
Is Privacy by Construction Possible?

Gerardo Schneider

Department of Computer Science and Engineering,
University of Gothenburg, Sweden.

gerardo@cse.gu.se

Abstract. Finding suitable ways to handle personal data in confor-
mance with the law is challenging. The European General Data Protec-
tion Regulation (GDPR), enforced since May 2018, makes it mandatory
to citizens and companies to comply with the privacy requirements set
in the regulation. For existing systems the challenge is to be able to show
evidence that they are already complying with the GDPR, or otherwise
to work towards compliance by modifying their systems and procedures,
or alternatively reprogramming their systems in order to pass the even-
tual controls. For those starting new projects the advice is to take privacy
into consideration since the very beginning, already at design time. This
has been known as Privacy by Design (PbD). The main question is how
much privacy can you effectively achieve by using PbD, and in particular
whether it is possible to achieve Privacy by Construction. In this paper
I give my personal opinion on issues related to the ambition of achieving
Privacy by Construction.

1 Introduction

Handling personal data adequately and in conformance with common sense, stan-
dards and regulations is a big challenging task. The already approved European
General Data Protection Regulation (GDPR) [20], put into force this year, at-
tempts to protect individuals by putting stringent constraints on how personal
data should be collected, stored and treated. Companies and individuals must
comply or pay huge fines.

The obvious approach for those developing new software is to consider this
important non-functional requirement as part of its design and development.
Privacy by Design [13] is based on the idea that any personal data processing
environment should be designed so that privacy is taken into account as early as
the requirement elicitation phase and when designing the software architecture.
Given that not all software development is done following a rigorous methodology
(i.e., quite often one does not make an explicit design but just write the code
having the design “in mind”), the idea would be that privacy should then be
taken into account at least when programming. That is, the overall suggestion
is that privacy should be as important as the functional aspect of your design
and programming task.

This is easier to say than to do. In practice there is a big gap between the
technical concepts handled by software architects and the prescriptions stated by



2 Gerardo Schneider

laws and regulations. From the design point of view, software architects usually
use different kinds of diagrams at different levels of abstractions in order to make
conceptual models and more detailed architectures describing how the software
system is to be structured. Many levels of abstraction may be present in such
design (if any) including the modeling of basic units, their integration into bigger
components and modules, their interconnection, and communication protocols
among such elements.

From the programming point of view, programmers mostly focus in the func-
tionality of the software (what the software is supposed to do) and eventually on
very specific non-functional requirements like performance (execution and data
retrieval speed, response time, etc.). That said, most of our software engineers
and programmers are not trained in security and privacy, and thus they might
not have the necessary background to handle such non-functional requirements.
Even if they are aware and knowledgeable in those areas, there is a general lack
of tools and methodologies to design and program having privacy in mind. They
are not to blame though. Security and privacy threats have been around for
a while but only recently became an imperative, not only because of the exter-
nal (legal) pressure (e.g., GDPR) but also because the number of vulnerabilities,
and misuse cases, has been made more apparent due to increased media coverage
(e.g., recent scandal with Facebook [5, 10], and the Google case [7]). Complying
with new privacy requirements it is not easy though (see for instance an analysis
of how Facebook tries to address GDPR issues [17]).

Though each user has an own understanding on what is personal and sen-
sitive data, it is in general not always clear what defines the privacy frontiers.
Independently of the individuals’ perspective on their own data1 we are here
concerned with privacy from the legal point of view. That is, what is required
by standards and regulations like the already mentioned GDPR. The law is gen-
erally written in a normative way stating the rights and obligations of citizens
and corporations in different circumstances. The GDPR defines what personal
data is and establishes constraints in the way data may be collected, used and
stored. Such regulations and principles, written in natural language, need to be
interpreted and implemented by software engineers into technical designs and
concrete software that are required to be compliant with the privacy legislation.
One way to do this would be to follow the PbD philosophy, and in particu-
lar we could aim at a systematic and (semi-)automatic way of achieving that,
i.e. achieving privacy by construction.

X-by-Construction approaches may be defined as “a step-wise refinement
process from specification to code that automatically generates software (system)
implementations that by construction satisfy specific non-functional properties
[...]”.2 In this paper we assume the premise that it could be desirable to achieve
Privacy by Construction, that is the possibility to automatically refine (formal)

1 Technically, the individual or companies we are taken data from/about are called
data subjects, and those handling the data are the data controllers.

2 http://fmt.isti.cnr.it/ mtbeek/ISoLA18.html.



Is Privacy by Construction Possible? 3

specifications so the generated code satisfies the privacy properties under con-
sideration.

Privacy cannot be enforced uniquely by technical means and requires to be
seen from a multidisciplinary perspective, including computer science, computer
security and cryptography, law, social sciences and economics [18]. In this paper
we focus only on privacy from a computer science perspective, starting in par-
ticular from Privacy by Design (PbD)3, and we discuss about the feasibility of
achieving Privacy by Construction.

