SBST for Al and beyond

from single inputs to generative models!
from here and into the future!
from the academic lab to the real (industrial) world!

SBST 2020 Live Keynote, 2020-07-02

Robert Feldt, robert.feldt@chalmers.se
Chalmers Univ of Tech, Gothenburg, Sweden

mailto:robert.feldt@chalmers.se

Thanks to my many collaborators and friends!

Shin Yoo & his many great and
talented students!

The late Simon Poulding who was a
real intellectual and personal friend!

My closest SBST colleagues Felix
Dobslaw, Francisco Gomes, Greg Gay,
& Richard Torkar at Chalmers/GU!

...and many more/others...

Some kind of outline of today...

1. Future SBST (based on some pet peeves of mine... :))

2. What does Al/ML bring to the table?

3. A Manifesto for “Industrial SBST”

Part 1:
Let’s start from the pet peeves :)

PP1: We (still) use mainly (a few) EvoAlgs

Broadening the Search in Search-Based Software
Testing: It Need Not Be Evolutionary

Robert Feldt and Simon Poulding
Dept. of Software Engineering
Belkinge Institute of Technology, Karlskrona, Sweden
Email: robert.feldt@bth.se and simon.poulding @bth.se

Abstract—Search-based software testing (SBST) can poten-
tially help software practitioners create better test suites us-
ing less time and resources by employing powerful methods
for search and optimization. However, research on SBST has
typically focused on only a few search approaches and basic
techniques. A majority of publications in recent years use
some form of evolutionary search, typically a genetic algorithm,
or, alternatively, some other optimization algorithm inspired
from nature. This paper argues that SBST researchers and
practitioners should not restrict themselves to a limited choice
of search algorithms or approaches to optimization. To support
our argument we empirically investigate three alternatives and
compare them to the de facto SBST standards in regards to
performance, resource efficiency and robustness on different test
data generation problems: classic algorithms from the optimiza-
tion literature, bayesian optimization with gaussian processes
from machine learning, and nested monte carlo search from
game playing / reinforcement learning. In all cases we show
comparable and sometimes better performance than the current
state-of-the-SBST-art. We conclude that SBST researchers should
consider a more general set of solution approaches, more consider
combinations and hybrid solutions and look to other areas for
how to develop the field.

[. INTRODUCTION

published at these venues in 2013 and 2014. Two-thirds of the
papers—26 out of 39—applied an evolutionary algorithm, of
which 23 applied a Genetic Algorithm (GA): 15 as a standard
GA, 2 as a GA-based memetic algorithm, and 7 as a multi-
objective GA (the majority using NSGA-II)!. The next most-
frequently applied algorithms were Genetic Programming (4
papers), (1+1) EA (4 papers), hill-climbing (3 papers), and
alternating variable methods (3 papers). Our analysis suggests
that evolutionary search, and GAs in particular, are the algo-
rithms of choice for both single- and multi-objective problems
in SBST.

We offer a number of explanations for this prevalence of
GAs as the search technique. GAs can be applied to a wide
range of problem classes and typically find solutions with
acceptably good quality. This wide applicability permits us, as
researchers, to re-use the knowledge gained in applying GAs
to one testing problem when solving subsequent problems. In
addition, there 1s a great deal of active research in GAs that can
guide their application to testing problems, and this research
1s typically disseminated in a form that is readily-accessible to
us. In contrast, the research on classic optimization algorithms

2015: EA’s and GA’s are used in 60-80% of papers

% 40-

We checked 39 SBST papers from:
- SBST 2013 & 2014
- GECCO SBSE 2013 & 2014
- SSBSE 2013 & 2014

30 -

20 -

10 -

o
I

V *, a < . V g e
© o <& ((\\(\g NN\ % {\@‘@\
e N \
oY W N QA \?
O % 4 Q o
P\ & &
ca e @
) i

2015: Flexibility of EvoAlgs not always called for!

