
ECSS Standard Compliant Agile Software Development

[An Industrial Case Study]

Ehsan Ahmad
Department of Computer
Science and Engineering

Air University
Islamabad, Pakistan

ehsan.ahmad@mail.au.edu.pk

Bilal Raza, Robert Feldt
Blekinge Institute of

Technology
SE-372 25 Ronneby, Sweden

bira07|rfd@bth.se

Tanja Nordebäck
Space Division

Swedish Space Corporation
Stockholm, Sweden

tanja.nordeback@ssc.se

ABSTRACT
Developing software for high-dependability space applica-
tions and systems is a formidable task. The industry has a
long tradition of developing standards that strictly sets qual-
ity goals and prescribes engineering processes and methods
to fulfill them. The ECSS standards is a recent addition, but
being built on the PSS-05, it has a legacy of plan-driven soft-
ware processes. With new political and market pressures on
the space industry to deliver more software at a lower cost,
alternative methods need to be investigated. In particular,
the agile development processes studied and practiced in the
Software Engineering field at large has tempting properties.
This paper presents results from an industrial case study
on a company in the European space industry that is using
agile software development methods in ECSS projects. We
discuss success factors based on detailed process and docu-
ment analysis as well as empirical data from interviews and
questionnaires.

Keywords
Case Study, European Cooperation for Space Standardiza-
tion, Agile Paradigm

1. INTRODUCTION
Software development projects for space applications and

systems tend to have different dynamics than software projects
in other domains. Development of software for space appli-
cations pose additional challenges due to its inherent require-
ment that the end products should be highly dependable.
The reliable protocols and specific space operations also dif-
ferentiate them from other systems. Existing software engi-
neering standards are not enough to cope with these chal-
lenges. The European Cooperation for Space Standardiza-
tion (ECSS) has developed a set of standards for European
space projects[2]. These standards are derived from PSS-
05[1], an earlier space standard, which were more prescrip-
tive, demanded heavy documentation and favored waterfall

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSEC ’10 Islamabad, Pakistan
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and incremental development models[3]. It also did not ad-
equately discuss the relation and correspondence between
overall space system development and its software develop-
ment. Since PSS-05 was a primary input for ECSS, devel-
opment activities in the space industry have the legacy of
PSS-05[1, 3].

A number of factors such as increasing globalization, in-
creased expectations on software systems in general, changes
in political priorities and increasing competitiveness the space
industry need to deliver software with more functionality but
at lower costs. This requires new methods to be considered.
Agile methodologies are gaining acceptance from a wide va-
riety of software industries[6], however it is not clear whether
agile methods can adhere to the requirements and pressures
of the standards for dependable space systems. The main
aim of this paper is to present the results of a study which
analyze how a company in European space industry is using
more agile software development methods while still adher-
ing to ECSS standards.

The experience drawn on in this research is part of a
project launched at Swedish Space Corporation (SSC) to
create more efficient Verification and Validation Activities
(VVAs), in general, and within ECSS projects, in particular.
The study focuses on experiences from their ECSS projects
and VVAs used in those projects. The Space Division at SSC
develops software and hardware for space applications, such
as for example the satellites Prisma, Small-Geo and Smart
Olev. SSC is a system integrator and supplier for small and
micro-satellites. They are also specialized in developing at-
titude orbit and control systems and on board data handling
units. In recent years they have changed their software pro-
cesses to be more agile, by using Scrum as a project man-
agement model and Test-Driven Development(TDD)as an
engineering model[14, 15, 16]. So in the following, when we
refer to agile methodologies, our focus is on these two agile
practices. For most of their development projects they have
to follow the ECSS standards. Selection and adaptation of a
particular VVA at a particular stage of the project depends
on having an understanding of the mapping between ECSS
standards and agile practices used by SSC. The results of
this study should ideally help other space companies under-
stand if and how agile methodologies can be used in their
software development.

The next section includes related work and brief intro-
duction of ECSS standards. Section3 explains the design of
the study. Section4 describes the results and analysis, and
Section5 highlights the challenges and issues regarding ECSS

standards compliant agile development. Section6 maps the
requirements of ECSS standards and how they are met at
SSC using agile practices. Section7 contains the discussion
while Section8 concludes the study.

