { , ,P}, , π′〉

Hybrid
∀j ∈ Ag KB ′j = KB j ∪ Γej where Γej ⊆ FKBL

A′i = (Ai \ PerToRmv e) ∪ NewPer e where NewPer e ∈ 2Ag×Ag and PerToRmv e ∈ 2Ai

Ag ′ = (Ag \ AgtToRmv e) ∪ NewAgte where NewAgte ∈ 2AU and AgtToRmv e ∈ 2Ag

C ′i = (Ci \ ConToRmv e) ∪ NewCone where NewCone ∈ 2Ag×Ag and ConToRmv e ∈ 2Ci

∀j ∈ Ag π′j = (πj \ PolToRmv ej) ∪ NewPol ej where NewPol ej ∈ 2πj and PolToRmv ej ⊆ FPPL
P1 . . . Pm ∈ P where m ∈ N

〈Ag , {{Ci}i∈C, {Ai}i∈Σ,P},KB , π〉 e−→ 〈Ag ′, {{C ′i}i∈C, {A′i}i∈Σ,P},KB ′, π′〉

Table 3: Generic structure of the operational semantics rules

Topological. These rules only affect the topology of SNMs. The social topology
represents the elements of an SNM which come from the social graph. Therefore
these rules update the sets Ag and Ci of an SNM. Using topological rules we can
model the addition or removal of users and the relationships among them.

Policy. Policy rules allow to express changes in the privacy policies of the agents.
Therefore the only element of the SNM that will be modified is π. As in the
previous case, π may be updated by adding or removing privacy policies.

Hybrid. As the name suggests, these rules can be used in case an event in the SNS
causes a mix of the previous types of rules to apply. Consequently, hybrid rules
will combine premises of the three types and possibly update the SNM.

28



In order to clarify the specific meaning of the rules in Table 3, here we provide
a detailed explanation of the generic epistemic rule. The first premise in the rule,

∀j ∈ Ag . (KB ′j = KB j ∪ Γej) where Γej ⊆ FKBL

represents the update of the knowledge bases of the agents. KB j is the knowledge
base of agent j before the execution of the event e and KB ′j is the resulting knowl-
edge base after the execution of e. The new knowledge is given by Γej , which is de-
fined to be a set of formulae FKBL. Note that Γ is parametrised by the event e and
the agent j, meaning that not all agents will have the same update of knowledge.
Let Ag = {Alice,Bob}, then for an event e1 that only updates Bob’s knowledge
with the predicate p( #»

t ) we would have Γe1Alice = ∅ and Γe1Bob = {p( #»
t )}.

The second premise in the generic epistemic rule expresses the update of per-
mission in the SNM,

A′i = (Ai \ PerToRmv e) ∪ NewPer e

where NewPer e ∈ 2Ag×Ag and PerToRmv e ∈ 2Ai . Ai is the set of agents’ pairs
representing the set of permissions of type i ∈ Σ2 before executing the event e,
and after its execution A′i will contain the resulting pairs. PerToRmv e represents
the pairs to be removed in the SNM, its type is 2Ai meaning that only existing pairs
can be removed. NewPer e is the set with the new pairs of agents representing new
permissions, since its type is 2Ag×Ag permission between any two agents can be
created. When the event e only removes permission, then NewPer e = ∅ (i.e.
A′i = (Ai \ PerToRmv e) ∪ ∅), on the other hand, if e only adds new permission
PerToRmv e = ∅. In general, any kind of update can be expressed. The same
applies for updates of agents and connections in topological rules and policies in
policy rules. The last premise

P1 . . . Pm ∈ P where m ∈ N

is used to express any other auxiliary predicate involving any element ofFPPF re-
quired for the execution of the rule.

In what follows we show how to make use of the operational semantics rules
to model the behaviour of a concrete SNS. Specifically, we will provide the set of
rules for the events defined in a dynamic instantiation of Twitter.

2Remember that in SNMs we use binary relations between agents to represent permission (see
Section 2.1)

29



3.4. Dynamic Instantiation of Twitter
In this section we present the dynamic instantiation of Twitter, FPPFDTwitter,

by extending the instantiation FPPFTwitter introduced in Section 2.4. The set
EV TTwitter contains all the relevant events for the privacy analysis of Twitter.
Specifically, EV TTwitter consists of the following elements:

• tweet - It is one the core events of Twitter. It is used to post some piece
information.

• retweet - It is used to share an already tweeted tweet.

• favourite - It allows users to classify tweets as favourite.

• accessProf - It represents the action of accessing a user’s profile.

• createProf - It is the first event a user executes for joining Twitter. The
user is required to provide a set of basic information which determines her
profile.

• follow - Users can connect with other users by means of the follower rela-
tionship.

• acceptFollowReq - When a user’s profile is not public the follow event en-
ables a request to the user. In order for the connection to be established the
request must be accepted. This event represents the action of accepting the
request.

• block , unblock - In Twitter a user can block other users and can revert this
decision.

• showReco - Twitter shows a selection of recommended-to-follow users,
when the email or the phone number of the recommended user is known
by the one to whom the recommendation is shown.

• showAdv - This event models the action of a company sending an adver-
tisement to a concrete user.

• allowAdv , disallowAdv - A user can (dis)allow a company from sending
advertisement. These events model the activation and deactivation of this
permission.

30



• changeStPriv , changeStPub - These events model the switching between
’Private’ or ’Public’ accounts.

• inclLoc, notInclLoc - These events represent whether the location is in-
cluded or not in the tweet, respectively.

We instantiate the rules in Table 3 for each of the events described above. As
a result, we obtain the operational semantics rules for the social network. In what
follows we describe the Twitter rules for the events createProf and tweet detailed
in Table 4. For the full set of rules modelling Twitter semantics please refer to
Appendix A.3-A.6. Note that in the previous rules we use “=” for assignments
and “==” for equality.

The event createProf describes how the social network model changes when

a new user joins the SNS, i.e., SN
createProf (u,InitialInfo)−−−−−−−−−−−−−→ SN ′ for SN , SN ′ ∈

SNTwitter, u ∈ Ag and InitialInfo ⊆ FKBL (representing the initial set of in-
formation that users provide in Twitter). Rule (T2.1) consists of one condition,
which if satisfied, leads to four consequences. The condition u 6∈ Ag requires that
the new user is not already registered, i.e., her node does not exist in the SNM
before executing the event. The remaining premises represent the effects of exe-
cuting the event. Firstly, Ag ′ = Ag ∪ {u} (where Ag ′ ∈ SN ′), specifies that the
new user is added to the SNM. Secondly, KB ′i = InitialInfo, represents that in the
new SNM SN ′, the user knows all the information she provided when signing up.
Moreover the user is able to access her own profile as represented byA′accessProf =
AaccessProf ∪ {(u, u)}. Finally, ∀j ∈ Advertisers A′sendAd = AsendAd ∪ {(u, j)},
models the set of advertisers, Advertisers ⊆ Ag , who can send advertisements to
the user.

In general, an event may give rise to more than one operational semantics
rule. tweet is an example of such an event (see Table 4). It is composed by 4
rules, which determine its behaviour depending on certain conditions. These con-
ditions consider whether a user has protected her tweets and whether she allows
her location to be included in her tweets. Since the policies can be either activated
or deactivated, this leads to four different social network models after its execu-
tion. Suppose that SN

tweet(u,TweetInfo)−−−−−−−−−−→ SN ′ for SN , SN ′ ∈ SNTwitter, u ∈ Ag
and TweetInfo ∈ 2PTwitter (representing the information disclosed in the tweet, i.e.,
location of the tweet, mentions, pictures, etc). In the first line of all the rules for
tweet we specify what will be the audience of the tweet. This depends on the type
of the account of the user who is tweeting. If the state of the user’s account is
’Public’, then the tweet will be disclosed to her followers and to the people men-

31



Tweet - T1

Au = followers(u) ∪ {u} ∪ {v | mention(v, u, η) ∈ TweetInfo}
state(u) == ’Public’ inclocation(u) == true
∀ϕ ∈ TweetInfo,∀i ∈ Au KB ′i = KB i ∪ {CAuϕ}

〈 , ,KB , 〉 tweet(u,TweetInfo)−−−−−−−−−−→ 〈 , ,KB ′, 〉
(T1.1)

Au = followers(u) ∪ {u} state(u) == ’Private’
inclocation(u) == false location(u, η) 6∈ TweetInfo
∀ϕ ∈ TweetInfo,∀i ∈ Au KB ′i = KB i ∪ {CAuϕ}

〈 , ,KB , 〉 tweet(u,TweetInfo)−−−−−−−−−−→ 〈 , ,KB ′, 〉
(T1.2)

Au = followers(u) ∪ {u} ∪ {v | mention(v, tu, η) ∈ TweetInfo}
state(u) == ’Public’

inclocation(u) == false location(u, η) 6∈ TweetInfo
∀ϕ ∈ TweetInfo,∀i ∈ Au KB ′i = KB i ∪ {CAuϕ}

〈 , ,KB , 〉 tweet(u,TweetInfo)−−−−−−−−−−→ 〈 , ,KB ′, 〉
(T1.3)

Au = followers(u) ∪ {u}
state(u) == ’Private’ inclocation(u) == true
∀ϕ ∈ TweetInfo,∀i ∈ Au KB ′i = KB i ∪ {CAuϕ}

〈 , ,KB , 〉 tweet(u,TweetInfo)−−−−−−−−−−→ 〈 , ,KB ′, 〉
(T1.4)

Create Profile - T2

u 6∈ Ag Ag ′ = Ag ∪ {u} KB ′i = InitialInfo
∀j ∈ Advertisers A′sendAd = AsendAd ∪ {(u, j)}

A′accessProf = AaccessProf ∪ {(u, u)}

〈Ag , { , {Ai}i∈Σ, },KB , 〉 createProf (u,InitialInfo)−−−−−−−−−−−−−→ 〈Ag ′, { , {A′i}i∈Σ, },KB ′, 〉
(T2.1)

Table 4: Create and Tweet rules for FPPFD
Twitter

tioned in the tweet, followers(u)∪{u}∪{v|mention(v, u, η) ∈ TweetInfo} (rules
(T1.1) and (T1.3)). Otherwise, the audience is restricted to only her followers

32



followers(u) ∪ {u} (rules (T1.2) and (T1.4)). If the tweet location is deactivated,
inclocation(u) == false, then the rules contain one extra condition which explic-
itly requires that the location should not be part of the information disclosed in the
tweet, location(u, η) 6∈ TweetInfo (rules (T1.2) and (T1.3)). As a result, all the
formulae describing the tweet information become common knowledge among
the agents of the audience, ∀ϕ ∈ TweetInfo,∀i ∈ Au K ′i = Ki ∪ {CAuϕ}.

