
Towards a Formal Semantics of Verilog Using
Duration Calculus

Gerardo Schneider* and Qiwen Xu

International Institute for Software Technology
United Nations University

P.O.Box 3058, Macau
{gss,qxu} @iist .unu.edu

A b s t r a c t . We formalise the semantics of V- , a simple version of Verilog
hardware description language using an extension of Duration Calculus.
The language is simple enough for experimenting formalisation, but con-
tains sufficient features for being practically relevant. V- programs can
exhibit a rich variety of computations, and it is therefore necessary to
extend Duration Calculus with several features, including Weakly Mono-
tonic Time, infinite intervals and fixed point operators. The semantics is
compositional and can be used as the formal basis of a formal theory of
Verilog.

1 I n t r o d u c t i o n

Modern hardware design typically uses hardware description languages to ex-
press designs at various levels of abstraction. A hardware description language
is a high level programming language, with the usual programming constructs
such as assignments, conditionals and iterations, and appropriate extensions for
real-time, concurrency and data structures suitable for modelling hardware. The
common approach is to first build a high level design using programming con-
structs. The high level design is then recoded using a subset of the description
language which is closer to implementation. This process may be repeated sev-
eral times until the design is at a sufficiently lower level such that the hardware
can be synthesised from it.

For ensuring correctness of the development, precise understanding of the
description language used is apparently important. Verilog is a hardware de-
scription language widely used in industry, but its s tandard semantics [7] is
informal. A formal semantics will also be the basis of further formal support
for the language. This includes methods to prove that the highest level descrip-
tion satisfies the overall requirements and that a lower level description correctly
implements a higher level one.

Verilog programs can exhibit a rich variety of computations, when several
features of the language are intertwined. The features include

* On leave from Catholic University of Pelotas, Cx.Postal 402 (96010-000), Pelotas-RS,
Brazil. Email: gerardo~atlas.vcpel.tche.br

283

- shared states, updated by possibly instantaneous assignments from different
processes;

- delay statements;
- synchronisation by waiting for some conditions to become true;
- recursion.

It is therefore a non-trivial task to give an adequate semantics to the language.
In contrast to many attempts to formalise semantics of VHDL, another popular
but reportedly less used hardware description language, there is only a little
work on formal semantics of Verilog [6, 13].

In this paper, we give a formal semantics to a large subset of Verilog using
an extension of the Duration Calculus, aiming to achieve a satisfactory level of
abstraction and a more faithful modelling of concurrency. The logic is called
Duration Calculus of Weakly Monotonic Time with Infinite Intervals and Fixed
Point Operator, abbreviated as #WDCI, and it has incorporated features from
several recent extensions of Duration Calculus [16, 15, 17, 20].

This paper is organised as follows. In Section 2, we introduce #WDCI. The
semantics of V- is presented in Section 3. The paper is concluded with a short
discussion of related work.

2 D u r a t i o n C a l c u l u s o f W e a k l y M o n o t o n i c T i m e w i t h

I n f i n i t e I n t e r v a l s a n d F i x e d P o i n t O p e r a t o r s

Duration Calculus [1,4], is an extension of Interval Temporal Logic (ITL) [11]
to dense time domains. The classical Duration Calculus [1], abbreviated as DC,
was developed to reason about piece-wise continuous Boolean functions of time
(called states in literature), which model the status of the system. This view is
not adequate for describing semantics of Verilog programs. The standard seman-
tics of Verilog [7], being defined for simulation, uses a discrete event execution
model. In such a model, discrete events do not take any real-time, and sub-
sequently several of them may happen at the same real-time point governed
possibly by a causal order. Such abstraction, proposed also in the work on syn-
chronous languages, provides substantial simplification in verification of real-
time systems. To reason about discrete events and their compositions, one needs
a more involved logic. Koymans [9] suggested that a time point can be defined as
a pair (r, n), with r denoting the real-time and n the causal order, and following
the terminology in the work on synchronous languages, we call r the macro-time
and n the micro-time. A variant of Duration Calculus, called Weakly Monotonic
Time Duration Calculus, abbreviated as WDC, was formed by Pandya and Dang
over such time structures [15]. A similar logic was suggested by Liu, Ravn and
Li [10].