2. BACKGROUND

2.1 Related Work
Attaining an optimal balance between plan-driven and

agility is an important factor for the success of dependable
software projects [6]. The discussion about mapping stan-
dards like ISO 9001 and CMMI to agile ways of working
started right after the inception of agile methodology. Tor
et al. have summarized the work done for mapping ISO
9001 with agile software development in[7]. They pointed
out that the main differences between agile development and
ISO 9001 are the documents for reviews and proof of con-
formance. They also suggested some changes for both ISO
and agile development to make them compatible with each
other. In [6], Turner has discussed the components of CMMI
process improvement and their relation to agile software de-
velopment.

Both[6] and [7] had concluded that differences between
plan-driven approaches (ISO 9001 and CMMI) and agile de-
velopment are not insurmountable and agile development
can produce enough documents for reviews and proof of con-
formance. ECSS standards are mainly based on ISO/IEC
12207[4, 5]. Although a large number of research papers
like[8, 9] are aiming to reconcile ISO/IEC 12207 and agile,
no explicit work has been done to discuss the issues of recon-
ciling ECSS software standards and agile methodology ac-
cording to authors’ best knowledge. A study was conducted
by Fátima et al.[13] that compares the management process
of ECSS for software acquisition with PMBOK/DoD. But
it is mainly focused on requirements of ECSS management
processes (the M branch of the standard).

2.2 ECSS Standards
In 1993 the European Space Agency (ESA) along with

other national space agencies and industries realized the
need of a single coherent, recognized and accepted system of
standards to replace the practice-based PSS-05 standard[2,
3]. The first document of this new system of standards,
named European Cooperation for Space Standardization(ECSS),
was introduced in 1996. The idea is that ECSS standards
should continuously be created and updated to adapt to
changing needs of the industry. A revision process started
in 2006 and two batches of updates were released in 2008.
ECSS standards divide activities into three areas: manage-
ment, engineering and product assurance and has four levels:

• Level 0- discusses policy, architecture and objectives
of ECSS

• Level 1- describes the strategy within management,
product assurance and engineering by highlighting the
requirements and interfaces of level 2 elements

• Level 2- explains objectives and functions of each do-
main. It is considered as branch-specific level

• Level 3- lists methods, procedures and tools to achieve
the requirement of the level 2 documents. It is also
known as technical domain specific level.

ECSS-E-40 and ECSS-Q-80 are related to software. ECSS-
E-40 is based on ISO 12207 and allows suppliers to define
their own standards, which are in compliance with or tai-
lored to it[3, 1]. To ensure completeness and correctness,
it forces suppliers for different types of review;Preliminary
Design Review (PDR), Critical Design Review (CDR), De-
tailed Design Review (DDR)and Site Acceptance Test (SAT)etc.
ECSS-E-40 is based on a recursive concept of customer-
supplier relationship. A customer at one level can be a
supplier for a higher level. According to clause 4 of ECSS-
E-40[4], customer is responsible for defining both functional
and performance requirements, interface between software
components and interface between software and hardware
while the supplier is supposed to maintain the interface with
the customer to ensure the proper consideration of higher
level system requirements. ECSS-Q-80 defines requirements
for product quality assurance to ensure that the software
development produces safe and reliable software[3, 5]. It fo-
cuses on identifying quality attributes, measurable quality
objectives and set of metrics to verify these quality objec-
tives.

3. DESIGN OF THE STUDY

3.1 Research Questions
We aim to answer the following research questions:

RQ1 What are the requirements of ECSS standards for
software development, quality, verification and valida-
tion processes?

RQ2 What is the level of knowledge in the organization(SSC)about
ECSS standards and their effects?

RQ3 What are the major concerns for dependable ECSS
compliant agile software development?