The paper is organized as follows. In next section we give a very brief overview
of some key privacy concepts from the GDPR. Section 3 recalls the main ideas
behind PbD and gives an incomplete account of the state of the art in the
area, and provides some examples for achieving privacy a posteriori. Section 4
presents a personal point of view on what may be achieved with PbD, and list
some limitations and challenges for specific privacy issues concerning PbD and
Privacy by Construction. Finally, we conclude in the last section with a general
discussion.

2 GDPR

The European General Data Protection Regulation (GDPR) [21] is a document
containing around 90 articles whose aim is to regulate personal data processing.
The text replaces, among others, the Directive 95/46/EC of the European Par-
liament, and improves over the original proposal given in 2012 [20]. As any text
of this kind, the regulation is complex and full of definitions.

For the purpose of this paper we are only interested in naming that the reg-
ulation talks about seven personal data processing principles, namely i) Lawful-
ness, fairness and transparency; ii) Purpose limitation; iii) Data minimization;
iv) Accuracy; v) Storage limitation; vi) Integrity and confidentiality; vii) Ac-
countability. Besides the above, the GDPR stipulates that data subjects have
several rights including i) Right to information, access and rectification of per-
sonal information; ii) Right to object to personal data processing; iii) Right not
to be subject to automated individual decisions; iv) Right to be forgotten (con-
cerning data erasure); v) Right to data portability. Moreover, Article 6 of the
regulation stipulates six lawful grounds for data processing operations, namely:
i) Consent; ii) Performance of a contract; iii) Compliance with a legal obligation;
iv) Protection of vital interests; v) Public interest; vi) Overriding interest of the
controller.

Besides the original document, it is worth reading the critical review of the
regulation (and on the comparison with previous versions) done by de Hert and
Papakonstantinou [25].

3 In the rest of the paper we will use the acronyms PbD for Privacy by Design.



4 Gerardo Schneider

3 Privacy by Design

In this section we briefly give an overview of PbD, we discuss some issues con-
cerning the achievement of PbD, and we provide some examples following the
approach. We finish with some examples of a posteriori techniques for very spe-
cific aspects of privacy.

3.1 What is PbD?

In a nutshell and informally, Privacy by Design (PbD) is an approach for ICT
project development that promotes taking privacy and data protection compli-
ance from the very beginning. The concept was introduced by Ann Cavoukian4

in the 90’s and further developed over the following years. In [12] Cavoukian
describes the following seven foundational principles for PbD: i) Proactive not
reactive, preventative not remedial; ii) Privacy as the default setting; iii) Pri-
vacy embedded into design; iv) Full functionality: positive-sum, not zero-sum;
v) End-to-End Security: full lifecycle protection; vi) Visibility and transparency:
keep it open; vii) Respect for user privacy: keep it user-centric. (See [12] for more
details).

The concept was taken by several researchers in the last ten years or so mostly
due to the increasing problem associated with Big Data, and more recently due
to the GDPR and other strong regulations.

In December 2014 Danezis et. al. [18] wrote a report for the European Union
Agency for Network and Information Security (ENISA) in order to “ promote
the discussion on how PbD can be implemented with the help of engineering
methods” and to “[...] provide a basis for better understanding of the current
state of the art concerning privacy by design with a focus on the technological
side”.

A more telling explanation of the scope of PbD is given in such report: “[...]
privacy by design is neither a collection of mere general principles nor can it be
reduced to the implementation of PETs.5 In fact, it is a process involving various
technological and organisational components, which implement privacy and data
protection principles. These principles and requirements are often derived from
law, even though they are often underspecified in the legal sources.”

The report is very clear on that PbD is still in infancy6 and makes concrete
recommendations for taking the next step in engineering PbD (cf. [18, Section
5.2]). See also [23, 24, 37] concerning the engineering of privacy.

3.2 How to achieve PbD?

From the design point of view, it could be great if software engineers do not need
to worry too much about privacy and may only concentrate on the functional
4 Former Information & Privacy Commissioner of Ontario (Canada).
5 PET: Privacy-Enhancing Technologies.
6 The report is from 2014, but to the best of our knowledge the advances in the area

have not yet produced mature tools as to be used by industry.



Is Privacy by Construction Possible? 5

aspect, while tool-assisted design methodologies automatically add the needed
privacy checks to the design. This is an ideal situation and some privacy aspects
might be handled in this way. Ideally, software engineers will design their software
with the tools they are already familiar with and after pressing a “convert”
button they would get an enhanced model containing specific privacy checks in
some parts and proposals or warning for others. Those models/diagrams would
be then edited by a privacy engineer who would validate or modify such checks
and add meta-annotations on the model so programmers get more precise hints
on how to implement those checks.

