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A social network service is a platform to build social relations among people sharing similar interests
and activities. The underlying structure of a social networks service is the social graph, where nodes
represent users and the arcs represent the users’ social links and other kind of connections. One
important concern in social networks is privacy: what others are (not) allowed to know about us.
The “logic of knowledge” (epistemic logic) is thus a good formalism to define, and reason about,
privacy policies. In this paper we consider the problem of verifying knowledge properties over
social network models (SNMs), that is social graphs enriched with knowledge bases containing the
information that the users know. More concretely, our contributions are: i) We prove that the model
checking problem for epistemic properties over SNMs is decidable; ii) We prove that a number of
properties of knowledge that are sound w.r.t. Kripke models are also sound w.r.t. SNMs; iii) We give a
satisfaction-preserving encoding of SNMs into canonical Kripke models, and we also characterise
which Kripke models may be translated into SNMs; iv) We show that, for SNMs, the model checking
problem is cheaper than the one based on standard Kripke models. Finally, we have developed a
proof-of-concept implementation of the model-checking algorithm for SNMs.

1 Introduction

Social networks services (or simply social networks) are one of the most popular services on the Internet
nowadays. One of the main concerns in social networks is that of privacy: most users are not in full control
over what they share, and it is not uncommon that private and personal data is leaked to an unintended
audience [8]. These concerns arise because users cannot determine (in a precise manner) who knows their
personal information. One solution is to provide users with more fine grained control over who knows
their information. Epistemic logic or “the logic of knowledge” [5] offers great precision and granularity
for modelling and reasoning about the knowledge of the (users or agents) in a system.

In [11] we introduced PPF , a formalism based on epistemic logic to specify privacy policies in
social networks, and to enable a formal assessment on whether these policies are preserved. PPF
consists of: i) A generic model for social networks (SNMs); ii) A knowledge-based logic (K BL ) to
reason about the social network and privacy policies; iii) A formal language (PPL ) to describe privacy
policies (based on K BL ). In [10], PPF was further extended by providing agents with a deductive
engine to perform knowledge inferences, and including an operational semantics to model the dynamics
of social networks.

PPF has been specifically designed for privacy policies for real social networks, and that is why
the language PPL and the underlying logic K BL are interpreted over SNMs and not over Kripke
models (possible-worlds semantics), which is the “standard” way to give semantics to epistemic logic.
In Kripke models the uncertainty of the agents is modelled using an accessibility relation. This relation
connects all the worlds in the model that an agent considers possible. If a formula is true in all of them,
then the agent knows it. This does not correspond to the way users in real world social networks acquire
and reason about information. Typically, when a user joins a social network, she knows none or a few
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facts about it. The system might suggest some friends that are retrieved from the user’s phone contacts.
As the user makes new friends and they share information, her knowledge starts to grow, and later from
this set of accumulated knowledge users may derive new facts.

There are two main advantages in PPF ’s design (as opposed to standard Kripke models):
1. It preserves the original structure of real social networks. The models in PPF (SNMs)

consist of the social graph [4] and a knowledge base per user. The topology of the social graph
provides information regarding the relationships between users (e.g., friends, colleagues,...). The
knowledge base gives semantics to the modality Kiϕ (user i knows ϕ). Knowledge bases are not a
new invention, they are just an instance of the syntactic approach to modelling knowledge [7]. This
structure is also important from the enforcement point of view since it facilitates the integration of
the framework with the target social network.

2. Checking whether a user knows something must be as efficient as possible. The privacy poli-
cies that users can specify in PPF talk about knowledge, e.g., “Only my friends can know my
location” or “Only my family can know that I am going to my father’s birthday party”. Therefore,
the enforcement of PPF privacy policies mainly depends on how efficiently these checks are
performed. Social networks have millions of users, who disclose tons of information per second. As
a consequence, a slow enforcement mechanism would not work in practice. By splitting the users’
knowledge in different knowledge bases, the complexity of checking whether a user knows a piece
of information can be significantly reduced. In Section 6 we study the improvement in complexity
of having separated knowledge bases as opposed to standard Kripke semantics.

The properties of knowledge related to human reasoning, present in Kripke models, have been studied
for decades and they are well-understood [5]. On the other hand, the properties of knowledge in SNMs
have not been throughly studied. Therefore, several questions need to be answered: i) What is the
relation between SNMs and Kripke models? ii) Does this slightly different representation of knowledge
preserve the same properties? iii) Is it possible to determine whether an epistemic formula written in
K BL is satisfied on a given SNM?1 In this paper we study in depth the answer to these questions
providing evidence that PPF not only offers advantages from the practical point of view, but also
models knowledge as traditionally understood and accepted in the epistemic logic literature.

More concretely, our contributions are: i) A proof that model checking K BL formulae over SNMs
is decidable, the algorithm being an implementation of the satisfaction relation for K BL (Section
3); ii) A logical characterisation of a number of properties of knowledge for SNMs including common
and distributed knowledge (Section 4). iii) A translation from SNMs into canonical Kripke models,
together with a proof that satisfaction is preserved (Section 5); we also show that it is always possible to
reconstruct the original SNM from the canonical Kripke model, by considering the state associated with
the characteristic formulae (Section 5.1); iv) A formal comparison of the complexity of the model checking
problem for SNMs and for Kripke models where we show that the former is more efficient (Section 6).
Additionally, we provide a proof-of-concept implementation of the model-checking algorithm.2 The
extended version of this paper includes the proofs of all Theorems and Lemmas [12].

2 Preliminaries

Here we briefly recall First-Order Epistemic Logic [5], social network models and the logic K BL [10].

1Answering this question will also solve the model checking problem for privacy policies written in PPL , as checking
conformance of PPL is reduced to checking satisfaction of a K BL formula.