3.2 Research Design
To increase the validity of the results we have used trian-

gulation, i.e. a variety of research methods. We combined
a questionnaire with semi-structured interviews and docu-
ment analysis:

3.2.1 Web-Based Questionnaire
In order to answer RQ2, a web-based questionnaire was

administered to relevant personnel at the case company. The
questions were developed to determine the role and activi-
ties of the respondents, and their knowledge and views on
ECSS in particular and on VVAs in general. A total of
18 respondents answered the questionnaire and answer fre-
quency was 32.73%. The low answer frequency can partly
be explained by the fact that it was distributed more widely
and, thus, some of the receivers might not have been in the
target group.

3.2.2 Semi-Structured Interviews
To identify the major concerns of for dependable ECSS

compliant agile software development(RQ3), semi-structured
interviews were conducted with a total number of 9 inter-
viewees. The interviews were between 45 and 80 minutes in
length. One researcher posed questions from a prepared list
and the other researcher recorded the interviews. The inter-
views were transcribed and individually summarized by the

Table 1: Knowledge and effects of ECSS standards.
ECSS issues Responses Weighted Average
Knowledge 18 2.1 (I know roughly what

it is about)
Effect on software devel-
opment

18 1.8 (Low)

Effect on software quality 15 2.9 (Low)
Effect on efficiency in
software dev.

16 2.0 (Somewhat negative)

two researchers. They summarized the transcriptions inde-
pendently and then discussed their results until consensus
was reached.

3.2.3 Document Analysis
Documents like software development plans, software ver-

ification and validation plans and software quality assurance
plans from SSC, were analyzed. Different ECSS standards
like ECSS-E-40, ECSS-Q-80 were also analyzed to under-
stand the requirements imposed by these standards(RQ1).
Initially, these documents provided the basis for interviews
and later they were complemented with the data of ques-
tionnaire and interviews.

4. RESULTS AND ANALYSIS

4.1 Web-Based Questionnaire
The questionnaire was divided into four main themes. The

first theme focused on ECSS standard, the second on the ef-
fectiveness of the practiced VVAs, the third on the effort
required for VVAs and, finally, the fourth on changes that
could be made with respect to efforts if the companies would
not need to take ECSS standards into consideration. For un-
derstanding and analysis of questionnaire results, a weighted
average for each theme is calculated.

Theme 1 of the survey is related to ECSS standards. Ques-
tions were asked about the knowledge of ECSS standards,
and it’s affects on i) software development ii) improving soft-
ware quality iii) improving software development efficiency.
Analysis of the responses to these questions, is one of the
focal points for this position paper.

The responses were given a weight from 1 to 5, where 1
being the lowest and 5 being the highest. Table1 summa-
rizes the results from this theme. To analyze questionnaire
results, a weighted average for each issue is calculated. A
significant segment of respondents (84%) said that ECSS
has a positive effect on the quality of software and only 16%
said that it has negative effects. Most of the respondents
84% said that the degree to which ECSS affects their soft-
ware development processes is low or very low and only 16%
say that it is high. It is quite interesting to find out that
50% of the respondents said that ECSS has positive effects
on the efficiency of software development and the same per-
centage said that it has negative effects. The results from
the interviews and document analysis are presented in the
next section as challenges and issues.

5. CHALLENGES AND ISSUES
Table 2 summarizes the challenges uncovered as a result

of document analysis and interviews. These challenges are
based on the requirements of ECSS standards need to be
fulfilled for ESA projects. The requirement considered as a

challenge/issue was judged on how frequently it was men-
tioned by different respondents and how important the re-
searchers judged it to be. Each challenge/issue will now be
presented in more detail.

Software Management Process.
Supplier has to identify a suitable software life cycle pro-

cess which has to be divided into phases and inputs,output
and documents produced are to be defined for each phase.
Discussion about the technical specifications based on the
requirement baseline, must be started early in the life cy-
cle process. A joint technical review process must be main-
tained throughout the whole life cycle for technical, interface
and budgeting reviews, with customer cooperation.

Software Engineering Process.
Supplier is responsible for defining, establishing and doc-

umenting the requirements both functional and nonfunc-
tional. Supplier develops man-machine interface mockup
and customer evaluates it. Supplier is also responsible for
transforming software requirements into high level software
architecture by identifying software components and items
for each component.Supplier has to develop and document a
detailed design of each component by dividing it into small
units so that they can be coded, compiled and tested. Each
unit must be coded, tested and documented. Integration
and testing must be done on both component and unit lev-
els.