That would of course be the first step. A design needs to be synthesized
(materialized) into programming code that effectively implements the (privacy-
compliant) design. How to ensure such transformation is sound (correct) and
complete (it does address all the privacy principles under consideration)? Formal
methods would help to prove soundness. Completeness is more difficult but it
could be achieved with respect to a small set of predefined privacy concepts.

A complementary (ideal) solution, from the programming point of view,
would be to have specialized libraries offering an API for handling personal
data. These libraries would not only ensure that data have been collected with
the consent of the user, that it has a time-stamp on when it was collected and
eventually a timeout (for retention time). The data would carry the history (its
provenance as well as information on where it was sent and stored). Ideally, each
operation on the data would be checked against the consented purpose, only if
the retention time has not expired.

3.3 Some proposals following PbD

PbD has been applied to specific real(istic) cases, including electronic traffic
pricing (ETP), smart metering, and location based services (see [29] and ref-
erences therein). In [29] Le Métayer proposed a framework to express different
parameters to take into account for making a choice when defining software
architectures, and applied the framework to an ETP.

According to [1] previous work has “focused on technologies rather than
methodologies and on components rather than architectures”. In that paper,
Antignac and Le Métayer moves forward towards an application of PbD to the
“architectural level and be associated with suitable methodologies”, proposing a
more formal approach. In particular they use a privacy epistemic logic as a way
to specify and prove privacy properties about software architectures.

In [3, 4] Antignac et al. propose an approach based on model transformations,
which guarantees that an architectural design, originally focused on functional
data requirements, is enhanced with certain privacy principles. In particular, the
proposal is to automatically transform data flow diagrams (DFDs) into so-called
privacy-aware data flow diagrams (or PA-DFDs for short). PA-DFDs are DFDs
enhanced with a log system (for accountability), and suitable checks concerning
retention time and purpose for each operation on sensitive data (storage, for-
warding, and processing of data). The software architect then focuses only on
defining the function part as DFDs, and then check and eventually extend the



6 Gerardo Schneider

obtained PA-DFD. The ultimate goal would be to automatically get a program
template from the PA-DFD, helping the programmer to identify in which points
to perform suitable privacy checks. The approach has not been implemented so
it remains to check whether it is feasible, it captures relevant privacy checks,
and it scales.

More recently Basin et al [6] proposed a methodology for auditing GDPR
compliance by using business process models. One of the key insights of the
paper is to identify “purpose” with a “process”. Besides, it shows how to auto-
matically generate privacy policies from the model and detect violations of data
minimization, and gives arguments on why GDPR compliance cannot be entirely
automated.7

A different, and complementary, way of viewing PbD is to consider privacy
even at a higher level of abstraction, not from the architectural point of view but
rather from the meta-level. This is the line of work proposed by Hoepman on
the definition of privacy design strategies [26]. These strategies are to be taken
into account during the analysis and requirements engineering phase, before
designing the software architecture. Colesky et al. [16] suggest an additional
level of abstraction between privacy design strategies and privacy patterns by
considering tactics. Notario et al. [30] present a methodology for engineering
privacy based on existing state-of-the-art approaches like PIA (Privacy Impact
Assessment) and risk management, among others. These approaches, though
valuable in the context of PbD, are even further from the implementation and
they “suffer” from the same issues as for PbD in what concerns its relatedness
to the implementation.

Finally, it is worth mentioning the work by Schaefer et al. [35], presented
in this very same track of ISoLA’18, on the definition of rules for achieving
Confidentiality-by-Construction. The approach is based on replacing functional
pre-/postcondition specifications (Hoare triples, as traditionally used for classical
functional correctness) with confidentiality specifications listing which variables
contain secrets. The approach is promising. That said, this is an ongoing work
so it remains to see whether it is feasible in practice.

3.4 A posteriori techniques for privacy

Though not the main objective of this paper, we mention here a few attempts to
ensure compliance to some of the privacy principles, not by following PbD but
rather by do a posteriori analysis (once the software has already been developed,
both before and after deployment).

In [22] Ferrara and Spoto suggest the use of tainting and other static analysis
techniques to detect the potential leak of private sensitive information, combined
with abstraction techniques so the results are shown differentially to the players
interested in privacy. Despite the generality of the title, the ideas of the paper
7 Some of the arguments of our paper are very much along the same line as the ones

presented in [6]. In particular, the identification of the difficulty to represent purpose
at the programming language level.



Is Privacy by Construction Possible? 7

are applicable to compliance w.r.t. very specific privacy aspects. Note that the
static analysis of such properties is undecidable in general.