2https://github.com/raulpardo/kbl-model-checker
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Figure 1: Relational Kripke structure

2.1 First-Order Epistemic Logic

We start with a set T , consisting of relation symbols (p), function symbols ( f ) and constants symbols (c).
Hereafter we will refer to T as the vocabulary. Each relation and function symbol has an implicit arity
which corresponds to the number of arguments it takes. Function and relation symbols are interpreted
over elements of a domain. We assume an infinite supply of variables, which we write as x,y and so on.
We can form terms using constants, variables, and function symbols. Formally, a term t is recursively
defined as follows: t ::= c | x | f ( #»t ), where #»t represents a list of terms t1, . . . , tk. An atomic formula is of
the form p( #»t ) where p is a relation symbol. Let Ag be a set of agents, i ∈ Ag and G⊆ Ag, the syntax of
First-Order Epistemic Logic (FOEL), denoted as L , is recursively defined as follows [5]:

ϕ::=p( #»t ) | ϕ ∧ϕ | ¬ϕ | ∀x.ϕ | Kiϕ

The remaining epistemic modalities are defined as SGϕ ,
∨

i∈G Kiϕ and EGϕ ,
∧

i∈G ϕ . The intuitive
meaning of the modalities is the following: Kiϕ , agent i knows ϕ; EGϕ , everyone in the group G knows
ϕ; SGϕ , someone in the group G knows ϕ . The semantics of FOEL formulae is given using relational
Kripke models. In what follows we sometimes omit relational and write Kripke models.

Definition 1 ([5]). A relational Kripke Model is a tuple of the form 〈S,π,{Ki}i∈Ag〉, where:
• S is a non-empty set of states (or worlds).
• π : S→A is a function that associates to each world a relation structure for a fixed vocabulary

T . As usual, A consists of a domain dom(A ), an assignment of a k-ary relation PA ⊆ dom(A )k

for each relation symbol, an assignment of a k-ary function f A : dom(A )k→ dom(A ) for each
function symbol and an assignment of a member cA of the domain for each constant symbol.
• {Ki}i∈Ag where Ki ⊆ S×S is an accessibility relation between states.

Example 1. Let us consider a Kripke structure consisting of agents a and b, states s0, s1 and s2, a
predicate p with arity 1 and relations Ka = {(s0,s1),(s1,s0)} and Kb = {(s1,s2),(s2,s1)}. We assume
here that all relational structures π(sn) have a common domain dom(A ) = {a,b}, i.e., Ag. Moreover,
a ∈ Pπ(s0) and a ∈ Pπ(s1). Fig. 1 shows a graphical representation of the described model. �

Usually free variables and terms are interpreted using a valuation function, which is parametrised
with a relational structure depending of the state of the Kripke model in which the formula is evaluated.
For simplicity, in this paper we will assume that formulae in L do not contain free variables (i.e., all
variables are quantified) and the interpretation of functions and constants is the same independently of
the state where they are evaluated. Thus, we assume that terms are implicitly interpreted and we do not
include the valuation function as a parameter in the satisfaction relation below.

Definition 2 ([5]). Given a non-empty set of agents Ag, a relational Kripke model M, a state s ∈ M,
agents i, j,u ∈ Ag and a finite set of agents G⊆ Ag , we define what it means for ϕ ∈L to be satisfied by
(M,s), written (M,s) � ϕ , as shown in Table 1.

We say that a formula ϕ is valid in a Kripke model M, and we write M � ϕ , if ∀s ∈M (M,s) � ϕ .
Moreover, we say that ϕ is valid, denoted as � ϕ , if for all Kripke models M it holds M � ϕ .
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(M,s) � p(t1, . . . , tk) iff (t1, . . . , tk) ∈ Pπ(s)

(M,s) � ¬ϕ iff (M,s) 6� ϕ

(M,s) � ϕ1∧ϕ2 iff (M,s) � ϕ1 and (M,s) � ϕ2
(M,s) � ∀x.ϕ iff for all v ∈ dom(π(s)), (M,s) � ϕ[v/x]
(M,s) � Kiϕ iff (M, t) � ϕ for all t such that (s, t) ∈Ki

Table 1: Satisfaction relation over Kripke models

Example 2. Let M be the model presented in Fig. 1. It holds that (M,s0) � Ka p(a), since p(a) holds in
s0 and in all the states accessible for a from s0 (only s1). It also holds that (M,s1) � ¬Kb p(a), since in
one of the states that b considers possible p(a) is not true. In particular, (M,s2) � ¬p(a).

2.2 K BL and Social Network Models

K BL is a knowledge-based logic for social networks. It contains all the knowledge modalities presented
in L , and additionally, it includes two special types of predicates. The connection and action predicates.
Connection predicates represent the “social” connections between users. For instance, friends, colleagues,
family, co-workers, and so forth. Action predicates model the permitted actions a user may execute. For
example, Alice can send a friend request to Bob or Alice can join events created by Bob. Note that action
predicates are not deontic modalities. Hereafter we use C and Σ to denote sets of indexes for connections
and permissions, respectively. As before the set Ag represents a set of agents in the system.

Definition 3. Given i, j ∈ Ag, a set of predicate symbols P such that an(i, j),cm(i, j), p( #»t ) ∈P where
m ∈ C and n ∈ Σ, and G⊆ Ag, the syntax of the knowledge-based logic K BL is inductively defined as:

ϕ ::= cm(i, j) | an(i, j) | p( #»t ) | ϕ ∧ϕ | ¬ϕ | ∀x.ϕ | Kiϕ

As before, the remaining epistemic modalities are defined as SGϕ ,
∨

i∈G Kiϕ and EGϕ ,
∧

i∈G ϕ .

Terms and atomic formulae are defined as for L . FK BL denotes the set of well-formed formulae of
K BL (category ϕ of Def. 3).

Social networks are usually modelled as graphs where nodes represent the users (or agents), and
edges represent different relationships among agents or any other social network specific information [4].
These graphs are known as social graphs. Here we enrich social graphs with information about the agents
knowledge, permissions, connections and privacy policies as defined below.