Software V&V Process.
The software validation process according to ECSS con-

sists of validation process implementation and its activities,
with respect to technical specification and requirement base-
line. In order to implement the validation process, the sup-
plier should first determine the effort required for it and then
establish a process and document it. If required the supplier
can have independent validation by a qualified organization.
The supplier shall develop, document and develop set of test
cases for software validation priority is given to the valida-
tion testing however, other validation methods such as re-
views and inspection can also be used. The supplier shall
also conduct test readiness reviews and critical design re-
views.The software verification process according to ECSS
consists of verification process implementation and its ac-
tivities. In order to implement the verification process the
supplier should first determine the effort required for it and
then establish a process and document it. If required the
supplier can have independent verification by a qualified or-
ganization.

Assurance Program Implementation.
Supplier is responsible for developing a comprehensive

software product assurance plan which identifies resources
and responsibilities, conduct planning, controlling and re-
porting product assurance, selection of development meth-
ods and tools, risk management and continuous process as-
sessment and improvement.

Software Process Assurance.
Requirements are defined to confirm the suitability of soft-

ware development process selected according to ECSS-E-40
with emphasis on dependability between hardware and soft-

Table 2: Requirements of ECSS standards considered as challenges for agile paradigm.
Factor Requirement Standard Clause(s)
Software Management Process Identify a suitable software development process and a technical review pro-

cess
ECSS-E-40 5.3

Software Engineering Process Define and document engineering process for requirements, architecture,
design, coding and testing

ECSS-E-40 5.4, 5.5

Verification and Validation
(V&V)Process

Determine the effort required to implement V&V process, Define the process
and document it

ECSS-E-40 5.6, 5.8

Assurance Program Implementa-
tion

Develop a comprehensive software product assurance plan ECSS-Q-80 5

Software Process Assurance Confirm the suitability of software development process selected according
to ECSS-E- 40

ECSS-Q-80 6

Software Product Quality Assur-
ance

Identify the set of requirements to assure the quality of the final software
product

ECSS-Q-80 7

ware, configuration management, and requirement for each
life-cycle process.

Software Product Quality Assurance.
It includes a set of requirements to assure the quality of

the final software product with focus on quality attributes
and relation between them, measurable quality objectives
and a set of metrics to verify quality objectives.

6. MAPPING OF ECSS STANDARDS AND
AGILE PARADIGM

Table 3 summarizes success factors regarding how ECSS
requirements can be addressed using agile paradigm. The
rest of this section discusses each success factor in terms of
agile practices being followed at SSC for ECSS compliant
agile software development.

Software Management Process.
Sub-clauses 5.3.2.1 and 5.3.2.2 of ECSS-E-40 are related

to the software life cycle management process itself. The
initial Sprint planning meeting can be focused on the suit-
ability of agile approaches by discussing literature, previous
experiences and best practices of agile. SSC develops Soft-
ware Development Plan (SDP) for each component, which
is then validated by the prime contractor. Sprint planning
meeting at SSC, is a platform used to discuss the inputs, out-
puts and documents produced for each sprint. The active
participation of customer representative in communication
and management practices of agile approach as described
in[6], ensures that technical specifications and architectural
infrastructure is according to the agreed requirements base-
line. The empirical work conducted by Pikkarainen[8], a
comprehensive literature review presented by Tor et al[7]
has proved that different planning and review activities of
agile approach can be mapped with reviews like PDR, DDR,
CDR,SAT and a joint review process can easily be main-
tained in any kind of problem area.

Software Engineering Process.
Agile methodology, used at SSC is based on customer-

supplier communication. One of the main critics of Scrum
is its inability to produce a workable product during the
requirements and architecture phases however, the sprint
planning in Scrum and metaphor in eXtreme Programming
(XP) [17] with frequent customer meetings (preferably face-
to-face), enable them to understand each other and have
a clear vision of the architectural infrastructure of the sys-
tem[7, 8, 9]. A demonstrable layer of architectures can be

delivered in the first sprint. SSC ensures to fulfill the re-
quirements of this clause by participation of product owner
(customer representative), Scrum master and Scrum team
in daily Scrum meeting. Sprint planning at the start of
each iteration, is used to manage the requirements and the
product backlog is updated accordingly. Iterative delivery
of software is useful to ensure that the architecture infras-
tructure actually works.