The reader may wonder why the audience of a tweet is not all Twitter users
when the profile of the tweet’s owner is public. The reason is because we want
to model the exact behaviour of the SNS. In Twitter when a user (with a public
profile) tweets a message, this message is shown in her followers’ timeline. Ad-
ditionally, since the profile is public, any other user (who is not following her)
can check all her tweets. This is modelled with the event accessProf . The rule
modelling the event’s behaviour consists of 2 cases, which distinguish if the user
has a public or a private profile. If the profile is public any user which executes
the events will get access to all the tweets. For the formal definition of this rule
see Appendix A.3.

4. Proving Privacy in Social Networks

The dynamic part of FPPF raises new questions about the privacy of the
SNS. The execution of an event can lead to a state of the social network in which
some privacy policies are violated. As a designer, one may want to be sure that all
the events implemented in the SNS preserve the set of privacy policies that users
have defined. In this section, we define the notion of privacy-preserving SNS,
which, in short, expresses that all privacy policies must be in conformance with
the SNS at any point in the execution. This concept allows us to formally analyse
the privacy of SNSs modelled in FPPF . As an example, we describe how to
carry out a privacy analysis of Twitter and Facebook.

4.1. Does an SNS preserve privacy?
In SNSs privacy policies can be violated because of the execution of many

events. Therefore, in order to make sure that all privacy policies will be preserved
in the SNS, we have to ensure that none of the events can violate any of the privacy
policies. Since in FPPFD we model the evolution of the SNS, we can formally
prove whether the execution of the events defined in an SNS will preserve a set of
privacy policies. We formalise this privacy condition as follows.

33



Definition 16. An SNS S is privacy-preserving iff given a dynamic instantiation
FPPFDS of S, for any SN , SN ′ ∈ SNS , e ∈ EV TS and π′ ∈ ΠS the following
holds:

If SN �C π′ and SN
e−→ SN ′ then SN ′ �C π′

In the following sections we show whether this property holds for different
sets of privacy policies in Twitter and Facebook.

4.2. Privacy in Twitter
Using the dynamic instantiation of Twitter that we defined in the previous sec-

tion, FPPFDTwitter, we show that the described events in EV TTwitter and the pro-
posed specification using the operational semantics rules are privacy-preserving
(as defined in Definition 16) with respect to the set of privacy policies of Twitter.

Theorem 1. Twitter is privacy-preserving.

Proof sketch: We check that the execution of none of the events in EV TTwitter can
violate any of the privacy policies in ΠTwitter by considering all possible combina-
tions of events and privacy policies (i.e. ensuring that Definition 16 holds). Here
we only show the case when tweet (see Table 4) is executed and the privacy pol-
icy P1(u) = J¬SAg\followers(u)\{u} tweet(u, η)Ku is activated. We follow the same
strategy for the remaining cases (see Appendix B.1 for the full detailed proof).
1. Given
1.1. u ∈ Ag (owner of the privacy policy P1(u))
1.2. Predicates to be disclosed TweetInfo ⊆ 2P where tweet(u, η) ∈ TweetInfo
1.3. e = tweet(u,TweetInfo)
1.4. We want to prove:

If SN �C P1(u) and SN
e−→ SN ′ then SN ′ �C P1(u)

2. By contradiction, let us assume
2.1. SN �C P1(u) and SN

e−→ SN ′

2.2. SN ′ 6�C P1(u)

3. By 2.2.
3.1. SN ′ 6�C P1(u) [Definition �C]
3.2. SN ′ � ¬¬SAg\followers(u)\{u}tweet(u, η) [¬¬e]

34



3.3. SN ′ � SAg\followers(u)\{u}tweet(u, η)

4. By 3.3. and the definition of � we have
4.1. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN ′ � Kitweet(u, η)

5. By Definition of tweet , we have that
5.1. ∀p( #»

t ) ∈ TweetInfo SN ′ � Cfollowers(u)∪{u}p(
#»
t ) [By 1.2.]

5.2. SN ′ � Cfollowers(u)∪{u}tweet(u, η) [By �]
5.3. SN ′ � E0

followers(u)∪{u}tweet(u, η)∧
E1

followers(u)∪{u}tweet(u, η)∧
E2

followers(u)∪{u}tweet(u, η)∧
E3

followers(u)∪{u}tweet(u, η) ∧ . . . [By �]
5.4. SN ′ � E1

followers(u)∪{u}tweet(u, η) [By �]
5.5. ∀j ∈ followers(u) ∪ {u} SN ′ � Kjtweet(u, η)

6. By 2.1. we have
6.1. SN �C P1(u) [By �C]
6.2. SN � ¬SAg\followers(u)\{u}tweet(u, η) [By Definition SG]
6.3. SN � ¬(

∨
i∈Ag\followers(u)\{u}Kitweet(u, η)) [Morgan]

6.4. SN �
∧
i∈Ag\followers(u)\{u} ¬Kitweet(u, η)

7. By 6.4. and 5.5. we have
7.1. SN ′ �C P1(u)

8. By 2.2. and 7.1. we derive a contradiction.

The proof of Theorem 1 is carried out over the instantiation we constructed
from the observable behaviour of Twitter. Having access to the source code would
make it possible to define a more accurate instantiation of Twitter. Nevertheless it
formally guarantees that an implementation which precisely behaves as described
by the operational semantics rules will preserve all privacy policies defined for
Twitter.

As we mentioned in Section 1, developers add new functionalities every day.
Sometimes new privacy policies are added as well. Making sure that all privacy
policies are effectively enforced in such a dynamic environment is a very difficult
task.

35



Suppose Twitter developers decide to offer the following new privacy policy
to their users:“It is not permitted that I am mentioned in a tweet which contains a
location”. This privacy policy can be expressed in PPL as follows:

P6(u) = ∀i.∀o.∀η.J¬(Kilocation(o, η) ∧Kimention(u, o, η))Ku.

Here we use FPPFDTwitter to formally show that this privacy policy would not be
enforced under the current operational semantics.

Lemma 1. Twitter is not privacy-preserving if P6(u) ∈ ACTwitter where u ∈
AgTwitter.

Proof Sketch: Assume a user u ∈ Ag who has never been mentioned and has one
instance of P6(u) in her set of policies, and another user o ∈ Ag who executes
the event

e = tweet(o, {tweet(o, η),mention(u, o, η), location(o, η)}).

Let us assume that SN
e−→ SN ′. From the assumptions we know that SN �C

P6(u), but according to the operational semantics of tweet , all users in the au-
dience of the tweet will learn mention(u, o, η) and location(o, η) and therefore
SN ′ 6�C P6(u). See Appendix B.2 for the detailed proof.

Lemma 1 is an expected result. Twitter was not developed with P6 in mind.
Yet the proof directly points to the event violating it. It also provides useful infor-
mation of how the behaviour of Twitter should be modified to support P6.

4.3. What about Facebook?
Together with Twitter, Facebook is one of the giants of social media. Facebook

connects millions of users who share information through events similar to the
ones presented for Twitter. In this section, we use Facebook as target SNS to
show yet another example of how FPPF can be used to analyse the privacy
implications of adding new privacy policies.

In Facebook, when someone tags a user in a picture only the owner of the
picture is required to confirm the tag. No confirmation from the tagged user is
required. The only control the tagged user has over the tag is to hide the picture
from her timeline or remove it after the tagging has been carried out. We model
this behaviour in a reduced instantiation of Facebook, denoted as FPPFFB-Tag,
which exclusively contains the required elements to model the tagging process.

Given o, tge, tgr ∈ AgFB-Tag and η ∈ N, the set of predicates, PFB-Tag, is com-
posed by:

36



• picture(o, η) - Picture η published by user o.

• tagRequest(tgr , tge, o, η) - Tag request from the tagger (tgr ) of the tagged
user, taggee (tge), in picture picture(o, η).

• tag(tge, tgr , o, η) - Tag created by the tagger (tgr ) of the tagged user, taggee
(tge), in picture picture(o, η).

The connections set only contains the friendship relationship, i.e. CFB-Tag =
{CFriendship}. The action removeTag tag(tge,tgr ,accepter ,η) is the only one included in
the set ΣFB-Tag. This action defines which users have permission to remove the tag
tag(tge, tgr , accepter , η). Regarding the auxiliary functions we only include:

• audience : PFB-Tag → 2AgFB-Tag - As in Twitter, the audience function re-
turns the audience of some piece of information. Given p( #»

t ) ∈ PFB-Tag,
audience(p(

#»
t )) = { i | SN � Kip(

#»
t )}.

• friends : AgFB-Tag → 2AgFB-Tag - This function returns all the friends of a
given user. Given u ∈ AgFB-Tag, friends(u) = {i|(u, i) ∈ CFriendship}.

The previous elements constitute the static part of our (reduced) instantia-
tion of Facebook, FPPFFB-Tag. In order to model the behaviour of the tagging
event, we extend FPPFFB-Tag with the operational semantics rules for the events
{tag , acceptTagRequest} ⊆ EV TFB-Tag as specified in Table 5, which defines
FPPFDFB-Tag. The intuition behind the operational semantics rules is as follows.