Both DC and WDC are defined over finite intervals. However, timed systems
in general and Verilog programs in particular often exhibit infinite behaviours.
In [2], an extension of DC was studied by Zhou, Dang and Li, where infinite
behaviours are described by their finite approximations. This approach avoids

284

direct interpretation of formulae over infinite intervals but has the disadvan-
tage that properties are somewhat cumbersome to express. As an alternative
formulation, infinite intervals have been directly included in DC [19] following
an approach by Moszkowski [12] for ITL. In [20], WDC is extended with in-
finite intervals along both macro-time and micro-time. To describe recursive
computations, Pandya and Ramakrishna [16] introduced fixed point operators
in DC. Properties of the fixed points have been further studied in [17]. Our logic,
I~WDCI, is obtained by incorporating all these features.

We next give an overview of #WDCI.

De f in i t i on 1. A time domain is a total order (T, <), where

�9 T c_ (~+ u {oo}) x (R u {oo}), with (0, O) E T,
�9 (r l ,n l) < (r2,n2)

iff(rl ~ oOArl S r 2 A n l < n2) V(rl < r2Anl ~r Anl ~ n2),
* for any t ff T, there exists t' E T, such that t % t' and t' ~ t,
�9 l im((ri ,nl)) E T.

where ~+ is the set of non-negative real numbers and lq is the set of natural
numbers.

The first and second conditions define the set and the order relationship
(<). The third condition says that a time domain is maximal, in the sense tha t
adding any other time point will cause the set to be no longer a total order. By
the definition, exactly one of (r, ~) , (c~, n) and (oo, c~) is in a time domain and
it is the maximal element. The last condition implies that if the time domain
has an infinite sequence of time points of the form (r, no), (r, n l) , . . . , (r, n ,) , . . .
for the same real number r, then (r, c~) must be in the sequence. This in turn
by the third condition ensures that in this case any other infinite time point,
either (r~,cx~) where r ~t r ~ or (c~,cx~) is not in the domain. For any t = (r ,n) ,

def let 7rl (t) d_ef r and r2 (t) = n. We write t = c~ iff n = c~ or r = c~. An interval
on T is a pair of time points [b, e] of 7", where b ~ c~ and b < e.

The logic contains the following sets of symbols: global variables GVar=-{x, y,
. . .}, state variables SVaT=--{P, Q, . . .} and temporal propositional letters PLetter
= {X, Y,. . .}. State expressions are defined as

S ::= c I x I P I o p l S I 31op2~2

where c is a constant, opt E {-,-~} and op2 E {A, V, + , - , *, =, <} are unary
and binary operators of appropriate types. The syntax of terms is

T ::= c I x I / S I / S I T1 opT2 I b .S I e .S

where op E {A, V, +, - , *}, b .S and e.S denote respectively the values of S at the
beginning and the end of the interval. When S is Boolean, represented as {0, 1},

f S and f S denote respectively durations of the expression along macro-time
and micro-time.

285

The syntax of/~WDCI formulae is

x I t l = t 2 I t l < t 2 1 r162162 I X.r

where x is a global variable, and the occurrence of bounded propositional letter
X in the fixed point formula is positive (i.e., X is preceded by even number of
negation symbols).

De f in i t i on 2. A model M is a tuple ((T, <),Z, ff,]2, [b,e]), where

- (7", <) is a time domain,
- Z : SVar --~ T --+ Values is an interpretation of state variables where

Values = ~+ U R O Bool,
- f f : Pletter --~ Intv --+ Bool is an interpretation of propositional letters,

where Intv is the set of all intervals,
-]~ : GVar --+ Values is an interpretation of global variables,
- [b, e] is an interval on 7-.