The iterative development in agile ensures the continuous
application of reviews and metrics evaluation at the end of
each sprint. Reviews are performed for top-level milestones.
Product owner determines schedule, quality and functionally
of each working unit on sprint bases. Each sprint ends with
a full fledge working unit that is developed, tested, quality
assured and according to standards. At SSC, the process of
design is improved by planning and controlling it iteratively
with the help of discussions between a self organizing team
in daily stand up meeting in open office environment as ex-
plained by [6, 9]. The definition and review /justification
documents mentioned in each sub-clause are maintained at
the start and end of each sprint respectively to show the
conformance.

Software V&V Process.
Software validation is about building the right product

while software verification is about building the product
right[10]. Agile methods integrate developers, testers and
customers therefore the visibility of tasks and constraints
is high within development teams. The reflection and post
mortem analysis at the end of each sprint provide opportu-
nities for identification and resolution of issues. Involving
customers frequently validates the products and provides
feedback in the process[6]. TDD produces fewer defects
and is useful in verification[11]. SSC is using Scrum and
TDD effectively to manage software verification and valida-
tion activities by determining the required effort efficiently.
Verification experts at SSC are somewhat skeptical about
the independent validation because of their bad experience,
however, they also believe that independent validation is re-
quired at some stage but there is a chance of too much loss
of information in having it completely independent. There
were communication issues and delays in their projects due
to complete independent validation.

An important characteristic of Scrum is frequent reviews.
Team progress is reviewed as frequently as environmental
complexity and risk dictates. The vital point of agile de-
velopment is close monitoring and reviews of the process to
discover problems early. These reviews are intended to dis-
cover non-conformity with the requirements[7]. The close

Table 3: Agile strategies for ECSS challenges in relation with SSC practices.
Factor Agile Strategies SSC Practices
Software Management Process Management models like Scrum, Agile Modeling,

DSDM
Develop a Software Development Plan for following
Scrum for each project

Software Engineering Process Techniques like Test Driven Development
(TDD),Continuous Integration, Pair Programming

Sprint planning is done at the start of each sprint
and the use TDD for development

Software Verification and Valida-
tion (V&V)Process

Agile paradigm forces to have visible goals and fre-
quent reviews

Frequent review meetings in Scrum and TDD en-
sures process verification and minimizes product
defects

Assurance Program Implementa-
tion

sprint planning meetings in Scrum Practices like sprint planning meetings,daily stand-
up meetings and sprint post-mortem analysis helps
to assure this implementation

Software Process Assurance Suggests daily stand-up meetings, sprint retrospec-
tives in Scrum

Process assurance is achieved through daily stand-
up meetings and frequent sprint retrospectives

Software Product Quality Assur-
ance

Sprint retrospectives in Scrum Frequent sprint retrospectives are used to identify
success factors and failures

relationship between the customer and supplier increases
the level of validation [6]. Design and development are re-
viewed between iterations jointly by the development team
and customer. High-level design review is conducted at the
start of the planning game and low-level design reviews are
performed between iterations. Keeping track of design or
development changes is also catered by these reviews[7].

At SSC, unit level development and testing is done by
the same staff members, however at integration level, extra
resources which are independent from the development are
used. The product owner and all interested stakeholders are
invited to attend the sprint review meetings, at the end of
each sprint. The product owner determines which items on
the product backlog have been completed in the sprint, and
discusses with the Scrum team and stakeholders how best
to reprioritize the product backlog to the next sprint.

Assurance Program Implementation.
Agile methodology starts with a planning phase and the

issues like sprint length, number of sprints, documents to be
produced, and quality measures etc. can easily be discussed
and documented. One of the main reasons of introducing ag-
ile approaches at SSC was to cope with the problems caused
by changes in requirements and schedules (requirements of
sub-clause 5.5 of ECSS-Q-80). But these changes are nor-
mally known as short terms risks and the agile approaches
focus on functional behavior of the system with no extra fo-
cus on long term risks[10]. Each sprint can be assessed at
the end, in sprint review meeting. Lesson learnt session in
the form of post iteration workshops, reflection workshops,
and agile assessment are used to answer the questions re-
lated to assessment and improvement of working process on
continuous bases[6, 8].