In [2] Antignac et al. provide a characterization of the data minimization prin-
ciple in a restricted setting: deterministic (functional) programs and for a notion
of minimization based only on the collection of data (not on data processing).
The paper contains results for both the monolithic case (when the input comes
from only one source) and for the distributed case (when the input is collected
from multiple independent sources). A technique based on symbolic execution
and SAT solvers is presented for computer a minimizer, that is a pre-processor
that filters the input so data minimization is guaranteed. The main limitations
are that computing the minimizer is undecidable in general, that the source code
is required (it is white box) and that it only considers a very restrictive version
of data collection (the technique only works for the case when minimization is
achieved when restricting the input domain, and it should be generalized for
more complex notions).

A black box approach for monitoring whether a give program satisfies (strong)
data minimization has been proposed in [33, 34] (under the same definition given
in [2]). Giving a final verdict (at runtime) that a given program minimizes data
is in general not possible, but if the program is non-minimal then the runtime
monitor might be able to detect that (no completeness results are given, but if
the current, or any past, execution of the program violates data minimization,
the monitor would detect it). Under very strict conditions (finiteness of the in-
put domain), it is possible to effectively determine using off-line monitoring if
the program satisfies data minimization or not, and in the latter it is possible
to extract a minimizer (always using a black box technique). Monitoring a more
general (weaker) version of data minimization is not possible in general as it is a
more complex hyperproperty, lying in a fragment of HyperLTL known not to be
monitorable (it is a “∀∀∃∃” property). This is also the case for a negation of the
property. That said, recent ideas on combining static and runtime verification
might be useful to help getting a monitor for the negation of the property [8].

4 Is Privacy by Construction Possible?

In the previous section we discussed, at a high level, how PbD may be used at
design time, hinted on the possibility of integrating privacy at the programming
level, gave some links to the literature on the use of PbD in concrete scenarios as
well as some examples of achieving privacy a posteriori. The question is still how
much privacy may be achieved in practice by PbD. In other words, if you follow a
PbD approach how much privacy is really “propagated” into the running software
so it could be considered privacy compliant (with for example the GDPR)? Is
that possible at all? For which principles? Can we effectively characterize what
is achievable by PbD and what is not? Even more, how much of that maybe
done automatically, achieving then Privacy by Construction?

In this paper we will not be able to answer all the above questions but will
rather focus on some aspects. In particular, in this section we list some general



8 Gerardo Schneider

limitations of PbD, and we present challenges concerning few specific privacy
issues. Note that the challenges we mention are not necessarily in correspondence
with the listed limitations.

4.1 Some limitations

Section 5.1 of the ENISA report [18] lists a number of limitations of PbD. We will
not enumerate them all here but will just mention few keys points (see details
and examples in the report).8

– One important issue is the lack of compositionality: a system satisfying a
given privacy property is not guaranteed to do so when composed with an-
other one. So, even when we might achieve privacy by using PbD on given
components, it is not clear that this could propagated to the whole system.

– There currently is no way to measure how private a system is, nor to compare
whether a system is more private than another one: there is lack of suitable
privacy metrics. So, it is not easy to make a good privacy risk assessment or
to assign any kind of economic value to (lack of) privacy.

– There is a trade-off between privacy and utility, so the designer needs to take
this into account when taking a PbD approach. The risk is that if privacy
takes too much importance at design time, it might jeopardize the utility of
the developed software.

– There is a lack of design methodologies and tools, integrated in the software
development cycle, facilitating a practical use of PbD.
The above thus gives already a good hint that PbD, by itself, cannot in

general guarantee Privacy by Construction; we elaborate on some of the above
and other difficulties to achieve it.

Our first (obvious) observation is that by following PbD we run, at least, into
the very same problems as when you develop software from (in)formal functional
requirements and specifications. Unless you automatically (and with a proof of
correctness) translate (synthesize) your program, you can only assert with a
limited degree of confidence that your software is correct by construction. This
is because most of the time your design (model or specification) is a different
creature from the implemented software, and in most cases the step from your
design (model or specification) into the software that will effectively be running
in your computer is manual. This step may introduce bugs, or your model (or
specification) might be partial, incomplete, or too abstract.

So following PbD will not, by itself and in general, guarantee a private by
construction software as new techniques for (automatic) refinement should be
developed, and this might be more difficult for privacy as it is for functional
properties. That said, for very specific privacy aspects it might be possible to
achieve the intended goal. For instance, we could envisage similar techniques as

8 The report stresses a few times the privacy is much wider than technology (social,
legal, political, etc.) but the focus on the discussion here is on the (software-based)
technological side only.



Is Privacy by Construction Possible? 9

the one proposed in [35] for confidentiality. The full feasibility and applicability
of this approach is still to be assessed though.

That said, in our opinion it is strongly recommended to use PbD given that
you may at least ensure that you have taken (certain) privacy aspects into con-
sideration when you design your software, expecting that in the development
phase such considerations are followed and applied so they are reflected in the
final product.