Let t be a time point. The interpretation of state expressions is

- [x] (7", Z, V, t) %e V(x)

- [P] (T , Z, 1;, t) d__er Z (P) (t)

- [opx S] (T , Z , V , t) de=fop~ [S] (T , Z , V , t)

- IS1 op2 $2] (T, Z, I;, t) ~ f [S~] (T ,Z , I ; , t) op; [$2] (T ,Z, lz, t)

where op~ is the interpretation of the operator opi. Let

I 3] (T , Z ,]) , r) dee= { ~ S] (T , Z , V , (r , n)) otherwiseif {n l (r ,n)G 7-} is singleton

[S] (T, Z, Y, n) aef= { 0 [S] (T ' Z ' V ' (r ' n)) otherwise.if (r,n), (r , n + 1) �9 7"

The first definition is well-formed because if {nl(r ,n) �9 T } is singleton, then
obviously nl = n2 for any (r, nl) �9 7- and (r, n2) �9 T. The second definition is
also well-formed because for any (rl, n) �9 T, (r2, n) �9 T, (rl, n + 1) �9 T and
(r2,n + 1) �9 T, it is easy to prove rl = r2. The interpretation of terms is

- I) I l(T,Z,V,r)ar

- l f S] (T , Z , V , [b , e]) I g l (7 - , z , v , n)

- [T~ o p T 2] (T , Z , Y , [b , e]) ~ f [Ta](T ,Z ,V,[b ,e]) op* IT2] (T ,Z ,V , [b ,e])

- [b . S] (T , : ~ , Y , [b , e]) ~ f IS](T , :Z , I ; ,b)

- [e . S l (T , Z , Y , [b , e]) %f [S I (T , Z , V , e)

where op* is the interpretation of op. The lengths of an interval along macro-time
and micro-time are denoted by s d=ef f 1 and k d=ef i l " It is easy to show that

286

- [e l (V - , z , v , [b,e]) = ~ l (e) - ~ l (b)
- [k] (7 , Z , V, [b, el) = - 2 (e) - ~2(b)

To define the fixed point operators by Knaster-Tarski theorem, we give the
semantics of #WDCI in the complete lattice (2 Intv, C_), where Intv is the set of
all intervals. In this setting, an interpretation of propositional letters ,7 is re-
garded as a function from propositional letters to 2 Intv. For a given time domain
(T, <), an interpretation of state variables Z, an interpretation of propositional

Z , J letters fl , a valuation of global variables Y, we define a function gv, 7- from the

set of #WDCI formulae to 2 Intv.

d e ,
e x) : `7(x)

Z,ff def
s = T2) = {[b,e] I {b,e} C TAIT1](T,Z,V, [b,e]) = IT2] (T ,Z ,V, [b,e])}

~:~(T1 < T2) dej {[b, 4 I {b,e} C TAIT~ I(T,Z,V,[b,4) < {T21(T,Z,V,[b, 4)}
E~:Tj(~r d__ef 2Int v _ e~:~(r

def CZ J i l t
E~):TJ(r A r = ~,y:T~q)l) rl E~:TJ(r

27,,7 ~:Tff(aX.~b) de f UaGVMue$ ~l)(z~--ra),T(~)
27,,:7 def

6v,7-(r ~r : {[b,e] l gm . {b,e,m} C T A b < m < e ^ (m # oo

A [b,m] 6 E~;TJ(r A [m,e] G C~:~(r V (e = cx~ ̂ [b,e] e EZ:TJ(r
= fZ,J(X~-~A) {A~ _ ~):Tff(,X.r def n (A I ~v,r ,~, c A}

where `7(X ~-~ A) is the interpretation of the propositional letters that is the
same as f l except mapping X to A. The greatest fixed point operator can be
defined from the the least fixed point in the usual way

v X.~) de..~f -~#Y.-~r Y / X]

where r is the substitution of -~Y for all the occurrences of the proposi-
tional letter X in formula ~b.

The notions of satisfaction and validity are defined as follows:

- (T,Z, fl , l),[b,e]) ~ r iff [b,e] 6 E~:~(r

- ~ r iff s162 = 2 Intv for any T,Z, ,7 , V.

The following two theorems give the semantics of two fixed point formulae
which will be used in defining the semantics of iteration statement.