The event tag(tgr , tge, picture(o, η)) represents what happens when a (tag-
ger), tgr , tags another user (taggee), tge, in a picture picture(o, η). The tagger
tgr must have access to the picture. We represent this by imposing the condition
picture(o, η) ∈ KB(tgr) in FR1.1. If the condition is satisfied, a tag request,
informing that tgr wants to tag tge in picture(o, η), is sent to the owner of the
picture and it becomes common knowledge for both of them, so ∀i ∈ {o, tgr} we
have that

KB ′(i) = KB(i) ∪ {C{o,tgr}tagRequest(tgr , tge, o, η)}

Note that the approval from the tagged user is not required.
The event acceptTagRequest(acptr tge, tgr , picture(o, η)) describes the re-

sult of accepting a tag request. The tag request must have been sent beforehand.
The owner of the picture is the only user able to accept the tag, i.e., acptr == o,

37



Tag - FR1

picture(o, η) ∈ KB(tgr)
KB ′(o) = KB(o) ∪ {C{o,tgr}tagRequest(tgr , tge, o, η)}

KB ′(tgr) = KB(tgr) ∪ {C{o,tgr}tagRequest(tgr , tge, o, η)}

SN
tag(tgr ,tge,picture(o,η))−−−−−−−−−−−−−→ SN ′

(FR1.1)

Accept tag request - FR2

Au = audience(picture(o, η)) ∪ friends(tge) a = removeTag tag(tge,tgr ,o,η)

acptr == o tagRequest(tge, tgr , o, η) ∈ KB(acptr)
A′a = Aa ∪ {(o, o), (o, tge)}

∀i ∈ Au KB ′(i) = KB(i) ∪ {CAutag(tge, tgr , o, η)}

SN
acceptTagRequest(acptr ,tge,tgr ,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

(FR2.1)

Table 5: Tagging - Operational Semantics of Facebook

therefore it is required to check that the user accepting the tag has access to the
tag request,

tagRequest(tge, tgr , o, η) ∈ KB(acptr).

The owner of the picture and the taggee will be permitted to remove the tag, which
is specified as follows, given a = removeTag tag(tge,tgr ,o,η)

A′a = Aa ∪ {(o, o), (o, tge)}.

Also the tag is disclosed to the users part of the audience of the picture, thus
becoming common knowledge among them. ∀i ∈ audience(picture(o, η))

KB ′(i) = KB(i) ∪ {CAutag(tge, tgr , o, η)}.

Suppose now that Facebook developers decide to offer to their users a better
control over their tags by adding the following privacy policy:

“I can only be tagged in a picture if I have approved it”.

38



We denote this privacy policy as FP1(u) where u ∈ AgFB-Tag and it is expressed
in PPL as follows:

∀o.∀t.∀η.J¬KutagRequest(t, u, o, η) =⇒ ¬SAg tag(u, t, o, η)Ku

meaning that for all pictures posted by a user o (picture(o, η) where η ∈ N), if
the user u (the one who is going to be tagged) did not receive the tag request, then
the tagging will not be carried out. By forcing u to be the one receiving the tag
request, we ensure that it is u the one approving the tag.

As in Twitter, the following holds:

Lemma 2. Facebook is not privacy-preserving if FP1(u) ∈ ACFB-Tag where u ∈
AgFB-Tag.

Proof sketch: Let tge ∈ Ag be a user who has never been tagged and let tgr ∈ Ag
be a user who has executed the event tag(tgr , tge, o, η) in order to tag tge in
picture(o, η) where o ∈ Ag and η ∈ N. The owner of picture(o, η) is o. As-
sume a social network model, SN , where it holds that tagRequest(tge, tgr , o, η) ∈
KB(o). In order for FPPFDFB-Tag to preserve privacy it must hold that if SN �C

FP1(tge) and SN
acceptTagRequest(o,tge,tgr ,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−→ SN ′, then SN ′ �C FP1(tge)

where SN , SN ′ ∈ SNFB-Tag.
Since tge was not tagged before the execution of FR2 we know that SN �C

FP1(tge). Also since tagRequest(tge, tgr , o, η) ∈ KB(o) and acptr == o
we know that FR2 can be executed. By the definition of FR2, we know that
SN ′ � EAutag(tge, o, o, η), hence SN ′ 6�C FP1(tge), which contradicts our claim
SN ′ �C FP1(tge) and therefore FPPFDFB-Tag is not privacy-preserving. See Ap-
pendix B.3 for the detailed proof.

In short, the proof shows that the policy is not enforced because the owner of
the picture can accept tags (FR2.1) of any user without their approval in any of her
pictures. In this instantiation, since there are only two operational semantics rules,
it is easy to discuss a possible modification in the rules so that FP1 is supported.

First of all, FR2.1 must guarantee that the taggee is accepting the tag if the
policy is activated. In order to preserve this condition, we would need to replace
acptr == o with acptr == tge, which forces the taggee to be the one accepting
the tag. Finally, FR1.1 must be slightly modified, since now the tag request will
be sent to the taggee instead of the owner of the picture. Therefore,

KB ′(o) = KB(o) ∪ {C{o,tgr}tagRequest(tgr , tge, o, η)}

39



Tag - FR1

FP1 (tge) 6∈ πge

KB ′(o) = KB(o) ∪ {C{o,tgr}tagRequest(tgr , tge, o, η)}
KB ′(tgr) = KB(tgr) ∪ {C{o,tgr}tagRequest(tgr , tge, o, η)}

SN
tag(tgr ,tge,picture(o,η))−−−−−−−−−−−−−→ SN ′

(FR1.1)

FP1 (tge) ∈ πtgepicture(o, η) ∈ KB(tgr)
KB ′(tge) = KB(tge) ∪ {C{tge,tgr}tagRequest(tgr , tge, o, η)}

KB ′(tgr) = KB(tgr) ∪ {C{tge,tgr}tagRequest(tgr , tge, o, η)}

SN
tag(tgr ,tge,picture(o,η))−−−−−−−−−−−−−→ SN ′

(FR1.2)

Accept tag request - FR2

Au = audience(picture(o, η)) ∪ friends(tge)
FP1 (tge) 6∈ πtge a = removeTag tag(tge,tgr,o,η) acptr == o

tagRequest(tge, tgr, o, η) ∈ KB(acptr) A′a = Aa ∪ {(o, o), (o, tge)}
∀i ∈ Au KB ′(i) = KB(i) ∪ {CAutag(tge, tgr, o, η)}

SN
acceptTagRequest(acptr ,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

(FR2.1)

Au = audience(picture(o, η)) ∪ friends(tge)
FP1 (tge) ∈ πtge a = removeTag tag(tge,tgr ,o,η) acptr == tge
tagRequest(tge, tgr , o, η) ∈ KB(acptr) A′a = Aa ∪ {(o, o), (o, tge)}

∀i ∈ Au KB ′(i) = KB(i) ∪ {CAutag(tge, tgr , o, η)}

SN
acceptTagRequest(acptr ,tge,tgr ,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

(FR2.2)

Table 6: New Tagging rules supporting FP1

is replaced with

KB ′(tge) = KB(tge) ∪ {C{tge,tgr}tagRequest(tgr , tge, o, η)}.

The resulting operational semantics rules are presented in table 6.
Finally, including the new two rules in FPPFDFB-Tag and assuming that the

only privacy policy in the instantiation is FP1, the following lemma holds:

40



Lemma 3. Facebook is privacy-preserving.

Proof sketch: We consider all possible rules that can be executed and show that
none of them will violate FP1, which is the only policy available in the instantia-
tion FPPFDFB-Tag. The only rule that can violate FP1 is FR2 (specifically the case
FR2.2). Due to the similarity to the proof for Theorem 1 we omit the details here,
but we follow the same strategy, i.e. we show by contradiction that FP1 cannot be
violated. We refer the reader to Appendix B.4 for the complete proof.

5. Discussion and Related Work

In this section we describe applications of epistemic logic in security and other
approaches to modelling SNSs. We also discuss the formalism developed by Fong
et al. which describes the access control mechanisms present in most SNSs nowa-
days. Finally, we discuss the relation between FPPF and epistemic logic.

5.1. Epistemic Logic and SNSs
In the past, epistemic logic has been widely used for analysing security and

privacy properties in multi-agent systems (MAS). Traditionally the evolution of
knowledge in epistemic logic is modelled by means of runs and events, in the
“run-and-systems” framework, known as Interpreted Systems [9].

Halpern et al. [11] use Interpreted Systems to formalise the notion of secrecy
in MAS. They redefine the possibilistic and probabilistic security properties in
epistemic logic, in the form of a modal operator which allows them to reason
about knowledge, nondeterminism and probability together. Interpreted Systems
also appear in [17], where Balliu presents a knowledge-based account to spec-
ify information flow conditions in a distributed setting. The main advantage of
this approach is that it is able to express complex policies based on epistemic
logic. One of the main drawbacks of Interpreted Systems is the high complexity
of the model-checking. Nevertheless it has been studied how to implement effi-
cient model-checkers which make it possible to verify properties of real systems.
For instance, MCK [18] and MCMAS [19] are state of the art model checkers for
temporal-epistemic logics based on Interpreted systems. They have successfully
been used to verify security properties for several cryptographic protocols. We are
not aware of any specific use for verifying privacy policies.

Interpreted systems allow to represent the knowledge at different points in
time. There is no formal definition of the events that can be executed in order to
specify how knowledge evolves. Instead they require a description of the protocol

41



which models the evolution of knowledge. Dynamic Epistemic Logic (DEL) pro-
vides a basis for operations on knowledge evolution in epistemic logic [16, 20].
DEL encodes informational events by defining update operations over the classi-
cal Kripke models in epistemic logic. The most important feature with respect to
the work carried out for this paper is the public announcement, which consists in
the action of disclosing a piece of information to a set of agents.