Definition 4 (Social Network Model). Given a set of K BL formulae F , a set of privacy policies Π,
and a finite set of agents Ag ⊆A U from a universe A U , a social network model (SNM) is a social
graph of the form 〈Ag,A ,KB,π〉, where
• Ag is a nonempty finite set of nodes representing the agents of the social network.
• A is a first-order relational structure for the fixed vocabulary of the SNM, which as before,

consists of a finite domain dom(A )3, an assignment of a k-ary relation PA ⊆ dom(A )A for each
predicate symbol, an assignment of a k-ary f A : dom(A )k→ dom(A ) for each function symbol
and assignment of a member cA of the domain for each constant symbol.

3For the sake of clarity in definitions and proofs and w.l.o.g. we have only considered a single finite domain in the formal
definition. However, in the rest of the paper we will assume that we have a finite set of finite domains. For instance, we can have
dom(A ) consisting of the domain of agents, timestamps, indexes for pictures, etc. All the results also hold in SNMs consisting
of multiple domains as we consider a finite number of finite domains.
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Figure 2: Example of Social Network Model

• KB : Ag→ 2F is a function that returns a finite set of accumulated knowledge for each agent, stored
in what we call the knowledge base of the agent. We write KBi to denote KB(i).
• π : Ag→ 2Π is a function that returns a finite set of privacy policies for each agent. We write πi to

denote π(i).

The shape of the relational structure A depends on the concrete the social network. Connections and
permission actions between agents, i.e., edges of the social graph, are represented as families of binary
relations, {Ci}i∈C ⊆ 2Ag×Ag and {Ai}i∈Σ ⊆ 2Ag×Ag over the domain of agents. Sometimes, we write an
atomic formula, e.g. friends(a,b) to denote that the elements a,b ∈ Ag belong to a binary relation, friends,
defined over pairs of agents as expected. S N denotes the universe of all possible SNMs.

The knowledge base KBi of each agent i contains the explicit knowledge that the agent has. Besides
this explicit knowledge, agents also know anything that can be derived from formulae in their knowledge
bases (using the KD4 axiomatisation of epistemic logic [5]).

Definition 5. A derivation of a formula ϕ ∈FK BL , is a finite sequence of formulae ϕ1, . . . , ϕn = ϕ

where each ϕi, for 1≤ i≤ n, is either an instance of the axioms or the conclusion of one of the derivation
rules of the KD4 axiomatisation which premises have already been derived, i.e., it appears as ϕ j with
j < i.

Given a set of formulae Γ ∈ 2FK BL , we write Γ ` ϕ to denote that ϕ can be derived from Γ.

Additionally, we impose two assumptions in users’ knowledge bases:
i) ϕ and ¬ϕ cannot be derivable in the same KBi. It prevents users from having inconsistent knowledge.

ii) If ϕ is in i’s knowledge base, Kiϕ is also there. In this way we make users aware of their knowledge.
These assumptions are formalised as the following properties:

Definition 6 (Knowledge Consistency). For all i ∈ Ag and formulae ϕ ∈FK BL , if KBi ` ϕ then KBi 6`
¬ϕ.Enforcing knowledge consistency is straightforward. Before adding any formula ϕ to KBi we check
that KBi∪{ϕ} 6` ¬ϕ .

Definition 7 (Self-Awareness). For all i ∈ Ag and formulae ϕ ∈FK BL , if KBi ` ϕ then KBi ` Kiϕ.

Remark 1. Self-awareness is not equivalent to the necessitation rule in KD4. Necessitation states that
if a ϕ is provable from no assumptions then Kiϕ is provable from no assumptions as well [5]. That is,
� ϕ

� Kiϕ
. It requires ϕ to be a tautology. On the other hand, self-awareness states that if ϕ is derivable

from i’s knowledge, then Kiϕ is also derivable. For example, ϕ ∨¬ϕ is provable from no assumptions.
Therefore, from axiom A1 it is derivable KBi ` ϕ ∨¬ϕ for all KBi. Consequently, by necessitation it also
holds that KBi ` K jϕ ∨¬ϕ for all KBi and j ∈ Ag. However, consider now a predicate p( #»t ) which is not
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SN � p( #»t ) iff p( #»t ) ∈ KBe

SN � cm(i, j) iff (i, j) ∈Cm

SN � an(i, j) iff (i, j) ∈ An

SN � ¬ϕ iff SN 6� ϕ

SN � ϕ ∧ψ iff SN � ϕ and SN � ψ

SN � ∀x.ϕ iff for all v ∈ dom(A ), SN � ϕ[v/x]
SN � Kiϕ iff KBi ` ϕ

Table 2: K BL satisfaction relation

derivable from no assumptions. It does not hold that KBi ` p( #»t ) for all KBi. There is no axiom which
includes p( #»t ) in the set of derivations of `. Nevertheless, self-awareness says that if KBi ` p( #»t ) then
KBi ` Ki p(

#»t ). Note that, unlikely necessitation, we use the same agent i in KBi and Ki p(
#»t ).

Example 3. Let SN be an SNM consisting of three agents Alice, Bob and Charlie, Ag = {Alice,
Bob,Charlie}; the friend request action, Σ = {friendRequest}; and the connections Friend and Blocked,
C = {Friend,Blocked}. Here, we define dom(A ) to be a finite set of timestamps.

Fig. 2 shows a graphical representation of SN. In this model the dashed arrows represent connections.
Note that the Friend connection is bidirectional, i.e., Alice is friend with Bob and vice versa. On the
other hand, it is also possible to represent unidirectional connections, as Blocked; in SN Bob has blocked
Charlie. Permissions are represented using a dotted arrow. In this example, Charlie is able to send a
friend request to Alice.