T h e o r e m 1. Let r r be two # WDCI formulae. If both r and r do not
contain any free occurrence of the propositional variable symbol X , then for any
T, Z, if , V, [b, e] G E~:~(pX.((bl ~ Z)) V ~b2) iff there is a natural number n (may
be O) and a non-descending sequence of time points bo, b l , . . . , b~ such that

- bo = b, b l , . . . , b n 6 7 - - {c~},
z J

- [bi,b/+l] 6 Ev:T(r for alli < n,

287

�9 ,J %,J
- [bn,e] E Ev,r(r ore = oo and [bn, e] E gv,y(r

T h e o r e m 2. Let r r be two #WDCI formulae. If both Cx and r do not
contain any free occurrence of the propositional variable symbol X , then for any
T , Z , J , Y ,

where [b, e] e E iff there is an infinite non-descending sequence of time points
bo ,b l , . . . ,bn , . . . (n > O) such t h a t :

- bo=b, b n < e f o r a l l n > O ,
- [b . ,b .+,] e aUn > 0.

Details about these theorems and other properties about fixed points can be
found in [18]. We next introduce some derived modalities that will be useful
when defining the semantics of V- .

def ~'A <>A = t rue ~ t r u e

n A ~ f ~O~A.

A model satisfies OA and [3A if respectively a sub-interval and all sub-intervals
satisfy A. Let

fin clef 3X. (~ < X A k < x)

fin %f 3x. k < x
def inf = -~fin

def
point = ~=OAk----O.

They characterise intervals which respectively are finite, finite on micro-time,
infinite and points. For a Boolean expression S, define

FS] d ef --n((~ > 0 V k > 0) "(point A -~b.S) ~(~ > 0 V k > 0)).

This denotes that S holds everywhere inside the interval. Let

iS 1 de_~_f IS 1 A b .S A e.S.

This specifies that S holds everywhere inside and at both the beginning and the
end of the interval. Let

dint d=ef E = OAk = 1
def

c int = s

Intervals that satisfy cint and dint are called respectively continuous and discrete.

288

3 S e m a n t i c s o f V -

Gordon [6] suggested a simple version of Verilog which he called V. In this paper,
we consider a subset of it which we denote by V - , that has essentially the same
statements as V except the function definition, the non-blocking assignment, the
d i s a b l e statement and the assignment statements with delays. The language is
simple enough for experiments in formalisation, but contains sufficient features
for being practically relevant.

In the literature, the semantics usually is considered as for the program
concerned defining a set of runs, each of which is a sequence

0": (o r 0 , r 0) (O ' l , r l) . . - (6 r i , r i) . . .

where ai is a valuation of variables and ri is a real number denoting the macro-
time that the variables are updated. Between two consecutive time points, vari-
ables are not changed. If there are several discrete events happening at the same
macro-time, they will have the same time stamps and micro-time is denoted by
the order in the sequence. A run a can be regarded as the interpretation of the
variables over a time domain. For example, assume the variable is x, and for a
run

~ : (ao, 0)(al , 2)(a2, 2)(a3,2) (a4, 3) . . .

the corresponding time domain is illustrated by the following diagram

micro-time

5

4

3

2

1

0 1 2 3 4

for 0 < t < 2

• (x)(2 ,1) = l(X)

Z(x)(t,3)=g3(x) for 2 < t < 3

> macro-time

Time domain corresponding to a

Therefore a #WDCI formula can be regarded as characterising a set of runs,
and consequently, can be used to define the semantics of V - programs. This
gives the abstraction and reasoning facilities provided by a logic system.

At the top level, a V - program can be considered as a collection of concurrent
processes, communicating through shared variables. When there are discrete
transitions enabled, one of them will be selected for execution. When none of
the discrete transitions are enabled, t ime may advance until a discrete transit ion
is enabled.