TABLE II
OPTIMIZATION ALGORITHMS USED AND THEIR MAIN CHARACTERISTICS

Name Description Refs Type Library
DE Differential evolution (rand/1/bin) [13] Evo BlackBoxOptim
SRES+BOB | Stochastic Ranking Evo Strategy, then BOBY QA [14], [15] Evo. Combination | NLopt
ESCH+COB | Evo Strategy, then COBYLA [16], [17] Evo. Combination | NLopt
CRS+BOB Controlled Random Search (CRS), then BOBYQA | [18], [19], [15] Combination NLopt
Compass Direct (compass) search with adaptive step size [11] Non-Evo BlackBoxOptim
RandSrch Random Search (baseline) N/A Non-Evo BlackBoxOptim

Algorithm Rank | Wins | MAPE | HitRate Time

ESCH+COB 2.2 6 29.7 5.5 705.3

CRS+BOB 3.21 B 44.5 8.5 1203.7

DE 3.24 2 43.6 4.0 985.9

RandSrch 3.8 0 46.9 1.8 1145.3

Compass 3.9 0 49.3 2.1 1168.6

SRES+BOB 4.9 0 64.3 3.5 1583.1

Unoptimized 6.7 0 164.79 0.2 0.0

Population-based EvoAlg + Traditional “local” tuning!

Benchmark results

The average sucess rate (meaning the optimizer reached the minimum + 1e-6) in function of the number of
objective function evaluations :

Success rate

1.0

All functions

1x10*

Run Length

2x10*

W BBO.adaptive_de_rand_1 bin_radiuslimited — NelderMead

W BBO.adaptive_de_rand_1_bin — NelderMead

B BBO.xnes — NelderMead

W BBO.de_rand_2_bin — NelderMead

B SAMIN — NelderMead

W NLopt.GN_ISRES — NelderMead

B PyCMA

W BBO.generating_set_search = NelderMead
NLopt.GN_ESCH — NelderMead

W SimulatedAnnealing = NelderMead
NLopt.GD_STOGO — NelderMead

B NelderMead

M Restart-NelderMead

B Py.Nelder-Mead

3x10*

https://github.com/jonathanBieler/BlackBoxOptimizationBenchmarking. |l

PP2: We often search only for single inputs

e

% [2,1,4,0,2,3,0]
Godel numbers property

metrics
Models:

i

Sets:

Individual input:

PP2: Search for higher-level models instead!

Model .
Type
Separate
Automated
o)
()
©
(@))
()
£
Manual

>

Random Factorised Joint Turing Flexibility of
/ No Model Distribution Complete Probabilistic
Modelling

PP3: Minor variations instead of fundamentals

ENGINEERING
ssssssss

Advances in Engineering Software
Volume 69, March 2014, Pages 46-61

Grey Wolf Optimizer
oo Bat algorithm: a novel approach
for global engineering
optimization
464

Received 28 April 2011
Revised 5 August 2011
Accepted 11 August 2011

@ Springer Link

Original Article \ Published: 17 March 2015

Multi-Verse Optimizer: a nature-inspired algorithm for
global optimization

PP3: Minor variations instead of fundamentals

nttps://en.wikipedia.org/wiki/
_ist_of_metaphor-
pased_metaheuristics

1 Algorithms

1.1 Simulated annealing (Kirkpatrick et al. 1983)

1.2 Ant colony optimization (Dorigo, 1992)

1.3 Particle swarm optimization (Kennedy & Eberhart 1995)

1.4 Harmony search (Geem, Kim & Loganathan 2001)

1.5 Artificial bee colony algorithm (Karaboga 2005)
1.6 Bees algorithm (Pham 2005)
1.7 Glowworm swarm optimization (Krishnanand & Ghose 2005)

1.8 Shuffled frog leaping algorithm (Eusuff, Lansey & Pasha 2006)
1.9 Cat Swarm Optimization (Chu, Tsai, and Pan 2006)

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32

Imperialist competitive algorithm (Atashpaz-Gargari & Lucas 2007)
River formation dynamics (Rabanal, Rodriguez & Rubio 2007)
Intelligent water drops algorithm (Shah-Hosseini 2007)

Gravitational search algorithm (Rashedi, Nezamabadi-pour & Saryazdi 2009)
Cuckoo search (Yang & Deb 2009)

Bat algorithm (Yang 2010)

Spiral optimization (SPO) algorithm (Tamura & Yasuda 2011,2016-2017)
Flower pollination algorithm (Yang 2012)