The predicates inside each node represent the agents’ knowledge, e.g., Alice has post(Bob,pub,1) in
her knowledge base, meaning that she knows that Bob posted at time 1 that he was in a pub. Similarly,
Charlie’s knowledge base contains the predicate post(Bob, library,2) meaning that at time 2 Bob posted
that he was in the library. Agents’ nodes can also contain more complex K BL formulae that may
increase their knowledge. For instance, Alice knows loc(Bob,pub,1) implicitly. Alice can in fact derive it
by Modus Ponens, from post(Alice,pub,1) and ∀t.(post(Alice,pub, t) =⇒ loc(Bob,pub, t)). The variable
t ranges over dom(A ), which, as mentioned earlier, consists in a finite set of timestamps. Being able to
derive loc(Bob,pub,1) means that Alice knows that Bob’s location at time 1 was a pub.

The satisfaction relation for K BL formulae, interpreted over SNMs, is defined as follows.

Definition 8. Given an SNM SN = 〈Ag,A ,KB,π〉, agents i, j ∈ Ag, formulae ϕ,ψ ∈FK BL , a finite set
of agents G⊆ Ag, m ∈ C and n ∈ Σ, the satisfaction relation � ⊆S N ×K BL is defined in Table 2.

The intuition behind the semantic definition of the knowledge modality is different in K BL from
that of epistemic logic. As shown in Table 1, the accessibility relation in Kripke models captures the
uncertainty of the agents. It models all the states that an agent consider possible and knowledge is acquired
when a given formula is true in all those states. In SNMs, knowledge is explicitly present in the knowledge
bases of the agents, hence modelling what the agents know rather than what they consider possible. A
given formula is known by an agent if it is present in her knowledge base or if she can derive it from her
knowledge. We use a special agent called environment (or simply e) which defines the truth of atomic
formulae of the type p( #»t ). The environment’s knowledge base (KBe) contains all predicates which are
true in the real world. For instance, loc(Alice,Sweden) is in KBe only if Alice’s location is Sweden or,
similarly, only if Bob’s age is 20 the predicate age(Bob,20) is in KBe.

Example 4. Let SN be the SNM in Fig. 2. As described in Example 3, Alice knows that Bob posted
that he was in a pub at time 1, meaning that SN � KAlicepost(Bob,pub,1) holds. Indeed, it holds since
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post(Bob,pub,1) is in the knowledge base of Alice, i.e., post(Bob,pub,1)∈KBAlice and therefore it can be
derived KBAlice ` post(Bob,pub,1) (1). Though not explicitly stated, it is possible for Alice to derive that
Bob’s location at time 1 was a pub, meaning that SN � KAliceloc(Bob,pub,1) (2) should hold. Following
the semantics of Ki in Table 2, the previous formula is true iff KBAlice ` loc(Bob,pub,1). Fig. 2 shows
that KBAlice contains the formula ∀t.(post(Bob,pub, t) =⇒ loc(Bob,pub, t)) (3)—where t is a timestamp
—therefore the deductive engine derives post(Bob,pub,1) =⇒ loc(Bob,pub,1) (4). From (1) and (4), by
modus ponens we can derive loc(Bob,pub,1), i.e., KBAlice ` loc(Bob,pub,1), hence (2) holds.

3 Model checking SNMs

In this section we present a model checking algorithm that directly implements the semantics of K BL in
Table 2, and we show that model checking is decidable under the following assumptions:

Assumption 1. All domains are finite.

Assumption 2. All functions are computable.

These assumptions are present in all real social networks. Domains in SNMs might be, the set of users,
posts, pictures, likes, tags and so on. In practice at any moment in time there is a finite amount of any of
these elements. Consequently, when having a universal quantification over a domain it is reasonable to
consider only the finite set of elements in the domain at that concrete moment in time. Furthermore, we
assume that functions in K BL terms must be computable. As mentioned in the introduction, K BL is
a logic embedded in a framework to express privacy policies. The framework includes the notion of
instantiation where all the elements of SNMs are instantiated for a concrete social network. For instance,
in [11] we presented the instantiations of Facebook and Twitter. In these instantiations functions were
used to retreive information, e.g., followers(u) which returns all the followers of the user or friends(u)
which returns all the friends of u. Another type of functions could be weather(London) or location(u),
which return the current weather in London and u’s current location, respectively. Therefore, computable
functions are enough for the practical use of the logic.

Theorem 1. Let SN be an SNM and ϕ ∈FK BL be a formula. Determining whether SN � ϕ is decidable.

Proof. We show decidability of the model checking problem for K BL by presenting an algorithm
which implements the semantics of Table 2,

First, we expand the universal quantifiers in ϕ by inductively transforming each subformula ∀x.ϕ ′ into
a conjunction with one conjunct ϕ ′[v/x] for each element v of the domain dom(A ). Given that the domain
is finite (see Assumption 1), it always terminates and results in a quantifier free formula. Secondly, we
compute all functions and replace all constants with an element of the domain according to the assignment
in A . From Assumption 2, we can deduce that this step always terminates. After this step we are left with
a quantifier free formula without functions or constant symbols. Finally, we inductively show that all the
elements of the formula (see Def. 3) can be computed.
• Checking cm(i, j) and an(i, j) can be performed in constant time, simply by checking (i, j) ∈Cm or
(i, j) ∈ An, respectively.
• Checking p( #»t ) requires the query p( #»t ) ∈ KBe to the environment’s knowledge base. It can be

performed in constant time.
• ¬ϕ and ϕ1∧ϕ2 can be done in constant time, using the induction hypothesis.
• Kiϕ requires a query to the epistemic engine to determine KBi ` ϕ . Solving the previous query is a

decidable problem [5].
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The algorithm goes recursively from the top most element of ϕ to the bottom.

In Section 6 we study the complexity of this algorithm and compare it to that of model checking in
traditional Kripke models. Nevertheless, in order to provide a fair comparison, we first show that the same
set of properties of knowledge that are sound w.r.t. Kripke models are also sound w.r.t. SNMs.