289

I t is desirable to define the semantics compositionally, tha t is, define the
semantics of a compound statement as a function of the semantics of the com-
ponents. The s tandard way to give a compositional semantics to shared variable
programs, suggested first by Aczel (cited e.g., in [5]), is to define the semantics as
a set of labelled s tate transition sequences, where the label records whether the
transit ion is from the environment or from the component. This can be expressed
in the sett ing of # W D C I by introducing a variable, say 0, in the state, to record
the transit ion agent. More precisely, let {Pi [i E Iproc} be the set of processes,
where Iproc is a set of indexes. If there is a transit ion at [(r, n), (r ,n + 1)], then
the transit ion is from process Pi iff Z(O) (r ,n + 1) = i. To define the semantics
compositionally, a component process Pi should be viewed as an open system,
with its semantics containing all the potential actions from its environment pro-
cesses. Runs with unmatching environment actions are removed by the semantics
of the parallel composition.

Let Vat be the set of variables from the concerned program and Vat + de__f
Vat 0 {0}. The semantics contains a general formula

A x l : Vx E Vat + . [](cint :=~ b .x = e.x)

This says tha t none of the variables are changed if there are no transitions.
The semantics of the whole system, considered as a closed system contains the
formula:

Ax2 : 3i e Iproc �9 [](dint =# e.0 -- i).

This says tha t any transit ion is caused by one of the consti tuent process.
In the following, we assume tha t the considered sequential s ta tements are

from process Pi- As the semantics of an open system, it is necessary to include
possible behaviours from other processes. The formula

idlei de f D(dint =~ e.c9 ~- i)

says tha t over the interval, process P~ does not contribute any discrete transi-
tions. There is no restriction over transitions by processes other than Pi, or in
other words, transitions from other processes can be arbitrary.

Procedural Ass ignment . This is the usual assignment, denoted by v = e. I t is
called procedural in Verilog to distinguish it from other forms of assignments
such as the continuous assignment which will be discussed later. Evaluat ion of
expression e is assumed to take one micro-time, and the value is assigned to
variable v, with other variables unchanged. Before the assignment is executed,
its environment processes may perform an arbitrary, including infinite, number
of instantaneous actions.

.hd(v = e) def ~ = 0 A (idlei ~(dint A e.v = b.e A unchangedvar_{v } A e.O = i))

def
where unchangedvar_{v) = A z e Var-{v} 3a . [x = a], denoting tha t any vari-

able in V a t - {v} is not changed. A vacuous assignment like x = x is denoted as
skip.

290

Sequential Composition. The execution of sequential composition beg in S, ; . . . ;
Sn end is that of $1 followed by the execution of beg in $2 ; . . . ; Sn end.

M (b e g i n S1; $2; . . . ;Sn end) def M(S1) A M (b e g i n $2 ; . . . ;Sn end)

Parallel Composition. The parallel composition of the processes is defined roughly
as the conjunction

M(P II... II Pn) de__e
Vin__l ((.A4(P1) idlel) A . . . A 14(Pi) A. . . A (M(Pn) idle.)).

Boolean Expressions. Successful evaluation of a Boolean expression is defined
a s :

A/I(eb) d___ef g _-- 0 A (idlei ~(b.eb A dint A unchangedvarA e.O = i)).

Like a procedural assignment, successful evaluation of a Boolean expression takes
one micro-time, and its environment processes may perform an arbitrary number
of instantaneous actions before the expression is evaluated. Evaluation has no
side-effect. For Boolean constants true and false, we have

- J~(true) = (~ = 0 A (idlei "~(dint A unchangedvarA e.O -~ i)))
- .h i (fa lse) = (~ = 0 A (idlei "-'false)) = (g = 0 A idlei A inf) .

Conditional. In if (eb) S, else S2, the Boolean expression eb is evaluated
first. If eb is successfully evaluated, then $1 is selected, and if instead -,eb is
successfully evaluated, then $2 is selected.

r (eb) $I else S2) de__f (Ji4(eb) ~Ji4(Sl)) V (J~(-~eb) ~"J~(S2)).

Instantaneous environment actions are allowed between the evaluation of the
Boolean expression and the execution of the statements that follows.

Delay. The delay statement in Verilog is denoted by #n . Its meaning is that
when this instruction is reached, the process is blocked for n macro-time units.
During this period, other processes may execute discrete state transitions.

M(#n) = idlei A e ~ n A (fin ~ g = n) .