It has recently been studied how to model the propagation of knowledge over
the agents of an SNS by using DEL. In [21] Seligman et al. define dynamic epis-
temic friendship logic (DEFL), which on one hand, extends the classical Kripke
model for epistemic logic with the information about the friendship relationships,
and on the other hand, uses DEL to encode public and private announcements
in the SNS. A private announcement is a disclosure of information between two
agents, in which only the two involved agents are aware of the fact that the an-
nouncement occurred. In [22], DEL has been used to study, by means of a formal
technique, the effect “Revolt or Stay-at-Home” in SNSs. This effect represents
how the fact of knowing how many people (or agents) are going to revolt could
influence our own decision to revolt or stay at home.

DEL turns out to be not well-suited to our setting. Firstly, because it is based
in the classical Kripke semantics for epistemic logic [9]. As we describe in Sec-
tion 5.3, there are properties of knowledge that need to be further studied before
we can encode SNMs in Kripke structures. Secondly, DEL is only used for mod-
elling the evolution of knowledge, in our framework apart from epistemic rules,
we allow for topological, policy and hybrid rules. Finally, and most importantly,
the events defined in DEL are not equipped with conditions, i.e. the execution of
events does not depend on the knowledge of the agents. By contrast, the execu-
tion of events in SNSs depends not only on the agents’ knowledge, but also other
network-dependent factors. As described in Section 3.3, we use the premises of
the rules when stating the conditions for each event.

5.2. Relationship-based Access Control
Currently SNS users share their resources by using the so called Relationship-

Based Access Control (ReBAC). This paradigm gives access to user resources de-
pending on her relationships with the owner of the resource. Fong et al. introduce
a formalism that aims at providing a better understating of ReBAC [23, 24]. They
develop a general formalism which can be instantiated, first in mono-relational so-
cial networks, e.g. Facebook-like networks where the relationship between agents
is friendship, and later in a more general setting, with poly-relational social net-
works where the type of the relationship is also taken into account (e.g. patient-

42



physician, parent-child). In addition, they introduce the notion of access contexts,
defined as a hierarchy of contexts to enable an inheritance mechanism of relation-
ships. Hence the access to the resources also offers the possibility of articulating
relationships between users depending on the access context. The audience of the
resources is defined by means of ReBAC policies. In [25] Bruns et al. provide a
language based on a hybrid logic which extends Fong’s work and supports inter-
esting policy idioms.

By contrast to our work, the ReBAC paradigm is not able to detect appropri-
ately implicit disclosure of information. For example, if a user posts the location
of another user, the latter has no control over the audience of her location. There-
fore, the owner of the post defines the audience of another user’s location. In our
framework, the structure of the predicates can encode the actual owner of a re-
source independently of the user disclosing the information. Due to that, a user
can later define a privacy policy which would protect a particular piece of her
information, independently of who was the user disclosing that information. We
claim that FPPF is not only as expressive as ReBAC but also it is able to detect
implicit leaks of information as the one mentioned above. A formal comparison
between the expressiveness of both frameworks is left as future work. The main
advantage of ReBAC is its efficiency to enforce privacy policies, since it only re-
quires to check whether the user who is trying to access some information is part
of the audience. In our framework, we do not have performance results yet, hence
we postpone the comparison to future work.

5.3. FPPF vs Epistemic Logic
The main difference between the semantics of FPPF and First-Order Epis-

temic Logic (FOEL) is the way knowledge is interpreted. SNMs “store” in each
node a set of FKBL formulae that represent what an agent knows, namely the
knowledge base of the agent. On the contrary, in relational Kripke structures, the
uncertainty of the agents is modelled by means of a binary relation (K) among
states in the Kripke structure [9, 15]. The binary relation represents all the states
that an agent considers possible. If a formula is true in all those states, then the
agent knows that formula.

Nevertheless, this does not mean that the two models are complementary.
In [9] Fagin et al. show how to construct knowledge bases for systems consisting
of several agents by using knowledge-based programming. They define the state
of an agent as a tuple containing all formulae the agent knows at a particular point
in time. In addition to this information, the SNMs contain additional information
regarding permissions and connections between users. As a matter of fact, we

43



have shown that given a formula ϕ which characterises the knowledge, permis-
sion and connections of all agents in the SNM, a relational Kripke structure can
be constructed containing the same information. Concretely, the canonical Kripke
structure [9] resulting from ϕ can be built [14].

6. Conclusions and Future Work

In this paper we have presented a formal privacy policy framework which cap-
tures the dynamic behaviour of SNSs. The framework allows us to reason about
privacy policies in dynamic social networks by means of a labelled transition sys-
tem. The framework was enhanced with a set of operational semantics rules,
which we instantiated for Twitter and for the tagging event in Facebook. We have
shown how a designer can use our framework to model dynamic features of SNSs.
Finally, we have introduced the notion of privacy-preserving SNS. As a proof-of-
concept, we have formally proved that Twitter preserves privacy (according to our
notion of privacy-preserving SNS). In addition, we have proved that adding new
(and desirable) privacy policies to Twitter and Facebook makes their behaviour
not privacy-preserving. We have also shown that the proofs provide useful infor-
mation about which events are violating the privacy policies. In particular, we
have shown how to update the Facebook instantiation to support new policies by
analysing the information from the earlier proof where we showed that Facebook
does not preserve the new privacy policy. In what follows we discuss some possi-
ble directions of future work.

Enforcement
There are two possible ways to make sure that an SNS is preserving-privacy

using FPPF . Firstly, designers can write a dynamic instantiation of the SNS
that they want to implement. Then, they can formally prove that the operational
semantics rules that were defined in that instantiation are privacy-preserving. This
is similar to what we have shown for Twitter and Facebook. If the SNS designer
proves that the SNS is privacy-preserving, then no verification at runtime is re-
quired, avoiding any additional overhead.

On the other hand, we would like to provide a runtime enforcement mecha-
nism for SNSs under consideration. The main advantage of this approach is that
it is partially independent of the implementation of the SNS. It only tracks the
require information so that it can ensure that no privacy policy is violated. We
are currently studying how to extract a monitor from the specification of the pri-
vacy policies, which would run in parallel with the SNS. The monitor checks that

44



the privacy policies of the users are not violated as they execute events. To avoid
the bottleneck of a centralised algorithm, we are considering a distributed imple-
mentation. We are already implementing FPPF in an open source SNS called
Diaspora* [26, 27] to show the practicality of our approach.

Privacy Policies and Time
Privacy policies inFPPF cannot express real time properties. For example, a

user may want to write a policies like “My boss cannot know my location between
20:00-23:00” or “The audience of the post on my timeline during my birthday is
only my friends”. Adding a temporal component to our framework is a natural
extension. Specific parts of the framework will become sensitive to the particular
time at which the events happen. This needs to record when particular pieces of
information are learnt, i.e., if Bob learnt Alice’s location last week and today he
learns it again, then then one should be able to tell apart these two locations.

In order to have a fine-grained control over time, we also need to differen-
tiate between the timestamp of the information and when it was learnt. Imag-
ine that Bob learns on Tuesday Alice’s location from last Saturday. The predi-
cate representing Alice’s location has timestamp Saturday, but Bob learnt it on
Tuesday. To make this distinction explicit, we can add timestamps to predi-
cates and modalities. For example, the previous statement can be formalised as
KTuesday

Bob location(Alice, Saturday). Additionally, we plan to include quantifica-
tion over timestamps so that it is possible to specify intervals of time when privacy
policies must be enforced.

Acknowledgements

This research was supported by the Swedish funding agency SSF under the
grant DataBIn: Data Driven Secure Business Intelligence. We would like to thank
Deepak Garg for his comments on earlier versions of this paper.

References

[1] A. Lenhart, K. Purcell, A. Smith, K. Zickuhr, Social media & mobile internet
use among teens and young adults. millennials., Pew internet & American
life project.

[2] L. Bauer, L. F. Cranor, S. Komanduri, M. L. Mazurek, M. K. Reiter,
M. Sleeper, B. Ur, The post anachronism: the temporal dimension of Face-
book privacy, in: WPES’13, ACM, 2013, pp. 1–12.

45



[3] M. Madejski, M. Johnson, S. Bellovin, A study of privacy settings errors
in an online social network, in: PERCOM Workshops’12, IEEE, 2012, pp.
340–345.

[4] M. Johnson, S. Egelman, S. M. Bellovin, Facebook and privacy: It’s com-
plicated, in: SOUPS ’12, ACM, New York, NY, USA, 2012, pp. 9:1–9:15.

[5] Y. Liu, K. P. Gummadi, B. Krishnamurthy, A. Mislove, Analyzing Facebook
privacy settings: User expectations vs. reality, in: IMC ’11, ACM, 2011, pp.
61–70.

[6] M. Madejski, M. L. Johnson, S. M. Bellovin, The failure of online social
network privacy settings, Tech. Rep. CUCS-010-11, Columbia University
Computer Science Technical Reports (2011).

[7] B. Boyd, N. B. Ellison, Social network sites: Definition, history, and schol-
arship, Journal of Computer-Mediated Communication 13 (2008) 210–230.

[8] N. B. Ellison, J. Vitak, C. Steinfield, R. Gray, C. Lampe, Privacy Online,
Springer, 2011, Ch. 3: Negotiating Privacy Concerns and Social Capital
Needs in a Social Media Environment, pp. 19–32.

[9] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about knowledge,
Vol. 4, MIT press Cambridge, 2003.

[10] R. Pucella, Knowledge and security, arXiv preprint arXiv:1305.0876.

[11] J. Y. Halpern, K. R. O’Neill, Secrecy in multiagent systems, ACM Transac-
tions on Information and System Security (TISSEC) 12 (1) (2008) 5.

[12] R. Pardo, G. Schneider, A formal privacy policy framework for social net-
works, in: SEFM’14, Vol. 8702 of LNCS, Springer, 2014, pp. 378–392.