4 Properties of Knowledge in SNMs

Here we explore properties of knowledge in SNMs. In particular, we consider the axioms of some of the
standard axiomatisations for epistemic logic, and prove that such axioms are sound with respect to SNMs.

In [5] Fagin et al. show which properties of knowledge are sound w.r.t. Kripke models depending on
the type of accessibility relation of the model. For instance, the following axiom is sound w.r.t. the set of
Kripke models where the accessibility relation is reflexive: (A3) Kiϕ =⇒ ϕ.

These properties of knowledge comprise the different axiomatisations of epistemic logic. In SNMs
the properties of knowledge will depend on the axiomatisation from epistemic logic [5] that we choose
for `. As we described in Def. 5, ` includes all the axioms and derivation rules from KD4.

In epistemic logic one can talk about knowledge or belief depending on the properties (or axiomatisa-
tions) that are sound w.r.t. a particular set of Kripke models. Axiom A3 is commonly called Knowledge
axiom. It means that the facts agents know are true. When this axiom is not present, the “knowledge” of the
agents is regarded as belief. As you might have noticed, in SNMs the truth of the facts that the agents know
is not linked to whether they are true or not. For example, imagine that Alice knows that Bob and Charlie
are friends, i.e., KAlicefriend(Bob,Charlie), which is true iff KBAlice ` friend(Bob,Charlie). This is not
connected to the actual truth of the predicate friend(Bob,Charlie), which holds iff (Bob,Charlie)∈CFriend.
When the knowledge axiom is not present, some philosophers argue that it is required that the beliefs of
the agents are consistent. This is captured by the following axiom, where ⊥ represents falsum: (D) ¬Ki⊥.

In Kripke models, axiom D is present when the accessibility relation is serial [5]. In SNMs, we assume
agents’ knowledge bases to be consistent (see Def. 6). Therefore, ⊥ cannot be derived.

Lemma 1. Axiom D is sound with respect to SNMs.

As we mentioned in the introduction, K BL and SNMs were developed in the context of a privacy
policy framework for social networks [11, 10]. In privacy policies it is more natural to write “Alice
cannot know my location” than “Alice cannot belief my location”. Because of this, we chose to talk about
knowledge, even though we are dealing with an axiomatisation for belief.

The most basic set of properties for Kripke models, i.e., the set of properties that are sound w.r.t. Kripke
models with no conditions in their accessibility relation, is the K axiomatisation [5]. It consists of two
axioms and two inference rules. Given ϕ ∈L and i ∈ Ag,
A1. All (instances of) first-order tautologies,
A2. (Kiϕ ∧Ki(ϕ =⇒ ψ)) =⇒ Kiψ ,
R1. From ϕ and ϕ =⇒ ψ infer ψ ,
R2. From ϕ infer Kiϕ where ϕ must be provable from no assumptions.

Lemma 2. K is sound with respect to SNMs.

The axioms and inferences rules of K, together with axiom D comprises the axiom system KD. Nev-
ertheless, there exist two more axioms that are normally present in knowledge and belief axiomatisations,
the so called positive introspection (A4) and negative introspection (A5) [5]. The former expresses that
agents in the system are aware of their knowledge, the latter means that agents know everything that they
do not know. Given ϕ ∈L and i ∈ Ag
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A4. Kiϕ =⇒ KiKiϕ ,
A5. ¬Kiϕ =⇒ Ki¬Kiϕ .

Lemma 3. Axiom A4 is sound with respect to SNMs.

Lemma 4. Axiom A5 is not sound with respect to SNMs.

A4 follows from our assumption that agents are self-aware of their knowledge (see Def.7). On the other
hand, A5 does not follow given the current set of assumptions in knowledge bases. An agent’s knowledge
base does not contain any knowledge regarding what she does not know, unless it is explicitly inserted.

The axiomatisation K together with axioms D and A4 forms the so-called KD4 axiomatisation. We
thus have the following result for SNMs.

Theorem 2. KD4 is sound with respect to SNMs.

Common Knowledge

Here we introduce the notion of common knowledge, which we represent using the modality CG where G
is a group of agents. A fact becomes common knowledge when everybody knows it, and also, everyone
knows that everyone knows it, and so forth. This is a useful concept in the social network setting. Consider
the effect of publishing a post p( #»t ) in a social network. After posting, the owner of the post and the
audience will know the post, E{owner}∪Audience p( #»t ). Moreover, the owner also will know that everyone
who was included in the audience will know the post, KownerEAudience p( #»t ). But even more, each of the
users in the audience will know that each other knows the post, i.e. E{owner}∪AudienceE{owner}∪Audience p( #»t )
and so on. The traditional definition of common knowledge [5] over Kripke models accurately captures
the described effect. Given a Kripke model M, a state s ∈M, a formula ϕ ∈L and a set of agents G,
common knowledge is defined as follows: (M,s) �CGϕ iff (M,s) � Ek

Gϕ for k = 1 . . . where E0
Gϕ = ϕ

and Ek+1
G ϕ = EGϕEk

Gϕ . The definition of common knowledge for SNMs is analogous to the one above.

Definition 9. Given an SNM SN, a formula ϕ ∈FK BL and a set of agents G, common knowledge is
defined as follows: SN �CGϕ iff SN � Ek

Gϕ for k = 1 . . .

Given formulae ϕ,ψ ∈L , the set G ⊆ Ag and i ∈ Ag, the following axiomatisation characterises
common knowledge [5]:

C1. EGϕ ⇐⇒
∧

i∈G Kiϕ ,
C2. CGϕ ⇐⇒ EG(ϕ ∧CGϕ),
RC1. From ϕ =⇒ EG(ψ ∧ϕ) infer ϕ =⇒ CGψ where ϕ =⇒ EG(ψ ∧ϕ) must be provable from no
assumptions.