Software Process Assurance and Product Quality As-
surance.

One of the major claims to agile process quality assur-
ance is non-documented evolving process. But this evolving
nature of agile process with the help of Scrum master and
continuous assessment actually leads to a better quality as-
sured process. Need for product quality assurance was a
some agile approaches. Like XP enforces functional, accep-
tance and unit tests to ensure that the software product is
according the quality standards accepted to the customer[9].

SSC uses common Scrum metrics like estimated team ve-
locity, actual team velocity, sprint Burndown chart, product
Burndown chart to measure the progress of team and qual-

ity of the process. TDD is used to fulfill single fault tolerant
requirement of the dependable system. Process assessment
and improvement is performed at Sprint retrospectives. The
way the team worked together in the sprint is assessed. Pos-
itive ways of working together are identified and encouraged
as future practice. Things that could work better are iden-
tified and strategies for improvement are defined and agreed
upon.

Another important feedback cycle at SSC is daily stand-
up meetings (Daily Scrum meeting). These meetings are
very short and focused on a quick status update and dis-
covering problems as early as possible (”done”, ”to-do”, and
”issues”). According to experience, some of typical team is-
sues (e.g. one engineer can not proceed because he depended
on a task from another, tester does not get info how to test
new features, two engineers are working on solving the same
problem etc) can be avoided if the team communicated them
earlier. Scrum makes a lot of issues visible that exist within
the team, makes visible the good and the bad, and giving
the team the choice of elevating itself to a higher level. By
having every member of the team see every day what ev-
ery other team member was doing, the team’s productivity,
morale, adaptability, accountability and collaboration will
significantly increase.

7. DISCUSSION
ECSS does not restrict suppliers to use any specific soft-

ware development methodology. Its software engineering
standards are mainly based on ISO/IEC 12207 [4, 5]. Re-
quirements of engineering and management processes of both
standards are almost the same. Studies like[6] and [9] have
explained that ISO/IEC 12207 and agile are not contradic-
tory to each other. Our findings support these studies, based
on a study of a company in the high-dependability space in-
dustry.

The recursive customer-supplier model described in clause
4.2 of ECSS-E-40 highlights that ECSS focuses on strong
customer-supplier collaboration. It engages customers in
two ways: firstly by involving in defining functions and per-
formance requirements with supplier (role as a customer)
and secondly by interacting with customer to ensure proper
actions against high level software requirements (role as a
supplier). Agile is an advanced form of iterative develop-
ment and primarily focuses on customer satisfaction by rapid
and continuous delivery of working software[15]. Thus the
recursive customer-supplier model of ECSS can be mapped
easily with Scrum. Active participation of product owner

in scrum planning, stand-up and sprint review meetings en-
sures that customer is aware of the status and quality of
software. Product owner not only defines the goals of each
sprint but also ensures that the most valuable component of
product is produced first and product backlog is prioritized
accordingly.

Standards like ECSS should keep on updated, depending
upon the requirements from industry. They should leave
space for companies for their innovation in solving issues and
helping them staying active and adapting to new situations
and requirements. If a methodology is working fine for a
company and if they can provide evidence that it does not
negatively affect the quality of the product standards need
to be permissive. For any standard it is important that it
stays current; the revision processes for ECSS that are now
taking place are thus of high importance. They need to
listen to practitioners within the industry when doing this
work.

The companies should have more knowledge about ECSS
standards especially about the tailoring according to their
projects’ needs. A company can be following the standard
without knowing that they do. Isolating developers and
testers from the burden of documentation and administra-
tive tasks can be useful and might lead to increased qual-
ity. It has also been suggested by Theunissen et al. in[9].
SSC has initiated this by allocating a resource who makes
strategies to make their processes in compliance with ECSS
standards and keep track of its requirements.