4.2 Some challenges

We summarize in what follows some of the key challenges in achieving Privacy
by Construction, and we list possible ways to handle some of those. Obviously
technology cannot help solve all the problems, but even if we were to limit
our analysis only to those aspects related to the technical, we would not be
able to cover all of them in this paper. Instead of focusing on how to deal
with specific privacy principles or properties, we take our discussion based on
some of the key concepts in the GDPR. In particular, we consider one principle
(purpose), one right (the right to be forgotten), and two lawful grounds (consent
and compliance).9

Purpose Today’s programming languages do not give good support to repre-
sent purpose as required by the GDPR, maybe with the exception of having an
enumerative type with the different purposes the service might use the data.
This, on the other hand, would not ensure by itself that the data will be indeed
used only for the intended purpose. For that there might be a need to define
specialized libraries, with carefully defined abstract data type purpose (or de-
fined special programming language primitives), guaranteeing that only certain
operations may be applied to the data according to the consented purpose. That
said, it will not be easy to take care of this if one allows for the data to navigate
to non-controlled parts of the program, or if it is processed in a way that the
sensitive (high) data is propagated through explicit and implicit flows to public
(low) data. So, it will be difficult to give strong guarantees as it may be difficult
to ensure the programmer uses such library operations or built-in constructs. In
order to handle this and do something “by construction” one possibility would
be to define new data types where each piece of data comes with its purpose
(and other relevant privacy information). Very much like “sticky policies” [31],
that are conditions and constraints (policies) attached to data that describe how
it should be treated. These policies would travel with the data so they (ideally)
are enforced whenever the data is to be used.

If one follows a PbD approach, it might be possible to include purpose at
the design level, but it is not clear how this could be translated into the real
implementation. For instance, some of the approaches mentioned in Section 3.3
envisage the declaration of the purpose in different ways. Basin et al. [6] proposes
that business processes explicitly represent one or more purposes, by associating
9 The reader may want to see [36, 40] for a different perspective on challenges in PbD.



10 Gerardo Schneider

a “process” with a “purpose”. They propose a methodology for auditing GDPR
based on proving a correspondence between GDPR, the business process rep-
resentation and the implementation. It is not clear, however, how this could
be done automatically. In particular, the relation between the business process
and the implementation is very much the same that exists today between any
(functional) formal specification and an implementation. Similarly Antignac et
al. [3, 4] propose to have purposes just as a meta-data associated with the data,
and then getting a PA-DFD that would add a check before using the data on
whether the intended use is for the consented purpose. Though not presented in
the papers, the idea would be that the programmer gets a skeleton of a program
(automatically synthesized from the PA-DFD) manually adding the concrete
privacy checking during implementation (at design time, the purpose is just a
string with no concrete meaning except its belonging to an enumerative set).

Finally, a last example on how to deal with purpose is the one discussed in [2]
in the context of data minimization. In such papers the “purpose” is defined by
the program itself. This, however, is a quite simplistic way of handling purpose
and would only work for limited number of applications handling data for very
specific purposes.

As a final comment, the issue of purpose is very much related to the general
problem of data usage, so it could be interesting to investigate whether tech-
niques from usage control could be used in this context (see for instance [28] and
references therein). Another interesting line of work, and probably more relevant
than usage control, in relation to purpose is that of purpose-based access control
[9], and other similar work, whose aim is to design access control mechanisms
based on purpose. See the related work section in [6] for an overview of these
and other access control variants aiming at capturing the notion of purpose.

Right to be forgotten and retention time In order to enforce data dele-
tion whenever the data subject requires it, or whenever there is a timeout, seems
very difficult. This would require to keep very advanced techniques to track data
provenance [14]. One way to approach this issue could be to follow a technique
based on information-flow security, in particular the one developed for informa-
tion erasure [15]. In [39] Del Tedesco et al. use dynamic taint analysis to track
how sensitive data propagate through a program and erase them on demand.
The method is implemented as a library for Python. The approach is further
developed in [38] Hunt el al. were it is presented a framework to express a rich
class of erasure policies. Similar approaches could be used for the GDPR rights,
but the main issue still remains: the above would only work if the date remains
inside one specific software program. As soon as the data is forwarded some-
where else (or saved on an external device) it should be thus tracked and we do
not know today how to solve this.

Another idea would be to use stick policies [31] (cf. purpose above). As today,
this is a nice theoretical concept but it lacks practical implementations. As for
the erasure papers mentioned above, implementing sticky policies for one specific
software might be feasible, but still the challenge is to make it work across
different applications and platforms.



Is Privacy by Construction Possible? 11

Consent The problem of consent seems to be a bit easier to handle if the focus
is only on asking permission from the data subject to collect certain data for
a given purpose: it only suffices to always add a standard question whenever
the data controller collects data and only do so if the data subject agrees. So,
consent might be easy to implement whenever there is an explicit collection of
data where the data subject is directly asked before the collection of data. This,
however, it is an oversimplification.