[13] K. Erciyes, Complex Networks: An Algorithmic Perspective, 1st Edition,
CRC Press, Inc., Boca Raton, FL, USA, 2014.

[14] R. Pardo, G. Schneider, Model checking social network mod-
els, Tech. rep., Chalmers University of Technology, URL:
http://www.cse.chalmers.se/ pardo/papers/relation-ppf-kripke.pdf (2016).

[15] J.-J. C. Meyer, W. V. D. Hoek, Epistemic Logic for AI and Computer Sci-
ence, Cambridge University Press, New York, NY, USA, 1995.

46



[16] J. van Benthem, J. van Eijck, B. Kooi, Logics of communication and change,
Information and computation 204 (11) (2006) 1620–1662.

[17] M. Balliu, A logic for information flow analysis of distributed programs, in:
Secure IT Systems, Springer, 2013, pp. 84–99.

[18] P. Gammie, R. van der Meyden, Mck: Model checking the logic of knowl-
edge, in: CAV’04, Vol. 3114 of LNCS, Springer Berlin Heidelberg, 2004,
pp. 479–483.

[19] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: A model checker for the veri-
fication of multi-agent systems, in: CAV’09, Vol. 5643 of LNCS, Springer,
2009, pp. 682–688.

[20] J. Plaza, Logics of public communications, Synthese 158 (2) (2007) 165–
179.

[21] J. Seligman, F. Liu, P. Girard, Facebook and the epistemic logic of friend-
ship, arXiv preprint arXiv:1310.6440 (2013) 229–238.

[22] J. Ruan, M. Thielscher, A logic for knowledge flow in social networks, in:
AI 2011: Advances in Artificial Intelligence, Springer, 2011, pp. 511–520.

[23] P. W. Fong, M. Anwar, Z. Zhao, A privacy preservation model for Facebook-
style social network systems, in: ESORICS’09, Vol. 5789 of LNCS,
Springer, 2009, pp. 303–320.

[24] P. W. Fong, Relationship-based access control: Protection model and policy
language, in: CODASPY’11, ACM, 2011, pp. 191–202.

[25] G. Bruns, P. W. Fong, I. Siahaan, M. Huth, Relationship-based access
control: its expression and enforcement through hybrid logic, in: CO-
DASPY’12, ACM, 2012, pp. 117–124.

[26] Diaspora*, https://diasporafoundation.org/, accessed: 2016.

[27] PPF Diaspora*., Test pod: https://ppf-diaspora.raulpardo.org. Code:
https://github.com/ raulpardo/ppf-diaspora, accessed: 2016.

47



Appendix A. Dynamic Instantiation of Twitter

In this appendix we provide a full dynamic instantiation for Twitter. We first
provide the the set of events EV TTwitter. Finally, we define the complete set of
operational semantics rules for all of the events.

Appendix A.1. Set of events of Twitter
We define the set EV TTwitter which contains all the events involved in the pri-

vacy analysis of Twitter.
EV TTwitter consists of the following elements:

• tweet - It is one the core events of Twitter. It is used to post some piece
information.

• retweet - It is used to share an already tweeted tweet.

• favourite - It allows users to classify tweets as favourite.

• accessProf - It represents the action of accessing a user’s profile.

• createProf - It is the first event a user executes for joining Twitter. The
user is required to provide a set of basic information which determines her
profile.

• follow - Users can connect with other users by means of the Follower rela-
tionship.

• acceptFollowReq - When a user’s profile is not public the follow event en-
ables a request to the user. In order for the connection to be established the
request must be accepted. This event represents the action of accepting the
request.

• block , unblock - In Twitter a user can block other users. Not allowing to
follow her, and can revert this decision.

• showReco - Twitter shows a selection of recommended-to-follow user rec-
ommendations to other users, when the email or the phone number of the
recommended user is known by the one to whom the recommendation is
shown.

• showAdv - This event models the action of a company sending an adver-
tisement to a concrete user.

48



• allowAdv , disallowAdv - A user can (dis)allow a company from sending
advertisement. These events model the activation and deactivation of this
permission.

• changeStPriv , changeStPub - These events model the switching between
’Private’ or ’Public’ accounts.

• inclLoc, notInclLoc - These events represent whether the location is in-
cluded or not in the tweet, respectively.

In what follows we provide the operational semantics rules for each of the
events in EV TTwitter.

Appendix A.2. Operational Semantics Rules of Twitter
Here we introduce all the operational semantics rules for the instantiation

FPPFDTwitter. As usual, we divide them in Epistemic, Topological, Policy and
Hybrid. Note that we only write the elements of A involved in the rule and we
write “ ” to denote the rest of the elements (see Definition 2).

49



Appendix A.3. Epistemic
R1 - Tweet

Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}
state(tu) == ’Public’ inclocation(u) == true

∀p( #»
t ) ∈ TweetInfo ∀i ∈ Au KB ′(i) = KB(i) ∪ {CAup(

#»
t )}

〈 , ,KB , 〉 tweet(tu,TweetInfo)−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R1.1.1)

Au = followers(tu) ∪ {u} state(tu) == ’Private’
inclocation(u) == false location(tu, η) 6∈ TweetInfo

∀p( #»
t ) ∈ TweetInfo ∀i ∈ Au KB ′(i) = KB(i) ∪ {CAup(

#»
t )}

〈 , ,KB , 〉 tweet(tu,TweetInfo)−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R1.2.2)

Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}
state(tu) == ’Public’

inclocation(u) == false location(tu, η) 6∈ TweetInfo

∀p( #»
t ) ∈ TweetInfo ∀i ∈ Au KB ′(i) = KB(i) ∪ {CAup(

#»
t )}

〈 , ,KB , 〉 tweet(tu,TweetInfo)−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R1.1.2)

Au = followers(tu) ∪ {u}
state(tu) == ’Private’ inclocation(u) == true

∀p( #»
t ) ∈ TweetInfo ∀i ∈ Au KB ′(i) = KB(i) ∪ {CAup(

#»
t )}

〈 , ,KB , 〉 tweet(tu,TweetInfo)−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R1.2.1)

R2 - Retweet

F = getTweetInfo(tu, η)
state(tu) == ’Public’ state(rtu) == ’Public’

TweetInfoAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}
RetweetAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}

tweet(tu, η) ∈ KB(rtu)

∀p( #»
t ) ∈ F ∀i ∈ TweetInfoAu KB ′(i) = KB(i) ∪ {CAup(

#»
t )}

∀i ∈ RetweetAu KB ′(i) = KB(i) ∪ {CRetweetAuretweet(rtw, tu, η)}

〈 , ,KB , 〉 retweet(rtu,tweet(tu,η))−−−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R2.1)

50



F = getTweetInfo(tu, η)
state(tu) == ’Public’ state(rtu) == ’Private’

TweetInfoAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}
RetweetAu = followers(rtu) ∪ {rtu} tweet(tu, η) ∈ KB(rtu)

∀p( #»
t ) ∈ F ∀i ∈ TweetInfoAu KB ′(i) = KB(i) ∪ {CAup(

#»
t )}

∀i ∈ RetweetAu KB ′(i) = KB(i) ∪ {CRetweetAuretweet(rtw, tu, η)}

〈 , ,KB , 〉 retweet(rtu,tweet(tu,η))−−−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R2.2)

R3 - Favourite

tweet(tu, η) ∈ KB(fu)
∀i ∈ {fu, tu} KB ′(i) = KB(i) ∪ {favourite(fu, tu, η)}

〈 , ,KB , 〉 favourite(fu,tweet(tu,η))−−−−−−−−−−−−−−→ 〈 , ,KB ′, 〉
(R3)

R4 - Access profile

F = info(acd) [(acr, acd) ∈ AaccessProf ∨ (acr, acd) ∈ AaccessProfRec]

state(acd) = ’Public’ ∀p( #»
t ) ∈ F KB ′(acr) = KB(acr) ∪ {p( #»

t )}

〈 , {{Ai}i∈Σ, },KB , 〉 accessProf (acr,acd)−−−−−−−−−−−→ 〈 , {{Ai}i∈Σ, },KB ′, 〉
(R4.1)

F = info(acd) [(acr, acd) ∈ AaccessProf ∨ (acr, acd) ∈ AaccessProfRec]
state(acd) = ’Private’

(acd, acr) ∈ CFollower ∀p( #»
t ) ∈ F KB ′(acr) = KB(acr) ∪ {p( #»

t )}

〈 , {{Ai}i∈Σ, {{Ci}i∈C, },KB , 〉 accessProf(acr,acd)−−−−−−−−−−−→ 〈 , {{Ai}i∈Σ, {Ci}i∈C, }KB ′, 〉
(R4.2)

R10 - Show recommendation

beingReco(recommended) == false
email(recommended) ∈ KB(viewer)

A′accessProfRec = AaccessProfRec ∪ {(viewer , recommended)}

〈 , {{Ai}i∈Σ, },KB , 〉 showReco(recommended ,viewer)−−−−−−−−−−−−−−−−−−→ 〈 , {{A′i}i∈Σ, },KB , 〉
(R10.1)

beingReco(recommended) == true
A′accessProfRec = AaccessProfRec ∪ {(viewer , recommended)}

〈 , {{Ai}i∈Σ, }, , 〉
showReco(recommended ,viewer)−−−−−−−−−−−−−−−−−−→ 〈 , {{A′i}i∈Σ, }, , 〉

(R10.2)

51



R11 - Show advertisment

(advertiser , user) ∈ AsendAd

KB ′(user) = KB(user) ∪ {advertise(advertiser , η)}

〈 , {{Ai}i∈Σ, },KB , 〉 showAdv(advertiser ,user)−−−−−−−−−−−−−−→ 〈 , {{Ai}i∈Σ, },KB ′, 〉
(R11)

Appendix A.4. Topological
R6 - Follow (R6.2 is a hybrid rule)

