
Alignment of requirements specification and testing:
A systematic mapping study

Zeinab Alizadeh Barmi

barmi@student.chalmers.se
Amir Hossein Ebrahimi

amirho@student.chalmers.se
Robert Feldt

robert.feldt@chalmers.se

Department of Computer Science and Engineering
Chalmers University
Gothenburg, Sweden

Abstract

Requirements should specify expectations on a
software system and testing should ensure these
expectations are met. Thus, to enable high product
quality and efficient development it is crucial that
requirements and testing activities and information are
aligned. A lot of research has been done in the
respective fields of Requirements Engineering and
Testing but there is a lack of summaries of the current
state of the art on how to link the two. This study
presents a systematic mapping of the alignment of
specification and testing of functional or non-
functional requirements in order to identify useful
approaches and needs for future research. In
particular we focus on results relevant for non-
functional requirements but since only a few studies
was found on alignment in total we also cover the ones
on functional requirements. We summarize the 35
relevant papers found and discuss them within six
major sub categories with model-based testing and
traceability being the ones with most prior results.

1. Introduction

With the ever-growing market demand for high quality
software, the need and importance of testing has
become more apparent in recent years. For more safety
critical software systems - like medical diagnosis and
space shuttle missions - software testing is a crucial
aspect of their success since software errors can cause
irreparable losses. On the other hand, Requirements
Engineering (RE) represents a complementary view of
a system and thus has a synergistic relationship with
testing [1]. Therefore bringing RE and testing closer
could benefit both disciplines. Making a strong link
between them will improve the outcome of the
software development process [2]. It also helps to
discover possible errors early, which in turn can

improve the product quality and lead to more satisfied
customers [3]. From the project management
perspective, linking requirements and testing would
help to reach a more accurate testing plan, which in
turn would improve project cost and schedule
estimation. The likely result for the project is to be
finished within the planned schedule and budget [1].
Although organizations are becoming more interested
in linking requirements and testing, often this link is
not provided and there is a gap between the areas. It is
noticeable that in these efforts, the focus has been
mainly on functional requirements (FRs) rather than on
non-functional, quality requirements (NFRs). NFRs
play a significant role in the success of software
projects. Grunske [4] states that NFR’s fulfillment is
often more important than implementing FRs to have a
satisfied customer. Matoussi and Laleau [5] point out
that verification of NFRs are almost always done very
late after finishing the implementation. Our aim in this
research is to perform a systematic mapping on the
alignment of functional or non-functional requirement
specification and testing to get an overview of existing
research in this area.
Among the work that has been done on alignment a lot
of attention has been given to traceability. Traceability
of requirements can help determine what requirement
has been covered by which test and how the generated
test cases cover these requirements [6]. Tracing from
tests back to requirements is also helpful to find the
root of a failed test. Another important reason for
traceability is improving change management by
helping to find out how change in the requirement is
reflected in the test cases. Also in the alignment
research area model based development has attracted a
lot of attention. The idea behind MBT is the derivation
of executable test code from test models by analogy to
Model Driven Architecture (MDA) [6]. This technique
is becoming of more interest in industry because it

provides automatic deriving of test cases from the
behavioral model of the system called the test model.
As Petersen et al. [7] describe, a systematic mapping
study consists of an overview of primary studies
performed on a specific topic and the categorization of
the results by providing a visual summary. As such, a
systematic map offers an overview of a field,
identifying potential gaps in research, whereas a
systematic literature review [8] provides a more
detailed study of the identified results. The systematic
mapping process consists of five phases [7]: 1)
Definition of the research questions, 2) Conducting the
search for primary studies, 3) Screening of papers for
inclusion or exclusion, 4) Keywording the abstracts,
and 5) Data extraction and mapping of the studies.
This paper is organized as follows: Section 2 describes
the phases of our systematic mapping process. Some of
these phases are broken down into smaller steps. In
section 3 the answer to our research questions is
provided. Discussion and conclusions are provided in
sections 4 and 5, respectively.

2. Research Method

2.1. Definition of research questions

To investigate existing research on the alignment of
functional or non-functional requirement specification
and testing, we formulated the following research
questions:
RQ1. Which studies have been done on linking the
specification and testing of requirements?
Aim: We want to find out which topics have been
investigated and to what extent? Which of these studies
are focused on NFRs? What are the different
perspectives that address the alignment of requirements
and testing, e.g., how common testing approaches try
to address alignment or traceability? This would help
identify the needs for complementary research.
RQ2. What types of solutions are represented in these
researches? We want to find the solutions given in
different topics that address alignment such as method,
process, framework, tool, etc.
RQ3. In which fora is research on alignment of
requirement and testing published? An overview of the
range of fora in which the researches are published also
could help with our research.