Lemma 5. The axioms C1 and C2, and the rule RC1 are sound w.r.t. SNMs.

Distributed Knowledge

In this section we introduce the distributed knowledge operator, represented by the modality DG. A fact
becomes distributed knowledge in the group of agents G when it is known by combining the knowledge
of all individual agents. It can be seen as a wise agent. In Kripke models, distributed knowledge is
defined by removing possible states, i.e., removing uncertainty. Formally, (M,s) � DGϕ iff (M, t) �
ϕ for all t such that (s, t) ∈

⋂
i∈G Ki. We define distributed knowledge as the union of all the explicit

knowledge that all the agents in G have and everything that can be derived from it.

Definition 10 (Distributed knowledge). Given an SNM SN, a formula ϕ ∈FK BL and a set of agents G,
distributed knowledge is defined as follows: SN � DGϕ iff

⋃
i∈G KBi ` ϕ.
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The following axioms characterise distributed knowledge [5]:
D1. D{i}ϕ ⇐⇒ Kiϕ, i = 1, . . . ,n,
D2. DGϕ =⇒ DG′(ϕ) if G⊆ G′,
DA2 and DA4. Axioms A2 and A4 of KD4, Ki with DG in each axiom.

Note that axiom D is not required because we work with a belief axiomatisation [5]. Therefore, it is
possible for a group of agents to have inconsistent distributed beliefs. In what follows, we show that this
axiomatisation for Kripke models is sound with respect to SNMs as well.
Lemma 6. Axioms D1 and D2, together with the axioms A2 and A4 of the KD4-axiomatisation (replacing
the modality Ki with the modality DG) are sound w.r.t. SNMs.

5 Translation of SNMs into Kripke Models

In this section, we show that SNMs can be encoded into Kripke models. Our proof is constructive, starting
from an SNM we give a procedure to build a canonical Kripke model, and we prove that satisfaction is
preserved when interpreting K BL formulae as epistemic logic formulae.

For epistemic logic, Fagin et al. show that it is possible to construct a canonical Kripke model which
satisfies a given formula ϕ [5], provided that ϕ is consistent with respect to some of the axiomatisations of
knowledge. A formula ϕ is KD4-consistent if ¬ϕ cannot be derived. A set of formulae is KD4-consistent
if the conjunction of all the formulae in the set is KD4-consistent. We say that a set of formulae Φ is
maximal KD4-consistent with respect to the language L , if Φ is KD4-consistent and for all ϕ in L but
not in Φ, the set Φ∪{ϕ} is not KD4-consistent. In what follows, we describe the procedure of how to
construct a canonical Kripke model for a KD4-consistent formula. We will follow a similar approach
when translating SNMs into Kripke models.
Definition 11 (Canonical Kripke model for KD4[5]). Consider a KD4-consistent formula ϕ . Let Sub(ϕ)
be the set of all subformulae of ϕ . We define Sub+(ϕ) to be the set of all subformulae and their negations,
i.e. Sub+(ϕ) = Sub(ϕ)∪{¬ψ | ψ ∈ Sub(ϕ)}. We also define Con(ϕ) to be the set of maximal KD4-
consistent subsets of Sub+(ϕ). Given a set of formulae Θ⊆L , we define Θ/Ki = {ϕ | Kiϕ ∈ Θ}. The
canonical Kripke model for ϕ is defined as follows: Mϕ = 〈Sϕ ,π,{Ki}i∈Ag〉 where Sϕ = {sΘ | Θ ∈
Con(ϕ)}, Ki = {(sΘ,sΨ) | Θ/Ki ⊆Ψ/Ki, Θ/Ki ⊆Ψ} and

π(sΘ)(p(t1, . . . , tk)) =

{
true if p(t1, . . . , tk) ∈Θ

false if p(t1, . . . , tk) 6∈Θ

Fagin et al. show that ϕ is satisfiable in the resulting canonical Kripke model [5, Theorem 3.2.4]. The
set of Kripke models that are sound and complete with respect to KD4 are the ones with a serial and
transitive accessibility relation. The accessibility relation of the previous canonical Kripke model is, as
shown in [5, Theorem 3.2.4], serial and transitive. We denote the set of Kripke models with the previous
type of accessibility relation as M lt .

The canonical Kripke model will have at most 2|ϕ| states, as shown in [5, Theorem 3.2.4] where |ϕ| is
the length of the formula ϕ . Even though it is finite, this approach of constructing a Kripke model can lead
to an exponential growth of the size of the model. For example, if we assume that the knowledge of the
agents increases monotonically, i.e., agents do not forget any knowledge they have previously obtained,
then the size of ϕ will have a lower bound, from which its size will only grow, and consequently, the size
of the corresponding canonical Kripke model. In what follows, we define a function which takes an SNM
and converts it into the corresponding canonical Kripke model.

First we describe how to construct a set containing all the true formulae in an SNM, called the
characteristic set of the social network.
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Definition 12. The characteristic set of an SNM SN, denoted as ΦSN , is constructed as follows: ΦSN =
{p( #»t ) | p( #»t )∈KBe} ∪ {Kiϕ | ϕ ∈KBi} ∪ {c(i, j) | (i, j)∈Cc,c ∈ C } ∪ {a(i, j) | (i, j)∈ Aa,a ∈ Σ}.
Moreover, we define the characteristic formula of an SNM.

Definition 13. Given a characteristic set, ΦSN , of an SNM SN, its characteristic formula, denoted as ϕSN ,
is defined as ϕSN =

∧
ψ∈ΦSN

ψ .

We will use the characteristic formula of an SNM to create the corresponding Kripke model, therefore
we must show that this formula is KD4-consistent.

Lemma 7. For all SN ∈S N , ϕSN is KD4-consistent.

We are now ready to provide our translation from SNMs into canonical Kripke models.