(followed , follower) 6∈ CBlock

state(followed) == ’Public’ (follower , followed) 6∈ CFollower

C ′Followers = CFollowers ∪ {(follower , followed)}

〈 , {{Ci}i∈C, }, , 〉
follow(follower ,followed)−−−−−−−−−−−−−−→ 〈 , {{C ′i}i∈C, }, , 〉

(R6.1)

R7 - Accept follow request

followRequest(accepted) ∈ KB((accepter)
C ′Followers = CFollowers ∪ {(follower , followed)}

〈 , {{Ci}i∈C, },KB , 〉 (acceptFollowReq((accepter ,(accepted)−−−−−−−−−−−−−−−−−−−−−→ 〈 , {{C ′i}i∈C, },KB , 〉
(R7)

R8 - Block

(blocker , blocked) 6∈ CFollower

(blocker , blocked) 6∈ CBlock C ′Block = CBlock ∪ {(blocker , blocked)}

〈 , {{Ci}i∈C, }, , 〉
block(blocker ,blocked)−−−−−−−−−−−−→ 〈 , {{C ′i}i∈C, }, , 〉

(R8.1)

(blocker , blocked) ∈ CFollower

(blocker , blocked) 6∈ CBlock C ′Block = CBlock ∪ {(blocker , blocked)}
C ′Followers = CFollowers \ {(blocker , blocked)}

〈 , {{Ci}i∈C, }, , 〉
block(blocker ,blocked)−−−−−−−−−−−−→ 〈 , {{C ′i}i∈C, }, , 〉

R8.2

R9 - Unblock

(unblocker , unblocked) ∈ RBlock

C ′Block = CBlock \ {(unblocker , unblocked)}

〈 , {{Ci}i∈C, }, , 〉
unblock(unblocker ,unblocked)−−−−−−−−−−−−−−−−→ 〈 , {{C ′i}i∈C, }, , 〉

(R9)

52



Appendix A.5. Policy
R14 - Change state to private

π′u = πu ∪ {P1(u), P2(u)}

〈 , , , π〉 changeStPriv(u)−−−−−−−−−→ 〈 , , , π′〉
(R14)

R15 - Change state to public

π′u = πu \ {P1(u), P2(u)}

〈 , , , π〉 changeStPub(u)−−−−−−−−−→ 〈 , , , π′〉
(R15)

R16 - Include location on Tweets

π′u = πu \ {P3(u)}

〈 , , , π〉 inclLoc(u)−−−−−→ 〈 , , , π′〉
(R16)

R17 - Not include location on Tweets

π′u = πu ∪ {P3(u)}

〈 , , , π〉 notInclLoc(u)−−−−−−−→ 〈 , , , π′〉
(R17)

Appendix A.6. Hybrid
R5 - Create profile

u 6∈ Ag Ag ′ = Ag ∪ {u}
KB ′i = InitialInfo ∀j ∈ Advertisers A′sendAd = AsendAd ∪ {(u, j)}

A′accessProf = AaccessProf ∪ {(u, u)}

〈Ag , {{Ai}i∈Σ, },KB , 〉 createProf (u,InitialInfo)−−−−−−−−−−−−−→ 〈Ag ′, {{A′i}i∈Σ, },KB ′, 〉
(R5)

R6 - Follow (R6.1 is a topological rule)

(followed , follower) 6∈ CBlock

state(followed) == ’Private’ (follower , followed) 6∈ CFollower

Request = {C{followed ,follower}followRequest(follower)}
∀i ∈ {followed , follower} KB ′(i) = KB(i) ∪ Request

〈 , {{Ci}i∈C, },KB , 〉 follow(follower ,followed)−−−−−−−−−−−−−−→ 〈 , {{Ci}i∈C, },KB ′, 〉
(R6.2)

53



R12 - Allow advertisment

∀i ∈ Advertisers A′sendAd = AsendAd ∪ {(i, u)}
π′u = πu ∪ {P5(u)}

〈 , {{Ai}i∈Σ, }, , π〉
allowAdv(Advertisers,u)−−−−−−−−−−−−−→ 〈 , {{A′i}i∈Σ, }, , π′〉

(R12)

R13 - Disallow advertisement

P5(u) ∈ π(u) ∀i ∈ Advertisers A′sendAd = AsendAd \ {(i, u)}
π′u = πu \ {P5(u)}

〈 , {{Ai}i∈Σ, }, , π〉
disallowAdv(Advertisers,u)−−−−−−−−−−−−−−−→ 〈 , {{A′i}i∈Σ, }, , π′〉

(R13)

54



Appendix B. Proofs

Appendix B.1. Theorem 1 - Twitter is privacy-preserving
The proof will be split in as many cases as rules we defined for FPPFDTwitter,

i.e. from R1 to R17, where we show that any rule will violate any privacy policy.
For each of the rules we will state which privacy policies could be violated. The
structure of each case of the proof is similar. We proof for all the policies that
could violate the event that if the privacy policy is in conformance with the SNM
before the execution of the event, then after the execution of the event, the privacy
policy is still preserved in the resulting SNM. We start by assuming that after the
executing of the event the policy is violated and later we show that it leads to a
contradiction. After proving it for all for rules and privacy policies we conclude
that Twitter is privacy-preserving. In the proof we use bold text to state the rule
and the possible privacy policies which it can violate, and underline text to split
the proof cases for each of those privacy policies.

Proof.

R1 – The execution ofR1 could only violate the policies P1 and P3

9. Executing R1 and P1 enabled

9.1. Given
9.1.1. u ∈ Ag (owner of the privacy policy P1(u))
9.1.2. Predicates to be disclosed TweetInfo ⊆ 2P where tweet(u, η) ∈ TweetInfo

9.1.3. e = tweet(u,TweetInfo)
9.1.4. We want to prove:

SN �C P1(u) and SN
e−→ SN ′ then SN ′ �C P1(u)

9.2. By contradiction, let us assume
9.2.1. SN �C P1(u) and SN

e−→ SN ′

9.2.2. SN ′ 6�C P1(u)

9.3. By 18.2.2.
9.3.1. SN ′ 6�C P1(u) [Definition �C]

55



9.3.2. SN ′, u � ¬¬SAg\followers(u)\{u}tweet(u, η) [¬¬e]
9.3.3. SN ′, u � SAg\followers(u)\{u}tweet(u, η)

9.4. By 18.3.5. and the definition of � we have
9.4.1. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN ′ � Kitweet(u, η)

9.5. By Definition of R1, we have that
9.5.1. ∀p( #»

t ) ∈ TweetInfo SN ′ � Cfollowers(u)∪{u}p(
#»
t ) [By 9.1.2.]

9.5.2. SN ′ � Cfollowers(u)∪{u}tweet(u, η) [By �]
9.5.3. SN ′ � E0

followers(u)∪{u}tweet(u, η)∧
E1
followers(u)∪{u}tweet(u, η)∧

E2
followers(u)∪{u}tweet(u, η)∧

E3
followers(u)∪{u}tweet(u, η) ∧ . . . [By �]

9.5.4. SN ′ � E1
followers(u)∪{u}tweet(u, η) [By �]

9.5.5. ∀j ∈ followers(u) ∪ {u} SN � Kjtweet(u, η)

9.6. By 18.2.1. we have
9.6.1. SN �C P1(u) [By �C]
9.6.2. SN � ¬SAg\followers(u)\{u}tweet(u, η) [By Definition SG]
9.6.3. SN � ¬(

∨
i∈Ag\followers(u)\{u}Kitweet(u, η)) [Morgan]

9.6.4. SN �
∧
i∈Ag\followers(u)\{u} ¬Kitweet(u, η)

9.7. By 9.6.4. and 18.5.4. we have
9.7.1. SN ′ �C P1(u)

9.8. By 18.2.2. and 9.7.1. we derive a contradiction.

10. Executing R1 and P3 enabled

10.1. Given
10.1.1. u ∈ Ag (owner of the privacy policy P3(u))
10.1.2. Predicates to be disclosed TweetInfo ⊆ 2P

10.1.3. Location of the tweet location(u, η)
10.1.4. Au ⊆ Ag

10.1.5. e = tweet(u,TweetInfo)

56



10.1.6. We want to prove:

SN �C P3(u) and SN
e−→ SN ′ then SN ′ �C P3(u)

10.2. By contradiction, let us assume
10.2.1. SN �C P3(u) and SN

e−→ SN ′

10.2.2. SN ′ 6�C P3(u)

10.3. By 10.2.1. and �C
10.3.1. SN ′ � ¬¬SAg\{u}location(u, η) [¬¬e]
10.3.2. SN ′ � SAg\{u}location(u, η) [By �]
10.3.3. ∃i ∈ Ag \ {u} such that SN ′ � Kilocation(u, η)

10.4. By Definition of R1
10.4.1. ∀p( #»

t ) ∈ TweetInfo \ {location(u, η)} SN ′ � CAup(
#»
t )

10.5. By 10.2.1. and the definition of �C
10.5.1. SN � ¬SAg\{u}locationη [Definition SG]
10.5.2. SN � ¬(

∨
i∈Ag\{u}Kilocation(u, η)) [Morgan]

10.5.3. SN �
∧
i∈Ag\{u} ¬Kilocation(u, η)

10.6. By 10.4.1. and 10.5.3.
10.6.1. SN ′ �C P3(u)

10.7. By 10.6.1. and 10.2.2. we derive a contradiction.

R2 - The execution ofR2 could only violate the policies P2 and P3

11. Executing R2 and P2 enabled

11.1. Given
11.1.1. u ∈ Ag (owner of P2(u) and retweeter)
11.1.2. tweet(tu, η) (tweet η ∈ N of user tu ∈ Ag)
11.1.3. e = retweet(u, tweet(tu, η))

57



11.1.4. We want to prove:

SN �C P2(u) and SN
e−→ SN ′ then SN ′ �C P2(u)