First, we know that if consent is asked for every explicit collection of data
and for approval of specific policies (e.g. terms of service) the user will simply
agree without really knowing what is she giving consent to.10

Second, sometimes data is collected in a continuous manner in ways that
makes it extremely difficult to ask for consent. Think about street cameras and
broadcasting of wi-fi devices, just to mention a couple of ways of getting per-
sonal data without explicit consent. An example of this is the data collection
performed by Google Street View cars: “It is now clear that we have been mis-
takenly collecting samples of payload data from open wifi networks, even though
we never used that data in any Google products” [27]. The software should be
selective on which wi-fi data to collect, but is this possible? A possible solution
would be to develop a specialized software that runs in a protected environment
(enclave) where the collected data is stored and analyzed in a “smart” way so
only what is relevant is forwarded outside the enclave for further processing.
How to implement this “smart” solution?

The position paper [11] discusses an approach based on the use of registries to
deal with consent in the context of the Internet of Things. It could be interesting
to see how this solution could be generalized.

Compliance The notion of compliance is very much related to purpose [6], and
as we have discussed above including the notion of purpose as a first class citizen
in programming languages is still a challenge. So, giving a technical means to
have privacy compliance “by construction” will only be possible whenever all the
other issues are solved, and even then it might be very difficult if not impossible.
This is the case since in order to be able to enforce compliance might require to
have solutions that are enforced by the runtime execution environment in many
different platforms.

Think of a photo that is collected for the purpose of helping researchers in
image processing. Let us assume that the photo comes with a sticky policy ex-
plicitly specifying that the purpose is “research”, that it should not be forwarded
to any other data controller, and that the retention time (the photo should be
erased from any storage device) is two weeks. In order to enforce this, in a rel-
atively easy way, the photo should be received via an application (via suitable
APIs) and only handled by that application. If so, we could save the photo and
make all needed manipulations in a safe enclave (very much like a sandbox)
10 The GDPR [21] is very explicit on that consent should be given freely, in an informed

and unambiguous way, and that it should cover all processing activities carried out
for the same purpose. A separate consent should be given for each separate purpose.



12 Gerardo Schneider

where only the so-called research engine would be running. If we cannot guar-
antee that every single device and platform contains the needed enforcement
mechanism, we cannot make any strong claim. The photo might be uploaded to
a different application, or stored in a disk and then forwarded to somewhere else
(there is no way to enforce the sticky policy unless the software associated with
handling the photo has the mechanisms to do so).11

Some researchers believe that we should not worry very much about trying
to enforce compliance “by construction” but rather leave the burden to data
controllers: it is on their own interest to be able to give evidence that they do
comply with the law whenever they are challenged to do so. This, however, might
seem an attempt to solve the problem by avoiding it, or even by assuming it is
not a problem. Not quite. The idea is to provide as much support as possible
to data controllers (e.g., in the form of guidelines, and programming libraries as
discussed earlier) to handle data according to the law. If they do not do that
(e.g., do not use the specialized libraries) and misuse the data (e.g., use them
for a different purpose than the one consented by the data subject) it is their
problem as they will have to prove that they are not guilty.

5 Final Discussion

Achieving privacy compliance is not easy. Many solutions should be addressed
at the level of organizational procedures and practices, and others by technical
means (software-based solutions). Guaranteeing most privacy principles in al-
ready existing systems is in most cases impossible, and if possible then extremely
difficult and costly. When building new systems, following a PbD approach is
definitively a step forward but not a panacea. More research is needed in order
to be able to advance the state-of-practice in this domain. Achieving perfect
Privacy by Construction is, in my opinion, impossible in general and extremely
expensive in the best case. That said, the fines for non-compliance are extremely
high12 so investment in privacy solutions is a must.

Another way to think about privacy compliance is to provide the technical
means to enhance data with sticky privacy policies containing retention time,
purpose, etc. and ask the data controller to respect and enforce the data subject’s
policy. That is, it is up to the data controller to prove that its handling of
data complies with the data subject’s policy and the law. In this approach, the
11 An example of such a (limited) mechanism is given in [32] for photo sharing in social

networks by using a combination of sticky policies with attribute-based encryption.
The mechanism works by encrypting parts of the picture so only allowed users can see
what they are supposed to, but if somebody has permission to download the picture
to the local disk, there is no way to enforce the sticky policy after that. Since the
enforcement mechanism (encryption/decryption, permission checking, etc.) is only
done in a particular application platform (Diaspora [19]), the user could forward the
decrypted picture to anyone else if she has permission to download it.