Definition 14 (Kripke transformation function). Let K T : S N →M lt be a function which takes an
SNM and converts it to the corresponding Kripke model as follows. Given an SN ∈S N , K T (SN)
is defined as follows: 1) Construct ΦSN as defined in Def. 12; 2) Construct ϕSN as defined in Def. 13;
3) Return the resulting canonical Kripke model of ϕSN as defined in Def. 11.

We thus have our main theorem.

Theorem 3. If a formula ϕ is satisfied in an SNM SN then ϕ is satisfied in the Kripke model K T (SN).

5.1 Translation of Kripke Models into SNMs

Note that, in general, it is not possible to translate arbitrary Kripke models into SNMs. One of the
reasons is that in Kripke models there exists only one type of predicate, which is always interpreted
in the same way, whereas in SNMs, there are three types of predicates. We cannot even translate back
canonical Kripke models constructed using K T . To see why, let us consider a canonical Kripke model
with the following characteristic set of formulae {KAliceloc(Bob, library), friend(Alice,Bob)}. We know
that the predicate loc(Bob, library) belongs to Alice’s knowledge base, since it is under the scope of a
knowledge modality. However, we cannot know the type of the predicate friend(Alice,Bob), it could be
part of a connection relation, action relation or simply be a regular predicate which should appear in the
environment’s knowledge base.

That said, we show here that it is in fact always possible to reconstruct the original SNM from the
canonical Kripke model, if we slightly modify our translation function K T . Let Φm

SN be a marked
characteristic set, which is a characteristic set as defined in Def. 12, but having the predicates annotated
so that their type can be syntactically identified. For example, if the predicate above friend(Alice,Bob) is
a connection predicate, it would be converted to co friend(Alice,Bob). We can now define K T m to be a
Kripke transformation function as in Def. 14, except for the input characteristic set, which is replaced by
Φm

SN . Given that we can uniquely identify the type of the predicates it is trivial to define a function that
takes a Kripke model constructed using K T m and returns the equivalent SNM. The function proceeds as
follows: firstly, it searches for all the agents present in all formulae and subformulae in Φm

SN and creates
one node per agent; secondly, it puts regular predicates in the environment’s knowledge base; thirdly it
creates relations between agents for each connection and permission predicate; finally, for all formulae of
the form Kiϕ it includes ϕ in i’s knowledge base. We refer the reader to the extended version of this paper
for the formal definitions of Φm

SN , K T m and the SNM construction.
We also show that satisfaction is preserved between a marked canonical Kripke model and its original

SNM when formulae are evaluated in the state corresponding to the marked characteristic set (sΦm
SN

).

Theorem 4. If a formula ϕ is satisfied in the state sΦm
SN

of a Kripke model K T m(SN) then ϕ is satisfied
in the SNM SN.
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6 Model checking complexity

In [5], Fagin et al. prove that the complexity of the model checking problem for KD4 (without common
and distributed knowledge) is PSPACE-complete for n agents where n > 1 and NP-complete for one agent.
They also prove that for a model M = (S,π,K1, . . . ,Kn) “There is an algorithm that, given a structure
M, a state s of M and a formula ϕ ∈L , determines, in time O(||M||× |ϕ|), whether (M,s) � ϕ” (see [5,
Proposition 3.2.1]) where ||M|| is the sum of all the states in S and the number of pairs in all Ki, and
|ϕ| is the length of the formula defined as usual. This algorithm is not optimal, but the result is useful to
compare the model checking problem in SNMs and the Kripke models constructed using our translation.

Let MϕSN be the model K T (SN) for an SNM SN. The complexity of the model checking problem
of a formula ϕ in the previous model is O(||MϕSN ||× |ϕ|). MϕSN has size at most 2|ϕSN | (see Section 5),
therefore it holds ||MϕSN || ≤ 2|ϕSN |. Thus, for simplicity and w.l.o.g. the above may be rewritten as
O(2|ϕSN |×|ϕ|).

In what follows we study the complexity of the model checking problem in K BL . The proof of
Theorem 1 describes an algorithm to determine whether SN � ϕ . We consider K BL without common
and distributed knowledge, since the complexity for Kripke models mentioned at the beginning of the
section also excludes these modalities. For simplicity in the complexity analysis and w.l.o.g. we only
consider quantifier free formulae which do not contain functions.

Let MKBi be the canonical Kripke model resulting from the conjunction of all formulae in agent’s
i knowledge base using our translation, the complexity of the model checking problem is given by
the function checking complexity (cc): cc(p( #»t )) = cc(c(i, j)) = cc(a(i, j) = c, cc(¬ϕ) = 1+ cc(ϕ),
cc(ϕ1∧ϕ2) = 1+cc(ϕ1)+cc(ϕ2) and cc(Kiϕ) = O(||MKBi ||×|ϕ|) where c is an upper-bound in the cost
of checking satisfaction of predicates in the environment’s knowledge base, connection predicates and
action predicates. Negation and conjunction need one step plus the complexity of checking satisfaction
of their subformulae. Finally, satisfaction of Kiϕ depends on checking KBi ` ϕ , which requires solving
the model checking problem as defined for Kripke models. Therefore it has the same complexity. Let
outerK : FK BL → 2FK BL be a function that takes a K BL formula and returns the set of subformulae
where Ki is the top most operator and it is not under the scope of a knowledge modality. For example,
outerK(Ka(p(s)∧Kbq(s))∧ p(u)∧¬Kbr(s)∧Kcu(v)) = {Ka(p(s)∧Kbq(s)),Kbr(s),Kcu(v)}. Note that
Kbq(s) is not part of the set because it is under the scope of Ka. The complexity of checking whether
a formula ϕ is satisfiable in an SNM is O(∑Kiϕi∈outerK(ϕ)(||MKBi || × |ϕi|)+mϕ) where mϕ ∈ N. The
characteristic formula of an agent’s knowledge base is the conjunction of all its knowledge, which we
denote as ϕKBi . As before, it holds that ||MKBi ||< |2ϕKBi |, which we use again for the complexity of the
problem O(∑Kiϕi∈outerK(ϕ)(2

|ϕKBi |×|ϕi|)+mϕ).
The intuition is as follows: mϕ is the cost of checking predicates, conjunctions and negations in

ϕ , which we assume to be some constant that depends on the length of ϕ . Besides, ∑Kiϕi∈outerK(ϕ)

(2|ϕKBi |×|ϕi|) is the cost of checking each subformula ϕi in the knowledge base of the corresponding
agent. In short, we have replaced checking satisfaction of ϕ in a complete model of the social network to
checking satisfaction of subformulae of ϕ in the corresponding knowledge bases of the agents.