11.2. By contradiction, let us assume
11.2.1. SN �C P2(u) and SN

e−→ SN ′

11.2.2. SN ′ 6�C P2(u)

11.3. By 11.2.1. and �C
11.3.1. SN ′ � ¬¬SAg\followers(u)\{u}retweet(u, tu, η) [¬¬e]
11.3.2. SN ′ � SAg\followers(u)\{u}retweet(u, tu, η) [By �]
11.3.3. ∃i ∈ Ag \ followers(u) \ {u} such that SN ′ � Kilocation(u, η)

11.4. By Definition of R2
11.4.1. SN ′ � Cfollowers(u)∪{u}retweet(u, tu, η) [By �]
11.4.2. SN ′ � Cfollowers(u)∪{u}retweet(u, tu, η) [By �]
11.4.3. SN ′ � E0

followers(u)∪{u}retweet(u, tu, η)∧
E1

followers(u)∪{u}retweet(u, tu, η)∧
E2

followers(u)∪{u}retweet(u, tu, η)∧
E3

followers(u)∪{u}retweet(u, tu, η) ∧ . . . [By �]
11.4.4. SN ′ � E1

followers(u)∪{u}retweet(u, tu, η) [By �]
11.4.5. ∀j ∈ followers(u) ∪ {u} SN ′, j � Kjretweet(u, tu, η)

11.5. By 11.2.1. and the definition of �C
11.5.1. SN � ¬SAg\followers(u)\{u}retweet(u, tu, η) [Definition SG]
11.5.2. SN � ¬(

∨
i∈Ag\followers(u)\{u}Kiretweet(u, tu, η)) [Morgan]

11.5.3. SN �
∧
i∈Ag\followers(u)\{u} ¬Kiretweet(u, tu, η)

11.6. By 11.4.5. and 11.5.3.
11.6.1. SN ′ �C P2(u)

11.7. By 11.6.1. and 11.2.2. we derive a contradiction.

12. Executing R2 and P3 enabled

12.1. Given

58



12.1.1. u ∈ Ag (owner of P3(u) and retweeter)
12.1.2. tweet(tu, η) (tweet η ∈ N of user tu ∈ Ag)
12.1.3. TweetInfoAu ⊆ Ag (audience of the retweeted tweet)
12.1.4. RetweetAu ⊆ Ag (audience of the fact of retweeting)
12.1.5. e = retweet(u, tweet(tu, η))
12.1.6. We want to prove:

SN �C P3(u) and SN
e−→ SN ′ then SN ′ �C P3(u)

12.2. By contradiction, let us assume
12.2.1. SN �C P3(u) and SN

e−→ SN ′

12.2.2. SN ′ 6�C P3(u)

12.3. By 12.2.1. and �C
12.3.1. SN ′ � ¬¬SAg\{u}location(tu, η) [¬¬e]
12.3.2. SN ′ � SAg\{u}location(tu, η) [By �]
12.3.3. ∃i ∈ Ag \ {u} such that SN ′ � Kilocation(u, η)

12.4. By Definition of R2
12.4.1. ∀p( #»

t ) ∈ getTweetInfo(tu, η) \ {location(tu, η)} SN ′ � CTweetInfoAup(
#»
t )

12.5. By 12.2.1. and the definition of �C
12.5.1. SN � ¬SAg\{u}location(tu, η) [Definition SG]
12.5.2. SN � ¬(

∨
i∈Ag\{u}Kilocation(tu, η)) [Morgan]

12.5.3. SN �
∧
i∈Ag\{u} ¬Kilocation(tu, η)

12.6. By 12.4.1. and 12.5.3.
12.6.1. SN ′ �C P3(u)

12.7. By 12.6.1. and 12.2.2. we derive a contradiction.

R3 – None of the privacy policies in Definition 12 can be violated by ruleR3
Since favourite(u, tu, η) is the only predicate disclosed during the execution of
R3 and none of the privacy policies in Definition 12 specify any restriction against
this predicate, it would not be possible that a violation of them occurs.

59



R4 – The execution ofR4 could violate the privacy policies P1, P2, P3

13. Executing R4 and P1 enabled

13.1. Given
13.1.1. acd ∈ Ag (owner of P1(acd))
13.1.2. acr ∈ Ag (agent who is executing R4)
13.1.3. e = accessProf (acd, acr)
13.1.4. We want to prove:

SN �C P1(acd) and SN
e−→ SN ′ then SN ′ �C P1(acd)

13.2. We assume
13.2.1. ∃ tweet(acd, η) ∈ info(acd) (otherwise 13.1.4. trivially holds)

13.3. By contradiction, let us assume
13.3.1. SN �C P1(acd) and SN

e−→ SN ′

13.3.2. SN ′ 6�C P1(acd)

13.4. By 13.3.2.
13.4.1. SN ′ 6�C P1(acd) [Definition �C]
13.4.2. SN ′ � ¬¬SAg\followers(u)\{u}u.tweetη [¬¬e]
13.4.3. SN ′ � SAg\followers(u)\{u}tweet(u, η)[By �]
13.4.4. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN ′ � Kitweet(acd, η)

13.5. By 13.3.1., 13.1.3., Definition of state and Definition of R4, we have that
13.5.1. If (acr, acd) ∈ CFollower

13.5.1.1. ∀p( #»
t ) ∈ info(acd) SN ′ � Kacrp(

#»
t ) [By 13.2.1.]

13.5.1.2. SN ′, acr � Kacrtweet(acd, η)

13.5.2. If (acr, acd) 6∈ CFollower

13.5.2.1. R4 will not be executed.

13.6. By 13.3.1. we have
13.6.1. SN �C P1 [By �C]
13.6.2. SN � ¬SAg\followers(acd)\{acd}tweet(acd, η) [By Definition SG]

60



13.6.3. SN � ¬(
∨
i∈Ag\followers(acd)\{acd}Kitweet(acd, η)) [Morgan]

13.6.4. SN �
∧
i∈Ag\followers(acd)\{acd} ¬Kitweet(acd, η)

13.7. By 13.6.4. and 13.5.1.2. and 13.5.2.1. we have
13.7.1. SN ′ �C P1(acd)

13.8. By 13.3.2. and 13.7.1. we derive a contradiction.

14. Executing R4 and P2 or P3 enabled

14.1. The exact same reasoning as before can be applied for P2 and P3 by replacing tweet(acd, η)

with retweet(acd, u, η) or location(acd, η), respectively. This is because the function info(acd)

will return also those predicates in case the are part of the accessed user information.

R5−R9 – None of the privacy policies in Definition 12 can be violated by
the rulesR5−R9
Since there is neither disclosure of information nor granting of permission it is not
possible to violate any of the defined privacy policies.

R10 – The execution ofR10 could violate the privacy policy P4

15. Executing R10 and P4 enabled

15.1. Given
15.1.1. r ∈ Ag (Owner of P4(r), i.e. P4(r) ∈ πr)
15.1.2. If P4(r) ∈ πr then the case R10.1 is the one which will be executed
15.1.3. e = showReco(r, v)
15.1.4. We want to prove:

SN �C P4(r) and SN
e−→ SN ′ then SN ′ �C P4(r)

15.2. By contradiction, let us assume
15.2.1. SN �C P4(r) and SN

e−→ SN ′

15.2.2. SN ′ 6�C P4(r)

61



15.3. By 15.2.2.
15.3.1. SN ′ 6�C P4(r) [By �C]
15.3.2. SN ′ � ¬∀x.(¬Kx(email(r) ∨ phone(r)) =⇒ ¬P rxaccessProfRec) [By ¬∀z.ϕ ≡
∃z.¬ϕ]
15.3.3. SN ′ � ∃x.¬(¬Kx(email(r) ∨ phone(r)) =⇒ ¬P rxaccessProfRec) [By ∃e, where
ϕ[v/x]]
15.3.4. SN ′ � ¬(¬Kv(email(r) ∨ phone(r)) =⇒ ¬P rv accessProfRec) [By �]
15.3.5. SN ′ � ¬(¬(¬Kv(email(r) ∨ phone(r))) ∨ (¬P rv accessProfRec)) [¬¬e]
15.3.6. SN ′ � ¬(Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec) [Morgan]
15.3.7. SN ′ � ¬Kv(email(r) ∨ phone(r)) ∧ P rv accessProfRec

15.4. By 15.1.2. and 15.2.1. and Definition of R10
15.4.1. If SN � Kv(email(r) ∨ phone(r))

15.4.1.1. SN ′ � Kv(email(r) ∨ phone(r)) ∧ P rv acessProfRecommended
15.4.2. If SN � ¬Kv(email(r) ∨ phone(r))
15.4.2.1. R10.1 is not executed

15.5. By 15.2.1. we have
15.5.1. SN �C P4(r) [By �C]
15.5.2. SN � ¬Kv(email(r) ∨ phone(r)) =⇒ ¬P rv accessProfRec [By �]
15.5.3. SN � ¬¬Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec [¬¬e]
15.5.4. SN � Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec [¬¬i]
15.5.5. SN � ¬¬(Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec) [Morgan]
15.5.6. SN � ¬(¬Kv(email(r) ∨ phone(r)) ∧ P rv accessProfRec)

15.6. By 15.5.6. and 15.4.1.1.
15.6.1. SN ′ �C P4(r)

15.7. By 15.6.1. and 15.2.2. we derive a contradiction.

R11−R13 – None of the privacy policies in Definition 12 can be violated
by the rulesR11−R13

One could think that R11 may violate P5. However, the policy is preserved
intrinsically in the definition of the rules R12, R13. Since it is checked before-
hand if an advertiser have permission or not to send an advertisement. Basically

62



activating or deactivating the policy would mean granting or removing permission
to the advertisement companies to execute the action sendAd to the user.

R14−R17 – None of the privacy policies in Definition 12 can be violated
by the rulesR14−R17

These rules only aggregate or remove privacy policies to the users, they don’t
modify neither their knowledge nor their permission.