12 It is stipulated that non-compliance might imply fines up to €20 million or 4% of
the annual turnover of the company.



Is Privacy by Construction Possible? 13

controlling agencies do not try to ask for proofs of absence of privacy breaches
a priori, but if there is any privacy leak then it should be detected a posteriori
by suitable audits. The burden is thus upon the data controller on choosing the
best solution to avoid paying for non-compliance.

A notion left out in this paper has been the notion of adversary (or attacker
model). This has been intentional as the objective of this paper is not to give
an exhaustive overview of the field nor to propose solutions but rather to give a
personal point of view on the issue of Privacy by Construction. That said, any
feasible solution should provide a proper attacker model as well as proofs (or
at least convincing evidence) that the proposed approach preserves privacy with
respect to those attackers. If possible, it should also make explicit what are the
assumptions in order to make it easier to detect potential vulnerabilities (claims
in only one direction usually hide some unwanted side effects that could compro-
mise privacy). Besides, we have not been able to cover many other interesting
and very relevant aspects of privacy, including anonymization, accountability,
unlinkability, transparency, intervenability, and many other concepts present in
the GDPR.

All the statements and claims done in this paper reflects a personal point
of view, not based on experimental nor on theoretical (im)possibility results. I
would like to be proved wrong on my pessimistic views and right on those more
optimistic opinions. Hope for new advancements in privacy research so we can
all achieve a good trade-off between privacy and utility+transparency.

Acknowledgements I would like to thank Daniel Le Métayer for his valuable
comments on an early draft of this paper, and Thibaud Antignac for all the
fruitful discussions we have had on privacy by design. This research has been
partially supported by the Swedish Research Council (Vetenskapsr̊adet) under
grant Nr. 2015-04154 (PolUser: Rich User-Controlled Privacy Policies).

References

1. Antignac, T., Le Métayer, D.: Privacy by design: From technologies to architectures
- (position paper). In: APF’14. LNCS, vol. 8450, pp. 1–17. Springer (2014)

2. Antignac, T., Sands, D., Schneider, G.: Data Minimisation: A Language-Based
Approach. In: IFIP Information Security & Privacy Conference (IFIP SEC’17).
IFIP Advances in Information and Communication Technology (AICT), vol. 502,
pp. 442–456. Springer Science and Business Media (2017)

3. Antignac, T., Scandariato, R., Schneider, G.: A Privacy-Aware Conceptual Model
for Handling Personal Data. In: 7th International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation – ISoLA’16 (1); Track:
Privacy and Security Issues in Information Systems. LNCS, vol. 9952, pp. 942–957.
Springer (2016)

4. Antignac, T., Scandariato, R., Schneider, G.: Privacy Compliance via Model Trans-
formations. In: International Workshop on Privacy Engineering (IWPE’18) at
IEEE EuroS&P Workshops. pp. 120–126. IEEE (2018)



14 Gerardo Schneider

5. Aziza, B.: Facebook privacy scandal hearings: What you missed. Ap-
peared at Forbes online. Accessed on May 16, 2018. Available at
https://www.forbes.com/sites/ciocentral/2018/04/16/facebook-privacy-scandal-
hearings-what-you-missed/#9a41af57ab9c (April 2018)

6. Basin, D., Debois, S., Hildebrandt, T.: On Purpose and by Necessity: Compli-
ance under the GDPR. In: Twenty-Second International Conference on Financial
Cryptography and Data Security (2018), to appear

7. BBC News: Google loses ’right to be forgotten’ case. Accessed on April
14, 2018. Available at http://www.bbc.com/news/technology-43752344?SThisFB
(April 2018)

8. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring Hyperproperties by
Combining Static Analysis and Runtime Verification. In: 8th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation
– ISoLA’18; Track: A Broader View on Verification: From Static to Runtime and
Back. LNCS, Springer (2018), to appear

9. Byun, J., Bertino, E., Li, N.: Purpose based access control of complex
data for privacy protection. In: 10th ACM Symposium on Access Con-
trol Models and Technologies (SACMAT’05). pp. 102–110. ACM (2005),
http://doi.acm.org/10.1145/1063979

10. Cadwalladr, C., Graham-Harrison, E.: Revealed: 50 million facebook
profiles harvested for cambridge analytica in major data breach. Ap-
peared at The Guardian. Accessed on May 16, 2018. Available at
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-
facebook-influence-us-election (March 2018)

11. Castelluccia, C., Cunche, M., Le Métayer, D., Morel, V.: Enhancing transparency
and consent in the iot. In: EuroS&P Workshops’18. pp. 116–119 (2018)

12. Cavoukian, A.: Privacy by design: The 7 foundational principles (2009)
13. Cavoukian, A.: Privacy by design: Origins, meaning, and prospects. Privacy Pro-

tection Measures and Technologies in Bus. Org.: Aspects and Standards 170 (2011)
14. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and

where. Found. Trends databases 1(4), 379–474 (2009)
15. Chong, S., Myers, A.C.: Language-based information erasure. In: Proceedings of

the 18th IEEE Workshop on Computer Security Foundations. pp. 241–254. CSFW
’05, IEEE Computer Society (2005)