2.2. Conducting the search for primary studies

In order to conduct our search string we needed to
obtain an overview of the requirements specification
and testing area and the alignment of these two. So we
gathered an initial set of previously known publications
in the area, through an exploratory search [1, 3-5, 9-

14]. We then tried to extend our initial set using
forward/backward referencing, i.e. looking at which
papers were referenced in or referred to papers in our
initial set. The study of the resulting 24 papers helped
us to explore and choose relevant keywords for the
systematic search. From our research questions and
based on our study of the initial set of papers we
derived some categories for conducting the search
string. These categories focused on NFRs (named C1),
specification of NFRs (named C2), testing of NFRs
(named C3), and linking the specification and testing
of NFRs (named C4). We formulated a combination of
these categories to reach our search string, which was
“C1 AND C2 AND C3 AND C4”. As we decided to
cover all researches in the last 10 years, we limited the
search on papers that were written in English and
published between 2001 and 2010 (it should be noted
that since the search was done in November of 2010
not all 2010 papers will be included in the results). We
conducted the search on 4 databases (Scopus, Inspec
Engineering Village, ISI Web of Knowledge, and IEEE
Xplore). We then followed an incremental refinement
of the search string in five steps. In each refinement
step we checked the results to see if they contained
papers from our initial set that were on the alignment
area. In case the items of the initial set were missed or
the results were not relevant we improved our search
string further. One major refinement was removing the
C2 (specification) category from the search string. The
reason was that many papers in our initial set did not
include the terms belonging to the C2 (specification)
category in their title or abstract. As there was little
research with focus on NFRs we decided to get some
ideas from the alignment of requirements and testing in
general. So we added another category named C5 with
the “requirement” item and we changed our search
string to “(C1 OR C5) AND C3 AND C4”. The final
version of categories is shown in Table 1. After the
final iteration of the search string refinement we
reached 591 hits.

Table	 1.	 Search	 string	 categories	
NFR (C1)

"nonfunctional requirement" OR "nonfunctional
requirements" OR "non functional requirement" OR "non
functional requirements" OR "non functional software
requirement" OR "non functional software requirements"
OR "nonbehavioral requirement" OR "nonbehavioral
requirements" OR "nonbehavioural requirement" OR
"nonbehavioural requirements" OR "non behavioral
requirement" OR "non behavioral requirements" OR "non
behavioural requirement" OR "non behavioural
requirements" OR "nonfunctional property" OR
"nonfunctional properties" OR "non functional property"
OR "non functional properties" OR "quality attribute" OR
"quality attributes" OR "quality requirement" OR "quality
requirements" OR "quality attribute requirement" OR

"quality attribute requirements"
Testing (C3)

"test" OR "testing" OR "verify" OR "verifying" OR
"verification" OR "validate" OR "validating" OR
"validation"

Alignment (C4)
"align" OR "aligning" OR "alignment" OR "trace" OR
"tracing" OR "traceable" OR "traceability" OR "link" OR
"linking" OR "bridge"

Requirement (C5)
Requirement

	
2.3. Screening papers for inclusion or

exclusion and keywording the abstracts

In this phase we defined inclusion and exclusion
criteria in order to achieve a common understanding
between the team members that would perform the
screening. The paper screening process was performed
in two steps.
In the first step the title and abstract (if needed) of all
papers were considered. The main criteria for inclusion
were papers that describe alignment of specification
and testing of functional or non-functional
requirements. Conference proceedings and papers that
were not focused on software development, for
example papers that focused on hardware or network
development were excluded. In this step if a researcher
was unsure about excluding a paper, this paper was
included for the second step. 546 papers were excluded
during this step. In the second step the full text of the
papers were studied. Posters, opinion papers i.e.
papers that express the personal opinion of author on
what is good or bad [15], and short papers (with less
than 6 pages) were excluded. Papers were only
included if they had been subject to peer review. If
researchers did not agree on the inclusion or exclusion
of some papers these papers were discussed until a
decision was made by consensus. 10 papers were
excluded during this step. At the end the number of hits
was reduced to 35papers.
During this phase we developed our data extraction
form, partly based on the one used by Ivarsson and
Gorschek[16]. To build this form some keywords and
concepts, like context and domain were reached
through the study of paper abstracts by each researcher.
The keywords were evolved as papers were studied in
detail. Using the keywords, we finally came up with
the following key attributes in the form research focus
(Model-centric approaches, code-centric approaches/
traceability/ formal approaches/ test cases/ problems
and set of good practices), contribution type (Tool/

process/ model, framework/ guideline/ method/ metric
and other), quality requirements/attributes the paper
focus on, research method, context (academia/industry/
open-source software), domain, and scale. It should be
noted that some research focus items contain some
subcategories. Model centric approaches include 2
subcategories of Model based testing (MBT) and Goal-
oriented development. Code centric approaches
category is divided into 3 subcategories of Test driven
development (TDD), Storytest driven development and
Behavior driven development (BDD). Test cases
category is also broken down to 2 subcategories of Test
case generation (manual/automatic) and Test case
coverage. During the study of the full text of included
papers this extraction form was filled for each
individual paper.