Note that it is possible that before n macro-time units have passed, other pro-
cesses can execute an infinite number of instantaneous transitions and cause the
micro-time to reach infinity.

291

Iteration. The meaning of a loop while (eb) S is as usual: the s tatement is
executed repeatedly until the boolean expression eb becomes false. Its semantics
is defined as a greatest fixed point:

J~4(while (eb) S) de_f vZ.((~4(eb) ~r ~X) V A4(-~eb)).

It follows from Theorem 2 that the semantics of the iteration statement contains
two parts. The first part is defined by the least fixed point #X.((14(eb) ~JV4(S)
~ X) V J%4(~eb)). This describes finite number of iterations, either eb becomes
false in the end, or the last iteration is infinite. The second par t characterises
infinite iterations of the loop. Since we assume Boolean evaluation takes one
unit micro-time, infinite iterations take infinite micro-time. There are two cases
regarding the macro-time. One case is that after some iterations, each iteration
takes zero macro-time, then the macro-time will be 'stopped' at tha t point. The
second case is that infinite iterations need infinite macro-time. In V - , we assume
a positive delay has a lower bound, therefore the so-called zeno behaviour is not
possible.

The following are some examples about the semantics of iteration statements.

1. J~4(while (true) skip) = (~ = 0 A inf A D(e.0 = i ~ unchangedvar))
2. A//(while (false)P) = ,~v/(skip)
3. Ji4(while (true) skip II #i) = Ji4(while (true) skip) A idle2.

Wait. The wait statement wait (eb) S waits until Boolean expression eb be-
comes true, then the control is passed to the following statement S.

l / / (w a i t (eb) S) def (idlei A ([-~eb] ~(dint A e.eb))) ~ A 4 (S)

Evens Control. Synchronisation can also be achieved by waiting for some events
(state changes) to occur. The statement is of the form

@(event) S

where event is considered as a binary state predicate, and the control is passed
to S when event is satisfied. An event expression is of the following form

- v, indicating waiting for a change of the value in v,
- posedge v, indicating waiting for a positive change of the value in v,
- negedge v, indicating waiting for a negative change of the value in v,
- (event lor . . . or eventn), indicating waiting for any event to be true.

Overloading symbols a little, we define

@(v) dej b.v # e.v

@(posedge v) def = b.v < e.v
@(negedge v) def = b.v > e.v

@(eventlor . . . or eventn) de f ~(even t l) V . . . V ~(eventn)

It is now easy to give the semantics of the statement

A4(@(event) S) d,=f (idlei A (([3~@(event)) ~ (dint A @(event)))) ~%4 (S)

292

Continuous assignment. A continuous assignment ass ign w = e describes the
connection of a wire w to an input. Like a channel, a wire does not store the
value, and any change of the input is immediately propagated

~ / (a s s ign w = e) de__f [w = ,~4(e)1 A inf.

The semantics of other V- statements can be found in [18].

4 D i s c u s s i o n

In this paper, we have given a formal semantics to V- , a simple version of Verilog.
The language contains interesting features like concurrency, timing behaviours,
discrete events as well as recursion. Formalising more advanced features of Ver-
ilog, such as various other assignments, needs further research. On the other
hand, V- has contained the basics of Verilog, and therefore it will be useful to
develop other formal techniques for V- based on the semantics. However, to
support particular techniques, the semantics may need fine tuning; for example,
for refinement, the semantics should probably be made insensitive to stuttering.

There has been some related work where semantics of several languages have
been formalised using Duration Calculus and its appropriate extensions. He [8],
Zhou, Wang and Ravn [3] studied semantics of HCSP in classical DC, which
is sufficient because every action is assumed to take some time. Semantics of
sequential real-time programs, which may contain instantaneous actions, has
been studied in [17] using Super Dense DC (SDC). SDC allows the input/output
behaviours of a sequential program to be recorded, but not the intermediate
states. SDC is similar to the Relational DC, which has been used by Pace to a
subset of Verilog [13]. Hence, Pace also does not record the intermediate states of
Verilog programs. To describe the semantics of concurrency adequately, Pandya
and Dang proposed to use WDC [15] and applied to an ESTEREL-Iike language
called SL [14]. WDC is extended with infinite intervals in [20] and applied to
formalise the semantics of a toy language.