16. Colesky, M., Hoepman, J., Hillen, C.: A critical analysis of privacy design strategies.
In: IEEE Security and Privacy Workshops. pp. 33–40. IEEE Computer Society
(2016), http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7517741

17. Constine, J.: A flaw-by-flaw guide to facebook’s new gdpr privacy changes. Avail-
able at https://techcrunch.com/2018/04/17/facebook-gdpr-changes (April 2018)

18. Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.H., Le Métayer, D.,
Tirtea, R., Schiffner, S.: Privacy and data protection by design. ENISA Report
(January 2015)

19. Diaspora: Diaspora. https://joindiaspora.com (2016)
20. European Commission: Proposal for a General Data Protection Regulation. Code-

cision legislative procedure for a regulation 2012/0011 (COD), European Commis-
sion, Brussels, Belgium (January 2012)

21. European Commission: General Data Protection Regulation (GDPR). Regulation
2016/679, European Commission, Brussels, Belgium (April 2016)

22. Ferrara, P., Spoto, F.: Static analysis for GDPR compliance. In: ITASEC’18. CEUR
Workshop Proceedings, vol. 2058. CEUR-WS.org (2018)



Is Privacy by Construction Possible? 15

23. Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design (2011)
24. Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design reloaded (2015)
25. Hert, P.D., Papakonstantinou, V.: The new general data protection regulation:

Still a sound system for the protection of individuals? Computer Law & Security
Review 32(2), 179–194 (April 2016)

26. Hoepman, J.: Privacy design strategies - (extended abstract). In: IFIP-SEC’14.
IFIP Advances in Information and Communication Technology, vol. 428, pp. 446–
459. Springer (2014)

27. Kiss, J.: Google admits collecting wi-fi data through street view cars.
The Guardian. Available at https://www.theguardian.com/technology/2010/
may/15/google-admits-storing-private-data (May 2010)

28. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Computer Science Review 4(2), 81–99 (2010)

29. Le Métayer, D.: Privacy by design: a formal framework for the analysis of archi-
tectural choices. In: CODASPY’13. pp. 95–104. ACM (2013)

30. Notario, N., Crespo, A., Kung, A., Kroener, I., Le Métayer, D., Troncoso, C., del
Álamo, J.M., Mart́ın, Y.S.: PRIPARE: A new vision on engineering privacy and
security by design. In: Cyber Security and Privacy (CSP’14). Communications in
Computer and Information Science, vol. 470, pp. 65–76. Springer (2014)

31. Pearson, S., Mont, M.C.: Sticky policies: An approach for managing privacy across
multiple parties. IEEE Computer 44(9), 60–68 (2011)

32. Picazo-Sánchez, P., Pardo, R., Schneider, G.: Secure Photo Sharing in Social Net-
works. In: IFIP Information Security & Privacy Conference (IFIP SEC’17). IFIP
Advances in Information and Communication Technology (AICT), vol. 502, pp.
79–92. Springer Science and Business Media (2017)

33. Pinisetty, S., Antignac, T., Sands, D., Schneider, G.: Monitoring data minimisation.
Tech. rep. (2018), http://arxiv.org/abs/1801.02484

34. Pinisetty, S., Sands, D., Schneider, G.: Runtime Verification of Hyperproperties
for Deterministic Programs. In: 6th Conference on Formal Methods in Software
Engineering (FormaliSE@ICSE’18). pp. 20–29. ACM (2018)

35. Schaefer, I., Runge, T., Knüppel, A., Cleophas, L., Kourie, D., Watson, B.W.: To-
wards Confidentiality-by-Construction. In: 8th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation – ISoLA’18;
Track: X-by-Construction. LNCS, Springer (2018), to appear

36. Spiekermann, S.: The challenges of privacy by design. Commun. ACM 55(7), 38–40
(2012), http://doi.acm.org/10.1145/2209249.2209263

37. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Software Eng.
35(1), 67–82 (2009)

38. Tedesco, F.D., Hunt, S., Sands, D.: A semantic hierarchy for erasure policies. In:
ICISS’11. LNCS, vol. 7093, pp. 352–369. Springer (2011)

39. Tedesco, F.D., Russo, A., Sands, D.: Implementing erasure policies using taint
analysis. In: NordSec’10. LNCS, vol. 7127, pp. 193–209. Springer (2010)

40. Tsormpatzoudi, P., Berendt, B., Coudert, F.: Privacy by design: From research and
policy to practice - the challenge of multi-disciplinarity. In: Third Annual Privacy
Forum on Privacy Technologies and Policy (APF). LNCS, vol. 9484, pp. 199–212.
Springer (2015)