3. Results (data extraction and mapping)

As the full text of the papers was being studied the data
extraction form for each paper was also filled. We
answer our research questions by analyzing the
extracted data from the papers.

3.1. RQ1. Which studies have been done on linking

the specification and testing of requirements?

We have identified several research focuses on the
alignment of requirements specification and testing. In
the last part of this section we have mentioned which
of these approaches support NFRs. The distribution of
research focus is shown in Figure 1.The distribution of
research focus over different years is shown in Table 2.

3.1.1. Model Based Testing (MBT)

In Model based testing (MBT), which has the largest
number of hits, informal requirements of the system
are the base for developing a test model which is a
behavioral model of the system. This test model is used
to automatically generate test cases. One problem in
this area is that the generated tests from the model
cannot be executed directly against an implementation
under test (IUT) because they are at the same level of
abstraction as the model. Arnold et al. address this
problem [17] and propose a solution. They also claim
that their scenario-driven approach supports
the traceability between generated and executed test
cases, and executions of an IUT. Their approach
supports both FRs and NFRs.

Figure	 1.	 Distribution	 of	 research	 focus	

There are some other prior research that are scenario
based. Goel et al. [18] propose a model-driven
approach in which strengths of both scenarios-based
and state-based modeling styles are combined. Their
Footprinter tool makes it possible to trace from
requirements to testing and vice versa in a round-trip
engineering approach. The Web Services Testing
Framework (WSTF) is proposed by Tasi et al. for
Scenario-based testing of Web Services [19]. In this
approach test scripts and test cases are automatically
generated based on a scenario specification by the test
master component. Some prior research address
development process in model based testing. Pfaller et
al. propose [20] using different levels of abstraction in
the development process to derive test cases and link
them with the corresponding user requirements.
Boulanger and Dao propose an approach [21] in which
RE is done in different phases of the V-model in order
to facilitate requirements validation and traceability.
Lobo and Arther have worked on a project [22] which
aims to reduce the gap between RE and the V&V
process. This is done by applying V&V in a two-phase
model: in the first phase, V&V is performed right after
requirements elicitation for each distinct function of
the system. In the second phase, the quality of linkages
between requirement sets is verified and validated.
Several studies are on model based testing of service
oriented systems. Felderer et al. focus on model–driven
testing of service-oriented systems in a test–driven
manner [6]. They believe that Telling TestStories tool
could support traceability between all kinds of

modeling and system artifacts. Tasi et al. proposed
framework - which was described as a scenario based
approaches also aims for testing of web services [18].
There are also other MBT approaches. Marelly et al.
extend sequence charts (LSCs) with symbolic instances
and symbolic variables [23] in order to reach linking
requirements and testing.
Zou and Pavlovski propose control cases to
complement use cases by modeling NFRs which
cannot be addressed by use cases [11]. They can be
applied during the software development life cycle and
can also be used to verify whether the implemented
system meets the specified NFRs.

3.1.2. Goal oriented development

In the field of Model driven engineering (MDE), Goal-
oriented modeling can easily realize stakeholder’s
concerns and their interdependencies using concepts
which are less dependent on the underlying
implementation technology and closer to the problem
domain [24].
Goals, which can be at various levels of abstraction,
define stakeholders’ expectations from the system [24].
Hard goals are states that actors can attain and soft
goals are goals that can never be fully satisfied. Both
FRs and NFRs can be represented by goal oriented
modeling. FRs are modeled by hard goals, and NFRs
like efficiency and reliability are represented by soft
goals which means they are expected to be satisfied
within an acceptable limits rather than absolutely [24].

Model based testing
26%

Goal oriented
Development 5%

TDD 0%

Storytest driven
development 3%

BDD 3%

Traceability 18%

Formal approaches
24%

Test case generation
11%

Test case coverage
3%

Problems and good
practices 8%

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 p

ap
er

s

	
Table	 2.	 Distribution	 of	 research	 focus	 over	 years	

Research Focus 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total %
Model based testing 1 3 1 2 2 3 12 33

Goal- oriented development 1 2 3 8
Storytest driven development 1 1 3

BDD 1 1 3

Traceability 1 1 3 2 2 9 25

Formal Approaches 1 1 2 6

Test case generation 1 1 1 1 4 11

Test case coverage 1 1 3

Problems and good practices 2 1 3 8

Total 0 1 0 6 7 1 6 5 10 36

This type of development improves productivity as
well as model quality. Nan et al. propose a framework
[24] for tracing aspects from requirement to
implementation and testing. Language support is also
provided to transform models into aspect oriented
programs. Test cases can be derived from these models
to help in the verification process [24].