Checking the parts of ϕ that only contain predicates and logical connectives has very similar com-
plexity in both models. In the canonical Kripke model of an SNM SN, the state corresponding to the
characteristic set (sΦSN ) contains all true predicates (see Def. 11). Similarly, in SNMs it is only needed
to check the environment’s knowledge base, and the connection and action relations (see Table 2). In
both cases the complexity is determined by the length of this particular part of ϕ . Therefore, in order
to compare the complexity of the model checking problem, we only focus on the parts of the formula
that are under the scope of a knowledge modality. Given a formula ϕ , let ϕK be the conjunction of
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the subformulae starting with a Ki modality (for any i ∈ Ag), formally, ϕK ,
∧

ψ∈outerK(ϕ) ψ . Thus the
complexity of the model checking problem in Kripke models is reduced to O(2|ϕSN |×|ϕK |), and in SNMs
it is O(∑Kiϕi∈outerK(ϕ)(2

|ϕKBi |×|ϕi|)). To formally compare the complexity of the problem in both models
we prove the following.

Lemma 8. Given SN ∈S N and a formula ϕ the following holds: O(∑Kiϕi∈outerK(ϕ)(2
|ϕKBi |×|ϕi|))<

O(2|ϕSN |×|ϕK |).

The previous lemma shows that it is always more efficient to check satisfaction of a formula ϕ in SNMs.
Intuitively, it shows that it is more efficient to construct Kripke models representing the agents’ knowledge
base and locally check the corresponding subformulae, than constructing the complete Kripke model
to check the conjunction of the mentioned subformulae. The difference in complexity becomes more
apparent as less agents are involved in the knowledge modalities of ϕ . When an agent is not mentioned in
ϕ her knowledge base is disregarded. For instance, in the SNM of Fig. 2 checking KCharlieloc(Bob,pub,1)
requires (at most) 24 + 5 = 21 steps where 4 is the size of the formula in Charlie’s knowledge base
and 5 is the size of KCharlieloc(Bob,pub,1), whereas in the corresponding canonical Kripke model it
requires (at most) 24+14+12 + 5 = 1073741829 steps where 14 is the size of the conjunction of all
the formulae in the knowledge base of Alice (assuming that the domain of x only has one element),
and 12 is the size of the predicates f riend(Alice,Bob), f riend(Bob,Alice), blocked(Bob,Charlie) and
friendRequest(Charlie,Alice).

7 Related work

The use epistemic logic to model knowledge in social networks is not new. One line of work consists
in using two dimensional modal logic. It relies on Kripke models where the knowledge of the agents
in the social network is encoded using an accessibility relation, and friendship is represented using a
symmetric irreflexive relation between agents [14]. Other epistemic logics include a public (and private)
announcement operator to study diffusion of information in the network [13, 2]. Permission and knowledge
has also been merged in the so called deontic-epistemic logic [1]. For a detailed comparison among these
logics and K BL we refer to the work by Pardo & Schneider [11, 10] and references therein.

There exist several model checkers for epistemic logic that perform efficiently in rather large scenarios
[6, 3, 9]. However, as shown in this paper, model checking in the canonical Kripke model constructed
from an SNM has higher complexity than in the SNM.

On the other hand, the model checking algorithm presented in this paper requires checking whether
KBi ` ϕ . As mentioned in Section 2.2, this check can be resolved by using any of the existing model
checkers or SAT solvers for epistemic logic. For this reason, any improvement in the efficiency of the
model checking problem in Kripke models, will also be improve the performance when checking formulae
in the individual knowledge bases of each agent. In addition, local checks in different knowledge bases
can easily be parallelised. For instance, if there is one process per knowledge base, formulae regarding
different agents’ knowledge can be checked in parallel in the corresponding knowledge bases. To the best
of our knowledge, there are no parallel model checkers for epistemic logic.

8 Final Discussion

We have proved that the model checking problem in SNMs is decidable. We have shown the relation
between SNMs and Kripke models. Concretely, we have proven that the belief axiomatisation KD4, which
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was originally defined for epistemic logic and naturally models agents’ reasoning, is sound w.r.t. SNMs.
We have provided a translation of SNMs models into canonical Kripke models and proved that satisfaction
of any formula in the SNM is preserved in the corresponding Kripke model. We have also provided
a translation from the canonical Kripke structure (obtained from our translation from SNMs) into the
original SNM. We have proven that all formulae are satisfied in the state corresponding to the characteristic
set of the SNM in the Kripke model are also satisfied in the original SNM. Finally, we showed the model
checking problem in SNMs using our algorithm is more efficient than using the standard Kripke semantics.

We conjecture that arbitrary Kripke models (in the frame of models with serial and transitive relations)
can be translated to SNMs. However, to preserve satisfaction the translation would generate several SNMs
from a given Kripke model. Each of these SNMs would correspond to a state in the Kripke model.

The semantics of the privacy policy language PPL (included in PPF ) is given in terms of the
satisfaction relation of K BL , so PPL conformance is reduced to K BL satisfaction. Thanks to
our results we may check conformance of PPL policies by using existing model checkers for epistemic
logic.
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