Cuttlefish optimization algorithm (Eesa, Mohsin, Brifcani & Orman 2013)
Heterogeneous Distributed Bees Algorithm (Tkach et al., 2013)
Cooperative Group Optimization (2014)

Artificial swarm intelligence (Rosenberg 2014)

Colliding bodies optimization (Kaveh and Mahdavi 2014)

Duelist Algorithm (Biyanto 2016)

Harris hawks optimization (Heidari et al. 2019)

Killer Whale Algorithm (Biyanto 2016)

Rain Water Algorithm (Biyanto 2017)

Mass and Energy Balances Algorithm (Biyanto 2018)

Hydrological Cycle Algorithm (Wedyan et al. 2017)

Emperor Penguins Colony (Harifi et al. 2019)

Momentum Balance Algorithm (MBA) (Biyanto et al. 2019)

Shuffled Shepherd Otimization Algorithm (SSOA) (Kaveh and Zaerreza 2020)
A mayfly optimization algorithm (MA) (Zervoudakis & Tsafarakis 2020)

PP3: Minor variations instead of fundamentals

Criticism of the metaphor methodology | edit]

In response, Springer's Journal of Heuristics has updated their editorial policy to state that:[81]

Proposing new paradigms is only acceptable if they contain innovative basic ideas, such as those that are embedded in classical frameworks like genetic
algorithms, tabu search, and simulated annealing. The Journal of Heuristics avoids the publication of articles that repackage and embed old ideas in
methods that are claimed to be based on metaphors of natural or manmade systems and processes. These so-called "novel" methods employ analogies

that range from intelligent water drops, musicians playing jazz, imperialist societies, leapfrogs, kangaroos, all types of swarms and insects and even mine
blast processes (Sérensen, 2013). If a researcher uses a metaphor to stimulate his or her own ideas about a new method, the method must nevertheless
be translated into metaphor-free language, so that the strategies employed can be clearly understood, and their novelty is made clearly visible. (See items
2 and 3 below.) Metaphors are cheap and easy to come by. Their use to "window dress" a method is not acceptable."

[...] Implementations should be explained by employing standard optimization terminology, where a solution is called a "solution" and not something else
related to some obscure metaphor (e.g., harmony, flies, bats, countries, etc.).

[...] The Journal of Heuristics fully endorses Sérensen’s view that metaphor-based “novel” methods should not be published if they cannot demonstrate a
contribution to their field. Renaming existing concepts does not count as a contribution. Even though these methods are often called “novel”, many present
no new ideas, except for the occasional marginal variant of an already existing methodology. These methods should not take the journal space of truly
innovative ideas and research. Since they do not use the standard optimization vocabulary, they are unnecessarily difficult to understand.

Maybe SBST/SBSE/AI4SE venues should have similar restrictions!?

Part 2:
What does Al/ML bring to the table?

Al/ML very aligned with SBST!

1. Fundamental connections and opportunities:
e Soft/fuzzy objectives/requirements

e Embarrassingly parallel
® Few existing, good solutions for testing Al/ML

2. Many challenges though:
e How avoid costly loop within costly loop?
e More complex “inputs” than for traditional SW
e Practical tools and not only papers

3. Key solutions & “Killer apps”:
e Hybridize search “into” the Al/ML model workings
e Complex generative models to set up “scenes” and

simulations
e Search4SE but also SE4Search!?

Example: SINVAD searches the latent space

d

VAE

Raw

Example: Finding high-risk simulation scenarios
Old funding application:

STRESS - Simulation-Based Testing of
Smart Systems of Systems

Robert Feldt, Paul Pettersson, Daniel Sundmark,
Birgitta Lindstrom, and Christian Berger
with contributions by Jeff Offutt, Simon Poulding, and Wasif Afzal

Blekinge Tekniska Hogskola, SE-371 79 Karlskrona, Sweden
robert.feldt@bth.se

2.2.4 WP4: Identifying High-Risk Scenarios Using Metaheuristic Search [BTH (lead), SICS, MdH]

Research Challenge: The research challenge is to identify, through simulation, high-risk scenarios
— configurations of the smart system, its environment, and the task it performs in that environment —
that lead to undesirable behaviour such as a smart vehicle colliding with another vehicle or injuring its

occupants. Not only does this identify potential problems with the system design and implementation

world testing.