3.1.2.1. Agent oriented Software Engineering

(AOSE)

AOSE methodologies are based upon the Agent
paradigm, and help to develop complex distributed
systems [25]. AOSE partially addresses the link
between requirements and testing. This is done by
specification-based formal verification and object
oriented testing techniques. Duy et al. introduce a
testing framework for AOSE methodologies called
TROPOS [25]. This framework provides a systematic
way of deriving test cases from goal analysis. This
approach is called goal oriented testing.

3.1.2.2. Aspect Oriented Software Development

(AOSD)

Nan et al. present AOSD as a solution for
transformation from the goal model to the
implementation [24]. They describe how aspects are
introduced from the goal models and introduce a
framework with which aspects can maintain
traceability from the requirement level down to
implementation and test levels.

3.1.3. Traceability

Abbors et al. [26] present an approach for requirements
traceability across a MBT process and the tools that are
used for each phase. Some prior researches address
requirement based testing to facilitate traceability
between requirements and testing. Méndez et al.
present a requirement-based testing process and define
a guideline on how to keep the traceability among
requirements down to the test cases in this process
[27]. Quinn et al. propose the TraceFunction Method
by which requirements of a software component can be
specified in one easily used reference document in
order to facilitate traceability between requirements
and testing [28]. Some researches address traceability
issues using scenarios. Naslavsky et al. believe that
different kinds of scenarios are useful for tracing
requirements to tests through the development life
cycle and each can be used as test scenarios [29]. Test
generating and traceability issues in three different
scenario-based system modeling languages are studied
by Goel and Roychoudhury [30]. Other researches
construct meta-models to facilitate traceability. In
order to establish the relationship between software
components that include the requirements, design test
cases and code, Ibrahim et al. construct a meta-model
with top-down and bottom-up traceability support
[31].Dubois et al. propose a meta-model called
DARWIN4REQ which aims to keep the traceability
link between three phases of requirement elicitation,
design and V&V of requirements [32].

3.1.4. Formal approaches

Post et al. focus on translating requirements into
scenario-based formal language which in turn could be
linked to software verification [2]. Bouquet et al. use a

subset of UML 2.0 diagrams and Object Constraint
Language (OCL) operators to formalize the expected
system behavior [33]. The model is used for
automatically generating executable test scripts.
Kelleher and Simonss propose a new requirement
modeling approach [34] in which use cases are
replaced with use-case classes in UML 2.0. Use case
classes are formal templates for describing rules on
modeling requirements with instances. This
replacement, together with utilizing explicit
traceability links, facilitates bridging the gap between
requirements and testing. Sabetta et al.discuss [35] that
sometimes it might be needed to transform UML
models into different analysis models which could each
be used to verify (in a formal way) one kind of NFR.
Some of these models are Petri nets, queuing networks,
formal logic, etc. For this purpose, their abstraction-
raising approach can transform UML models to
different kind of analysis models in different
formalisms. Hassan et al. focus on security
requirements [36]. They propose the first goal-oriented
software security engineering approach, Formal
Analysis and Design for Engineering Security
(FADES), aiming to produce software with high level
of security in a systematic manner. FADES’ support of
automatic derivation of B formal method specifications
and a suite of acceptance test cases from the
requirements model ensures better alignment of
security requirements and testing. Hussain and
Eschbach present a model-based safety analysis
approach [37] that automatically composes formal
models of the system and produces a fault tree which
can be used to generate test cases for the software
system. Therefore test cases can be directly bound to
the safety requirements and assure traceability between
testing activity and safety requirements.

3.1.5. Code-centric approaches

Mugridge presents Storytest-Driven Development as a
complementary form of TDD which can be applied to
overall system development [38]. Storytests which are
executable and business-oriented examples for each
scheduled story are written by customers as an
alternative to detailed requirements documents. As
executable documents, they significantly reduce the
need to derive independent tests because they help
developers to continuously verify their consistency
with the system. Baillon and Mongardé describe
Behavior Driven Development (BDD) as a new
development paradigm [39] in order to address
traceability problems. They introduce the XReq tool
which supports BDD in the Ada and other statically
typed languages.

3.1.6. Problems and set of good practices in aligning
requirements and testing

Uusitalo et al. present a set of good practices which can
be applied to create a stronger link between
requirements engineering and testing [3]. Some of
these practices are involving testers during project
planning and requirements reviews, which would lead
to higher quality requirements and improved
testability. A systematic approach is presented by
Kukkanen et al. [1] for improving requirements and
testing processes together with the aim of linking
requirement and testing. They describe lessons learnt
and best practices determined from applying new
processes in an industrial case study. Sabaliauskaite et
al. have carried out a survey in a large software
company in Sweden, investigating the experienced
obstacles in the alignment of requirements and testing
[40].