Acknowledgements We would like to thank He Jifeng for introducing Verilog to
us, Gordon Pace for discussing his work, and Dang Van Hung, Paritosh Pandya
and Zhou Chaochen for their useful comments in the initial stage of this work.

R e f e r e n c e s

1. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Informa-
tion Processing Letters, 40(5):269-276, 1991.

2. Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration calculus with
infinite intervals. In Fundamentals of Computation Theory, Horst Reichel (Ed.),
pages 16-41. LNCS 965, Springer-Verlag, 1995.

3. Zhou Chaochen, Wang Ji, and A.P. Ravn. A formal description of hybrid systems.
In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems III: Verification
and Control, pages 511-530. LNCS 1066, Springer-Verlag, 1995.

293

4. Zhou Chaochen, A.P. R~vn, and M.R. Hansen. An extended duration calculus for
hybrid systems. In Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Rarn, H.
Risehel (Eds.), pages 36-59. LNCS 736, Springer-Verlag, 1993.

5. W.-P. de Roever. The quest for compositionality. In Proc. of lFIP Working Conf.,
The Role of Abstract Models in Computer Science. Elsevier Science B.V. (North-
Holland), 1985.

6. M.J.C. Gordon. The Semantic Challenge of Verilog HDL. In Tenth Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press, pages
136-145, June 1995.

7. IEEE Computer Society. IEEE Standard Hardware Description Language Based
on the Verilog Hardware Description Language (IEEE std 1364-1995, 1995.

8. He 3ifeng. From CSP to hybrid systems. In A.W. Roscoe, editor, A Classical Mind,
Eassy in Honour of C.A.R. Hoare, pages 171-189. Prentice-Hall International,
1994.

9. R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal
Logic. LNCS 651, Springer-Verlag, 1992.

10. Z. Liu, A.P. Ravn, and X.-S. Li. Verifying duration properties of timed transition
systems. In Proc. IFIP Working Conference PROCOMET'98. Chapman & Hall,
1998.

11. B. Moszkowski. A temporal logic for multilevel reasoning about hardware. IEEE
Computer, 18(2):10-19, 1985.

12. B. Moszkowski. Compositional reasoning about projected and infinite time. In
Proc. the First IEEE International Conference on Engineering of Comple~ Com-
puter Systems (ICECCS'95), pages 238-245. IEEE Computer Society Press, 1995.

13. G.J. Pace and J.-F. He. Formal reasoning with Verilog HDL. In Proe. the Workshop
on Formal Techniques for Hardware and Hardware-hke Systems, Sweden 1988.

14. P.K. Pandya. A compositional semantics of SL. Technical report, DeTfoRS Group,
UNU/IIST, October 1997.

15. P.K. Pandya and Dang Van Hung. Duration calculus with weakly monotonic time.
This volume.

16. P.K. Pandya and Y.S. Ramakrishna. A recursive duration calculus. Technical
report, CS-95/3, Computer Science Group, TIFR, Bombay, 1995.

17. P.K. Pandya, H.-P. Wang, and Q.-W. Xu. Towards a theory of sequential hybrid
programs. In Proc. IFIP Working Conference PROCOMET'98. Chapman & Hall,
1998.

18. G. Schneider and Q.-W. Xu. Towards a Formal Semantics of Verilog using Duration
Calculus. Technical Report 133, UNU/IIST, P.O.Box 3058, Macau, February 1998.

19. H.-P. Wang and Q.-W. Xu. Infinite duration calculus with fixed-point operators.
Technical Report draft, UNU/IIST, P.O.Box 3058, Macau, September 1997.

20. Q.-W. Xu and M. Swarup. Compositional reasoning using assumption - com-
mitment paradigm. In H. Langmaack, A. Pnueli, and W.-P. de Roever, editors,
International Symposium, Compositionality - The Significant Difference. Springer-
Verlag, 1998.