Finally we can conclude that FPPFDTwitter is a privacy-preserving social network.

Appendix B.2. Lemma 1 - Twitter is not privacy-preserving
We will show that from a social network model which preserves the privacy

policy, after executing the event tweet (as it is defined inFPPFDTwitter) mentioning
a user and adding the location, the privacy policy would be violated.

Proof Sketch: Assume a user u ∈ Ag who has never been mentioned and has
one instance of P6(u) in her set of policies, and another user o ∈ Ag who executes
the event

e = tweet(o, {tweet(o, η),mention(u, o, η), location(o, η)}).

If the result of executing the event in SN is SN ′, SN
e−→ SN ′, then by assumption

we know that SN �C P6(u), but according to R1, we know that all users in the
audience of the tweet will learn mention(u, o, η) and location(o, η) and therefore
SN ′ 6�C P6(u).

Proof.

16. Executing R1 and P6 activated

16.1. Given
16.1.1. User u ∈ Ag such that SN �C P6(u)

16.1.2. inclocation(u) == true

16.1.3. TweetInfo = {tweet(tu, η), location(tu, η),mention(u, tu, η)}
16.1.4. e = tweet(tu,TweetInfo)

63



16.1.5. We want to prove

SN �C P6(u) and SN
e−→ SN ′ then SN ′ 6�C P6(u)

16.2. Let us assume
16.2.1. SN ′ 6�C P6(u) [By �C]
16.2.2. SN ′ � ¬(Kilocation(tu, η) ∧Kimention(u, tu, η))

16.3. Let us assume
16.3.1. SN �C P6(u) and SN

e−→ SN ′

16.4. By the Definition of R1 and 17.1.7.
16.4.1. If state(tu) == ’Public’
16.4.2. ∀p( #»

t ) ∈ TweetInfo SN ′ � Cfollowers(tu)∪{tu}p(
#»
t ) [By 16.1.3.]

16.4.3. SN ′ � Cfollowers(tu)∪{tu}location(tu, η) ∧mention(u, tu, η) [By �]
16.4.4. ∀i ∈ followers(tu) ∪ {tu}SN ′ � Kilocation(tu, η) ∧mention(u, tu, η)

16.4.5. If state(tu) == ’Private’
16.4.6. ∀p( #»

t ) ∈ TweetInfo SN ′ � Cfollowers(tu)∪{tu}∪{u}p(
#»
t ) [By 16.1.3.]

16.4.7. SN ′ � Cfollowers(tu)∪{tu}∪{u}location(tu, η) ∧mention(u, tu, η) [By �]
16.4.8. ∀i ∈ followers(tu) ∪ {tu} ∪ {u}SN ′ � Kilocation(tu, η) ∧mention(u, tu, η)

16.5. By 16.4.4. and 16.4.8.
16.5.1. ∃i ∈ followers(tu) ∪ {tu}SN ′ � Kilocation(tu, η) ∧mention(u, tu, η)

16.6. By 16.5.1. and 16.2.2. we derive a contradiction.

Appendix B.3. Lemma 2 - Facebook is not privacy-preserving
We will show that from a social network model which preserves the privacy

policy FP1, after executing the event acceptTagRequest (as it is defined in
FPPFDFB-Tag) a user can be tagged without approving herself the tag.

Proof sketch: Let tge ∈ Ag be a user who has never been tagged and let tgr ∈
Ag be a user who has executed the event tag(tgr, tge, o, η) in order to tag tge in
picture(o, η) where o ∈ Ag and η ∈ N. The owner of picture(o, η) is o. There-
fore, in the current social network model SN , it holds that tagRequest(tge, tgr, o, η) ∈
KB(o). In order for FPPFDFB-Tag to preserve privacy it must hold that if SN �C

64



FP1(tge) and SN
acceptTagRequest(o,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−→ SN ′ where SN , SN ′ ∈ SNFB-Tag

then SN ′ �C FP1(tge).
Since tge was not tagged before the execution of FR2 we know that SN �C

FP1(tge). Also since tagRequest(tge, tgr, o, η) ∈ KB(o) and acptr == o
we know that FR2 can be executed. By the definition of FR2, we know that
SN ′ � EAutag(tge, o, o, η), hence SN ′ 6�C FP1(tge), which contradicts our
claim SN ′ �C FP1(tge) and therefore FPPFDFB-Tag is not privacy-preserving.

Proof.

17. Executing FR1 and FP1 activated

17.1. Given
17.1.1. User tge ∈ Ag such that SN �C FP1(tge)

17.1.2. User o ∈ Ag such that tge ! = o

17.1.3. Picture picture(o, η) where η ∈ N
17.1.4. User tgr ∈ Ag

17.1.5. The owner of the picture is part of its audience o ∈ Au

17.1.6. Au = audience(picture(o, η))

17.1.7. e = acceptTagRequest(o, tge, tgr, picture(o, η))
17.1.8. We want to prove

SN �C FP1(u) and SN
e−→ SN ′ then SN ′ 6�C FP1(u)

17.2. By contradiction, Let us assume
17.2.1. SN ′ �C FP1(tge) [By �C]
17.2.2. SN ′, tge � ∀o.∀t.∀η.(¬KtgetagRequest(t, tge, o, η) =⇒ ¬SAg tag(tge, t, o, η)) [By
Implication equivalence]
17.2.3. SN ′ � ∀o.∀t.∀η.(KtgetagRequest(t, tge, o, η) ∨ ¬SAg tag(tge, t, o, η)) [By ¬¬i]
17.2.4. SN ′ � ∀o.∀t.∀η.¬¬(KtgetagRequest(t, tge, o, η) ∨ ¬SAg tag(tge, t, o, η)) [By Morgan]
17.2.5. SN ′ � ∀o.∀t.∀η.¬(¬KtgetagRequest(t, tge, o, η) ∧ SAg tag(tge, t, o, η))

17.3. Let us assume
17.3.1. SN �C FP1(tge) and SN

e−→ SN ′

17.4. By the Definition of FR1, 17.1.2.

65



17.4.1. SN ′ � ¬KtgetagRequest(tgr, tge, o, η)

17.5. By the Definition of FR1, 17.1.7.
17.5.1. SN ′ � CAutag(tge, tgr, o, η)[By �]
17.5.2. SN ′ � E0

Au tag(tge, tgr, o, η)∧
E1

Au tag(tge, tgr, o, η)∧
E2

Au tag(tge, tgr, o, η)∧
E3

Au tag(tge, tgr, o, η) ∧ . . . [By �]
17.5.3. ∀j ∈ Au SN ′ � Kjtag(tge, tgr, o, η) [Since o ∈ Au (17.1.5.)]
17.5.4. SN ′ � Kotag(tge, tgr, o, η)

17.6. By 17.4.1., 17.5.4. and 17.2.5. we derive a contradiction.

Appendix B.4. Lemma 3 - Facebook is privacy-preserving
In the proof we consider all possible rules that can be executed and show

that none of them will violate FPU , which is the only policy available in the
instantiation FPPFDFB-Tag.

Proof.

FR1 - Tag
None of the rules can violate FP1 because neither FR1.1 nor FR1.2 increase

the audience of any tag. Therefore if FP1 is not in conformance with the current
SNM is because of the execution an earlier event.

FR2 - Accept tag request
FR2.1 would not be executed if FP1(u) ∈ πu therefore the only case left is

FR2.2.

FR2 - FR2.2.

18. Executing FR1 and FP1 enabled

18.1. Given
18.1.1. tge ∈ Ag (owner of the privacy policy FP1(tge))
18.1.2. picture(o, η) picture of user o ∈ Ag and η ∈ N

66



18.1.3. Au = audience(picture(o, η))

18.1.4. e = acceptTagRequest(acptr, tgr, picture(o, η))
18.1.5. We want to prove:

SN �C FP1(u) and SN
e−→ SN ′ then SN ′ �C FP1(u)

18.2. By contradiction, let us assume
18.2.1. SN �C FP1(u) and SN

e−→ SN ′

18.2.2. SN ′ 6�C FP1(u)

18.3. By 18.2.2.
18.3.1. SN ′ 6�C FP1(tge) [Definition �C]
18.3.2. SN ′ � ¬(∀o.∀t.∀η.¬KtgetagRequest(t, tge, o, η) =⇒ ¬SAg tag(tge, t, o, η))[By Im-
plication equivalence]
18.3.3. SN ′ � ∃o.∃t.∃η.¬(KtgetagRequest(t, tge, o, η) ∨ ¬SAg tag(tge, t, o, η))[By Morgan]
18.3.4. SN ′ � ∃o.∃t.∃η.¬KtgetagRequest(t, tge, o, η) ∧ SAg tag(tge, t, o, η))[By �]
18.3.5. ∃i ∈ Au s.t. SN ′, tge � ∃o.∃t.∃η.¬KtgetagRequest(t, tge, o, η) ∧Kitag(tge, t, o, η))

18.4. By Definition of FR2.2, we have that
18.4.1. SN � Kacptr tagRequest(tge, tgr, o, η)[By Definition FR2.2, acptr == tge]
18.4.2. SN � KtgetagRequest(tge, tgr, o, η)

18.5. By Definition of FR2.2, we have that
18.5.1. SN ′ � CAutag(tge, tgr, o, η) [By �]
18.5.2. SN ′ � E0

Au tag(tge, tgr, o, η)∧
E1

Au tag(tge, tgr, o, η)∧
E2

Au tag(tge, tgr, o, η)∧
E3

Au tag(tge, tgr, o, η) ∧ . . . [By �]
18.5.3. SN ′ � E1

followers(u)∪{u}tweet(u, η) [By �]
18.5.4. ∀j ∈ Au SN � Kjtag(tge, tgr, o, η)

18.6. By 18.4.2., 18.5.4. and 18.3.5. we derive a contradiction.

Finally we can conclude that FPPFDFB-Tag is a privacy-preserving social net-
work.

67