3.1.7. Test cases

Nebut et al. concentrate on a guideline for automatic
test case generation on embedded systems that are
based on object oriented concepts [41]. The system
requirements are described via use cases, contracts, and
scenarios. If any other information for the requirements
is needed, it is provided by different UML artifacts like
sequence diagrams. Whalen et al. mention several
problems of measuring the adequacy of black box
testing using executable artifacts [42]. They also
present coverage metrics based on formal high level
software requirements. Conrad et al. presented a test
case generation strategy which has been in use in an
automotive company [43]. Siegl et al. are also
interested in automotive industry proposed EXtended
Automation Method (EXAM) for automatic generation
of test cases, and the Timed Usage Model process for
derivation of test cases from requirements [44].
Riebisch and Hubner concentrate on the first step of
test case generation [45]. In this step their proposed
method uses a description of the natural language and
transforms it to an expression with formally defined
syntax and semantics.

3.1.8. Approaches which support NFRs

Arnold et al. validation framework supports the
modeling and automated validation of FRs and NFRs
against several candidates IUTs [17]. In another
research they have worked on a MBT approach, which
is based on Requirements Notation (URN). URN is one
of few approaches that address the modeling and
validation of both FRs and NFRs [46]. The approach
proposed by Felderer et al. is suitable for testing
Service level agreements (SLA) which is considered as

non-functional properties [6]. In their case study
performance and security are included in modeling
requirements. Duy et al. proposed framework –
TROPOS is goal oriented in which NFRs are specified
by softgoals [25]. For discovering aspects from goal
models in AOSD, goals should be elicited and
categorized to hard (FRs) and soft (NFRs) goals, hence
AOSD can support NFRs [24]. In the method proposed
by Méndez et al. specifying test cases (TCs) based on
use cases (UCs) enables traceability between tests and
FRs and NFRs [27]. In this approach the TCS Table
can be used to define TC procedures associated to
NFRs. The meta-model presented by Dubois et al.
allows a full traceability of both FRs and NFRs
through software development process [32]. In their
research, Sabetta et al. transform UML models to
different kind of analysis models, such as Petri nets,
queuing networks, formal logic, etc. Each of these
models could be used in formal verification of different
NFRs [35]. Hassan et al. focus on alignment of security
requirements and testing through supporting of
automatic derivation of B formal method specifications
and a suite of acceptance test cases from the
requirements model [36]. In another research,
Mugridge states that both Storytest-driven
development and TDD depend on advanced automated

testing techniques, including tests for non-functional
requirements [38].

3.2. RQ2. What types of solutions are

represented in these studies?

Figure 2 shows a map of existing research focusing on
the alignment of requirements specification and testing,
distributed over type of contribution and research type.
It should be noted that a publication might provide
multiple contributions e.g. both a tool and method.

3.3. RQ3. In which fora is research on

alignment of requirement and testing
published?

Distribution of research shows that most research is
published in conferences and workshops 29/35(82%).
There is also one book chapter and five journal
publications (a full table of the distribution of
publication fora can be found on the url
http://www.cse.chalmers.se/~feldt/publications/alizade
h_2011_revvert.html). Distribution of publication
types over time is shown in Table 3.

Figure	 2.	 Map	 of	 research	 focus	

	
	

Table	 3.	 Distribution	 of	 publication	 types	 over	 years	
Publication

Type 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

Conference 1 0 0 2 5 0 4 4 7 23

Workshop 0 0 0 3 1 1 1 0 0 6

Journal 0 1 0 0 1 0 1 0 2 5

Book 0 0 0 0 0 0 0 1 0 1

Total 1 1 0 5 7 1 6 5 9 35

4. Discussion

There are several challenges in using MBT approach
for aligning requirements and testing. Researchers have
tried to address these challenges. One challenge is to
make test cases executable, as the tests are not at the
same level of detail as the implementation code [17,
46]. Another challenge is to find interesting test cases.
Test cases are said to be interesting if they cover
requirements and can discover potential errors with a
high probability [20]. Requirements traceability in
MBT process is another important issue, which is the
focus of several studies (such as [6, 20, 30]). In these
the focus is mainly on FRs, and NFR traceability is still
open for further research [26]. There are some studies
on using MBT in service-oriented systems (like [6,
19]). The use of scenario notation for specification of
system models has also attracted some attention (such
as [17, 19, 30, 46]).
The focus on traceability issues is also conceivable
since requirements traceability helps to determine the
degree of test case coverage of requirements, and
improves change management, which is crucially
important to industry. As Abbors et al. mention [26]
traceability reduces the time needed for debugging of
the specification or the implementation of the system,
by giving fast feedbacks.
Formal approaches which are another main research
interest address translating informal requirements into
formal models, generating tests from these formal
models, and tracing between the informal requirements
and tests [30]. Applying formal methods for aligning
requirements and testing has some advantages and
drawbacks. In this approach requirements are
formulated in a precise, provable and correct
representation. The representation is unambiguous and
consistent [36]. This makes formal methods one of the
best options for modeling and testing of safety critical
systems. On the other hand using formal methods is
difficult for practitioners [36]. Experienced people in
this field are hard to come by and expensive to employ.
The application of formal methods especially for large
and complex systems is challenging because of their
high cost and limited scalability. There is room for
researches that combine the advantages of formal
methods – formulating requirements in a precise,
reliable and provable representation and the strength of
informal methods – easy to learn and apply, to align
requirement and testing.
Looking at figure 2 the dominant research type in all
research focus areas is solution proposal. This means
that challenges in each research focus area are well
understood, but the proposed solutions are just
proposals and very little researches focus on the actual
use and evaluation of proposals. Table 4 shows that