Methodology: Search-based software testing (SBST) re-interprets the problem of generating test
scenarios as an optimisation problem: a fithess metric is used to quantify how close a candidate sce-
nario is to having desired properties, and sophisticated metaheuristic search algorithms are used to
optimise this fithess metric. Research over the last fifteen years has shown SBST to be a high-effective
and low-cost technique for generating test scenarios. A testing scenario for a smart vehicle will be highly
complex yet constrained to be realistic by the model of the environment created in WP1 and the model
for its perception interface as developed in WP2. For this reason, the work package will build on existing
work by Feldt and Poulding on using SBST for generating highly complex, structured testing scenarios
[4], and initial work on deriving scenarios for testing autonomous robot vehicles [9]. The work package
will identify and evaluate fitness metrics and search algorithm that efficiently guide the search to high-risk
scenarios and, using the demonstrators, evaluate and improve on the extent to which high-risk scenarios
identified by search remain valid in the real-world. In addition to the participating in-project resources

Think about: Relation Al <-> SE <-> Search

SE4AI

[T

Al4SE

Search4SE

Al-in-SE applications have different levels of risk/gain

Point of
Application

A

Runtime

SBST quite “mature” so
time to push up here??

Product ~ ~
Start here!

Process >
_ Y,

» Automation
Manual Autonomous level

Part 3:
A Manifesto for “Industrial SBST”

Technology Transfer Model

Academia

Problem
formulation

SBST has stayed mostly within academia!

Academia

Problem
formulation

Manifesto for Industrial SBST 0.1

Through systematic research we are
uncovering a science of search-based software testing
so that we can better help software practitioners.
Through this work we have come to value:

Augmenting humans over automating them away
Adaptive toolbox & hybridisation over one-alg-fits-all
Trusting & listening over data extraction & “preaching”

Patience over quick results or low-hanging fruits

1. Many SBST/SBSE/AI4SE solutions include:

e multiple
e relational
e diverse info sources.

2. This leads to
e Nhigh up-front costs
¢ very high maintenance costs
® reguires synchronisation between many parts of org
e requires high edu/training costs, and
e makes interpretation of results more complex and costly.
Real-world example: One company | worked with tried dynamic approaches
(instrumentation) then formally BANNED their use in the company!

3. So we must be SUPER-sure:

e that each added information source is motivated
e and its value/cost trade-off is known and clear.

4. Proposal: Information Source Ablation (ISA)

o empirically investigate sequence of more complex
models (using increasingly more/complex information srcs)

¢ and show practitioners the trade-off in value vs cost/
complexity, and

e |let them select the best trade-off for their org.

e Researcher with no industry access: Do ISA anyway SO
practitioners can see it in your paper.

1. If you think your problem can be meaningfully captured
IN a single objective, think again!

2. In industry nothing Is ever that simple
e There are always many conflicting objectives
e 2-3 are rarely enough

3. SO we just use NSGA-II, right?

e Sure, maybe that is fine but 2-3 objectives are rarely enough
e and NSGA-Il is rather old, we should be more aware of S-O-T-A

4. Meaningfully handle the non-dominated result set!!
e NOT: MO & then select one solution to compare to baselines!
e Better: Define a few realistic use scenarios and consider parts
of “Pareto front” that caters to each one
e Best: Get feedback from practitioners

Real-world objectives in test selection / prioritization:

ChangedFunctionCoverage (Maximize)

SubsetSize (Minimize)

AggregatedFailRate (Maximize, predicted or historical)
TestFeatureCoverage (Maximize)

HardwareSetu oCoverage (Maximize)
TestExecutionTime (Minimize, predicted or historical)
DaysSincelastTestExecution (Maximize)
ChangedFunctionCallTimes (Maximize)

XN O~ A

Summary

Use multiple different SOTA searchers and hybridise them!

Search for models (and models of models), not single datums!

Focus on fundamental questions, not minor (search) variations!

Hybridize search/opt into Al/ML!

Investigate flexible, probabilistic models for generating complex inputs!

Search4SE now old but what about SE4Search!?