8. CONCLUSION
This paper describes an industrial case study of a company

in the European space industry that are using agile methods
in the development of highly dependable software applica-
tions in projects that needs to adhere to the strict ECSS
standards. Our results show that there is no strict contra-
diction in using agile methodologies in this way. There are
also a number of areas in which ECSS maps very well to agile
thinking and methodologies. Our detailed results outlines a
number of success factors in making agile ECSS development
work. It is also important that ESA and ECSS continue to
update the standards and that they listen to practitioners
in this process to ensure the standards stay current.

9. REFERENCES
[1] ESA Board for Software Standardisation and Control

(BSSC), European Space Agency/Agence Spatiale
Européenne 8–10, rue Mario-Nikis, 75738 PARIS
CEDEX, France, ECSS PSS-05-0—ESA Software
Engineering Standards, February 1991.

[2] European Cooperation for Space Standardization,
ECSS Secretariat, ESA ESTEC, P.O. Box 299, 2200
AG Noordwijk, The Netherlands, ECSS-S-ST-00C
System—Description implementation and general
requirements, July 2008.

[3] M. Jones, U. K. Mortensen, and J. Fairclough, “The
ESA software engineering standards: Past, present
and future,” in Software Engineering Standards
Symposium and Forum, 1997. ‘Emerging International
Standards’. ISESS 97., Third IEEE International,
pp. 119–126, 1997.

[4] European Cooperation for Space Standardization,
ECSS Secretariat, ESA ESTEC, P.O. Box 299, 2200

AG Noordwijk, The Netherlands, ECSS-E-ST-40C
Space Engineering—Software, March 2009.

[5] European Cooperation for Space Standardization,
ECSS Secretariat, ESA ESTEC, P.O. Box 299, 2200
AG Noordwijk, The Netherlands, ECSS-Q-ST-80C
Product assurance—Software product assurance,
March 2009.

[6] R. Turner,“Agile Development: Good Process or Bad
Attitude? ,” in Product Focused Software Process
Improvement, vol. 2559 of Lecture Notes in Computer
Science, pp. 134–144, Springer, 2002.

[7] S. Tor,and H. G.Kjetil,“The Application of ISO 9001
to Agile Software Development ,” in PROFES’08,
vol. 5089 of Lecture Notes in Computer Science,
pp. 371–385, Springer, 2008.

[8] M. Pikkarainen, “Mapping Agile Software
Development onto ISO 12207,”
http://www.scientificcommons.org/42262403,
February 2006. in CiteSeerX - Scientific Literature
Digital Library and Search Engine, USA.

[9] W. H. M. Theunissen, D. G. Kourie, and
B. W. Watson, “Standards and agile software
development,” in SAICSIT ’03: Proceedings of the
2003 annual research conference of the South African
institute of computer scientists and information
technologists on Enablement through technology,
(Republic of South Africa), pp. 178–188, 2003.

[10] S. R. Rakitin, Software verification and validation for
practitioners and managers. Norwood, MA, USA:
Artech House, Inc., 2nd ed., 2001.

[11] L. Williams, E. M. Maximilien, and M. Vouk,
“Test-Driven Development as a Defect-Reduction
Practice,” in ISSRE ’03: Proceedings of the 14th
International Symposium on Software Reliability
Engineering, (Washington, DC, USA), p. 34, IEEE
Computer Society, 2003.

[12] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for agile software
development.” http://www.agilemanifesto.org/, 2001.

[13] M. de. Fátima, R. Arias, C. M. Hirata, E. T. Yano
and B. M. Sakugawa “A Comparative Study between
PMBoK/DoD and ECSS/Management Process for
Software Acquisition,” in DASIA 2005: Data Systems
in Aerospace, ESA Special Publication, 2005.

[14] D. Astels, Test driven development: A practical guide.
Prentice Hall Professional Technical Reference, 2003.

[15] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for agile software
development.” http://www.agilemanifesto.org/, 2001.

[16] K. Schwaber and M. Beedle, Agile software
development with Scrum. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2001.

[17] K. Beck, and C. Andres, Extreme Programming
Explained: Embrace Change. Addison-Wesley
Professional, 2004.