only half of the papers have evaluated their ideas in
industrial case studies, and their validity discussion is
mostly medium (that is the author has mentioned
threats to validity without a detailed discussion). In
addition most of the studies have not been published in
journals. As mentioned in section 3.3, 29/35 (82%) of
studies are published in conferences and workshops
and only 5 out of 35 papers in a journal. All in all
aligning the requirements and testing seems to be a
relatively immature area and is in need of more
empirical and practical work.
The contribution type is mostly method 17/55 (31%),
tool 13/55 (24%), followed by framework. Presenting
new methodologies or enhancing existing ones are
needed to establish a strong link between requirements
and testing. In order for them to be practical in
industry, supportive tools and frameworks should be
built.
Table 3 shows that interest in this field has grown in
recent years, which could also serve as a motivation for
more research.
Another important point is that most efforts in aligning
requirements and testing have been on functional
requirements. Table 5 shows that just 10 of 41 (24%)
of papers present approaches that could also be used
for NFRs. This is a low percentage considering how
important NFRs are in today’s software systems.

	
Table	 4.	 Validity	 discussion	 and	 case	 study	

 # %

Weak 7 20

Medium 17 49

Strong 11 31

Total 35

With case
study 16 46

Table	 5.	 Distribution	 over	 FRs	 and	 NFRs	
 # %

FR 31 76

NFR 10 24

Total 41

5. Conclusions

This paper presents a systematic mapping on aligning
the specification and testing of functional or non-
functional requirements. We identified 35 papers
published between 2001 and 2010 by searching in four
major databases. After studying these papers we could

divide the prior work on aligning requirements and
testing that they represent in these focus areas: Model-
based approaches, Code-centric approaches,
Traceability, Formal approaches, Test cases, Problems
and set of good practices in aligning requirements and
testing. The major focus is on model-based testing and
traceability issues. The type of contribution of the
papers is mostly methods (26%), tools (24%) followed
by frameworks. Most of the prior research has been
published in conferences and workshops (82%). There
is also one book chapter and five journal publications.
Although industry is becoming increasingly interested
in establishing a strong link between requirements and
testing, we conclude that there is still a significant gap
between these areas. This shows high potential for
future work in establishing methods and processes with
supportive tools. In particular, the current approaches
to alignment have paid little attention to non-
functional, quality requirements even though they play
a critical role in achieving successful software systems.
As such, this area has high potential for further
research.

References

[1] J. Kukkanen, K. Vakevainen, M. Kauppinen, et al.,
"Applying a systematic approach to link requirements and
testing: a case study," in Asia-Pacific Software Engineering
Conference (APSEC), Piscataway, NJ, USA, 2009, pp. 482-
488.
[2] H. Post, C. Sinz, F. Merz, et al., "Linking
functional requirements and software verification," in
17thIEEE International Requirements Engineering
Conference(RE), Piscataway, NJ, USA, 2009, pp. 295-302.
[3] E. J. Uusitalo, M. Komssi, M. Kauppinen, et al.,
"Linking requirements and testing in practice," in 16th IEEE
International Requirements Engineering Conference, NJ,
USA, 2008, pp. 265-70.
[4] Lars Grunske, "Specification Patterns for
Probabilistic Quality Properties," in 30th International
Conference on Software Engineering (ICSE 2008), Leipzig,
Germany., 2008, pp. 31-40.
[5] Abderrahman Matoussi and Régine Laleau, "A
Survey of Non-Functional Requirements in Software
Development Process," Technical report TR-LACL-2008-7,
LACL (Laboratory of Algorithms, Complexity and Logic),
University of Paris-Est (Paris 12), 2008.
[6] M. Felderer, P. Zech, F. Fiedler, et al., "A Tool-
based Methodology for System Testing of Service-oriented
Systems," in Second International Conference on Advances
in System Testing and Validation Lifecycle (VALID), Los
Alamitos, CA, USA, 2010, pp. 108-13.
[7] K. Petersen, R. Feldt, S. Mujtaba, et al.,
"Systematic mapping studies in software engineering," 12th
International Conference on Evaluation and Assessment in
Software Engineering (EASE) University of Bari, Italy, 26–
27 June, 2008.

[8] B.A. Kitchenham and S. Charters, "Guidelines for
performing Systematic Literature Reviews in Software
Engineering," Technical Report EBSE-2007-01, 2007.
[9] Lawrence Chung and Julio Cesar Prado Leite, "On
Non-Functional Requirements in Software Engineering," in
Conceptual Modeling: Foundations and Applications, T. B.
Alexander, K. C. Vinay, G. Paolo, et al., Eds., ed: Springer-
Verlag, 2009, pp. 363-379.
[10] Marie-Agnes, Peraldi-Frati, and Arnaud Albinet,
"Requirement traceability in safety critical systems,"
presented at the Proceedings of the 1st Workshop on Critical
Automotive applications: Robustness and Safety, Valencia,
Spain, 2010.
[11] J. Zou and C. J. Pavlovski, "Control cases during
the software development life-cycle," in IEEE Congress on
Services Part 1 (SERVICES-1), Piscataway, NJ, USA, 2008,
pp. 337-344.
[12] J. Metsa, M. Katara, and T. Mikkonen, "Testing
Non-Functional Requirements with Aspects: An Industrial
Case Study," in Quality Software, 2007. QSIC '07. Seventh
International Conference on, 2007, pp. 5-14.
[13] Breno Lisi Romano, Glaucia Braga e Silva,
Henrique Fernandes de Campos, et al., "Software Testing for
Web-Applications Non-Functional Requirements," presented
at the Proceedings of the 2009 Sixth International Conference
on Information Technology: New Generations, 2009.
[14] M. Glinz, "On Non-Functional Requirements," in
15th IEEE International Requirements Engineering
Conference. RE '07. , 2007, pp. 21-26.
[15] Roel Wieringa, Neil Maiden, Nancy Mead, et al.,
"Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion," Requir.
Eng., vol. 11, pp. 102-107, 2005.
[16] M. Ivarsson and T. Gorschek, "Technology transfer
decision support in requirements engineering research: a
systematic review of REj," Requirements Engineering, vol.
14, 2009, pp. 155-175., 2009.
[17] D. Arnold, J. P. Corriveau, and Shi Wei,
"Modeling and validating requirements using executable
contracts and scenarios," in 8th ACIS International
Conference on Software Engineering Research, Management
and Applications (SERA), CA, USA, 2010, pp. 311-20.
[18] A. Goel, B. Sengupta, and A. Roychoudhury,
"Footprinter: Round-trip engineering via scenario and state
based models," in 31st International Conference on Software
Engineering - Companion Volume - ICSE-Companion,
Piscataway, NJ, USA, 2009, pp. 419-420.
[19] W. T. Tsai, R. Paul, L. Yu, et al., "Scenario-Based
Web Services Testing with Distributed Agents," IEICE
Transactions on Information and Systems, vol. E86-D, pp.
2130-2144, 2003.
[20] C. Pfaller, A. Fleischmann, J. Hartmann, et al., "On
the integration of design and test: A model-based approach
for embedded systems," in Proceedings of the 2006
international workshop on Automation of software test(AST)
2006, pp. 15-21.
[21] J. L. Boulanger and V. Q. Dao, "Requirements
engineering in a model-based methodology for embedded
automotive software," in IEEE International Conference on
Research, Innovation and Vision for the Future in Computing
& Communication Technologies(RIVF), Ho Chi Minh City,
Vietnam, 2008, pp. 263-268.

[22] L. O. Lobo and J. D. Arthur, "Local and global
analysis: Complementary activities for increasing the
effectiveness of requirements verification and validation," in
Proceedings of the 43rd Annual ACM Southeast Conference,
Kennesaw, GA, 2005, pp. 2256-2261.
[23] R. Marelly, D. Harel, and H. Kugler, "Multiple
instances and symbolic variables in executable sequence
charts," in 17th International Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA 2002), USA, 2002, pp. 83-100.
[24] Niu Nan, Yu Yijun, B. Gonzalez-Baixauli, et al.,
"Aspects across software life cycle: a goal-driven approach,"
in Transactions on Aspect-Oriented Software Development.
VI. Special Issue on Aspects and Model-Driven Engineering,
ed Berlin, Germany: Springer Verlag, 2009, pp. 83-110.
[25] Nguyen Duy Cu, A. Perini, and P. Tonella, "A
goal-oriented software testing methodology," in Agent-
Oriented Software Engineering VIII. 8th International
Workshop, AOSE 2007, Berlin, Germany, 2008, pp. 58-72.
[26] F. Abbors, D. Truscan, and J. Lilius, "Tracing
requirements in a model-based testing approach," in 2009
First International Conference on Advances in System
Testing and Validation Lifecycle (VALID), Piscataway, NJ,
USA, 2009, pp. 123-8.
[27] E. Mendez, M. Perez, and L. E. Mendoza,
"Improving software test strategy with a method to specify
test cases (MSTC)," in 10th International Conference on
Enterprise Information Systems. Databases and Information
Systems Integration, Setubal, Portugal, 2008, pp. 159-64.
[28] C. Quinn, S. Vilkomir, D. Parnas, et al.,
"Specification of software component requirements using the
trace function method," in International Conference on
Software Engineering Advances, Tahiti 2006, pp. 50 - 50
[29] L. Naslavsky, T. A. Alspaugh, D. J. Richardson, et
al., "Using scenarios to support traceability," in Proceedings
of the 3rd international workshop on Traceability in
emerging forms of software engineering(TEFSE)
California,USA, 2005, pp. 25-30.
[30] A. Goel and A. Roychoudhury, "Synthesis and
traceability of scenario-based executable models," in 2006
2nd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2006),
15-19 Nov. 2006, Piscataway, NJ, USA, 2008, pp. 347-54.
[31] S. Ibrahim, M. Munro, A. Deraman, et al., "A
software traceability validation for change impact analysis of
object oriented software," in Proceedings of the International
Conference on Software Engineering Research and Practice
and Conference on Programming Languages and Compilers
SERP'06, USA, 2006, pp. 453-9.
[32] Hubert Dubois, Marie-Agnès Peraldi-Frati, and
Fadoi Lakhal, "A model for requirements traceability in an
heterogeneous model-based design process. Application to
automotive embedded systems," in 15th IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS), Oxford, UK, 2010, pp. 233-242.
[33] F. Bouquet, C. Grandpierre, B. Legeard, et al., "A
subset of precise UML for model-based testing," in
Proceedings of the 3rd international workshop on Advances
in modelbased testing (AMOST), 2007, pp. 95-104.
[34] J. Kelleher and M. Simonsson, "Utilizing use case
classes for requirement and traceability modeling," in
Proceedings of the 17th IASTED International Conference

on Modelling and Simulation, Anaheim, CA, USA, 2006, pp.
617-25.
[35] A. Sabetta, D. C. Petriu, V. Grassi, et al.,
"Abstraction-raising transformation for generating analysis
models," in Satellite Events at the MoDELS 2005
Conference. MoDELS 2005 International Workshops. ,
Berlin, Germany, 2005, pp. 217-26.
[36] R. Hassan, M. Eltoweissy, S. Bohner, et al.,
"Formal analysis and design for engineering security
automated derivation of formal software security
specifications from goal-oriented security requirements," IET
Software, vol. 4, pp. 149-60, 2010.
[37] Tanvir Hussain and Robert Eschbach, "Automated
Fault Tree Generation and Risk-Based Testing of Networked
Automation Systems," in Proceedings of 15th IEEE
Conference on Emerging Technologies and Factory
Automation (ETFA 10) Bilbao, Spain, 2010.
[38] R. Mugridge, "Managing agile project
requirements with storytest-driven development," IEEE
Software, vol. 25, pp. 68-75, 2008.
[39] C. Bâillon and S. Bouchez-Mongardé, "Executable
requirements in a safety-critical context with Ada," Ada User
Journal, vol. 31, pp. 131-135, 2010.
[40] G. Sabaliauskaite, A. Loconsole, E. Engstrom, et
al., "Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context," in
Requirements Engineering: Foundation for Software Quality.
16th International Working Conference, REFSQ, Berlin,
Germany, 2010, pp. 128-42.
[41] C. Nebut, F. Fleurey, Y. Le Traon, et al.,
"Automatic test generation: a use case driven approach,"
IEEE Transactions on Software Engineering, vol. 32, pp.
140-55, 2006.
[42] M. W. Whalen, M. P. E. Heimdahl, A. Rajan, et
al., "Coverage metrics for requirements-based testing," in
Proceedings of the international symposium on Software
testing and analysis(ISSTA) 2006, pp. 25-35.
[43] M. Conrad, I. Fey, and S. Sadeghipour,
"Systematic Model-Based Testing of Embedded Automotive
Software," Proceedings of the Workshop on Model Based
Testing(MBT), Electronic Notes in Theoretical Computer
Science, vol. 111, pp. 13-26, 2005.
[44] Sebastian Siegl, Kai-Steffen Hielscher, and
Reinhard German, "Model Based Requirements Analysis and
Testing of Automotive Systems with Timed Usage Models,"
in 18th IEEE International Requirements Engineering
Conference, Sydney, New South Wales Australia, 2010.
[45] M. Riebisch and M. Hubner, "Traceability-driven
model refinement for test case generation," in Proceedings.
12th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, CA, USA, 2005,
pp. 113-20.
[46] D. Arnold, J. P. Corriveau, and Shi Wei, "Scenario-
Based Validation: Beyond the User Requirements Notation,"
in Software Engineering Conference (ASWEC), 2010 21st
Australian, 2010, pp. 75-84.

