Gl++ == Focused Auto Programming?

Robert Feldt

Chalmers University of Technology, Sweden
at the COW-50, UCL, London, 2017-01-31

u Gdr ot

"
7
@
O
O
=

)
)

lm

O
C
©
o
X
o
o
o
>

Ll

One view of SBSE

A contrarian view of SBSE: Not quite there yet...

GE:NETIC

PROGRAMMING

ON THE

PROGCRAMMING

NATURAL
SELECTION

A contrarian view of SBSE: Not quite there yet...

A contrarian view of SBSE: Not quite there yet...

The New Biology of
Machines, Social Systems,

and the Economic World

0 W
CONTROL=

A contrarian view of SBSE: Not quite there yet...

The New Biology of
o “T Machines, Social Systems, "EVO/UTIOI? IS the

and the Economic World

natural way to
program”- Tom Ray

A contrarian view of SBSE: Not quite there yet...

The New Biology of
Machines, Social Systems,

and the Economic World

"l would rather fly on a
plane running software
evolved by a program
like this, than fly on a
plane running software
| wrote myself," says
Hillis, programmer
extraordinaire.

Of course it all started much earlier (with Turing)... ;)

In his 1950 paper “Computing Machinery and Intelligence,” Turing described
how evolution and natural selection might be used to automatically create an
intelligent computer program [2].

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One
can then try another and see if it is better or worse. There i1s an obvious
connection between this process and evolution, by the identifications
“Structure of the child machine = Hereditary material”

“Changes of the child machine = Mutations”

“Natural selection = Judgment of the experimenter”

[Koza2010] in GPEM Anniversary issue

Some common GP/SBSE “cop outs”

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code
Focus on (minimal) interfaces between existing codes

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Focus on (minimal) interfaces between existing codes
Focus on non-mainstream/obscure languages /
processing formalisms where humans (currently)
have less experience

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Focus on (minimal) interfaces between existing codes
Focus on non-mainstream/obscure languages /
processing formalisms where humans (currently)
have less experience

Evolve test data rather than programs

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Focus on (minimal) interfaces between existing codes
Focus on non-mainstream/obscure languages /
processing formalisms where humans (currently)
have less experience

Evolve test data rather than programs

Evolve test cases and not programs

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Focus on (minimal) interfaces between existing codes
Focus on non-mainstream/obscure languages /
processing formalisms where humans (currently)
have less experience

Evolve test data rather than programs

Evolve test cases and not programs

Requiring lots and lots of example Input/Outputs

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Focus on (minimal) interfaces between existing codes
Focus on non-mainstream/obscure languages /
processing formalisms where humans (currently)
have less experience

Evolve test data rather than programs

Evolve test cases and not programs

Requiring lots and lots of example Input/Outputs

Some common GP/SBSE “cop outs”

Tune only constants/numbers in fixed program
Delete/remix existing code

Focus on (minimal) interfaces between existing codes
Focus on non-mainstream/obscure languages /
processing formalisms where humans (currently)
have less experience

Evolve test data rather than programs

Evolve test cases and not programs

Requiring lots and lots of example Input/Outputs

Clear goal, small search space,
less/short structure

A continuum of Automated Programming

A continuum of Automated Programming

Complexity

Time

A continuum of Automated Programming

Complexity

GP

Time

A continuum of Automated Programming

Complexity

Time

A continuum of Automated Programming

Complexity

Time

A continuum of Automated Programming

Complexity

Time

A continuum of Automated Programming

Complexity

Time

Focused Automated Programming

Focused Automated Programming

| propose we should study FAP! aka...

Focused Automated Programming

| propose we should study FAP! aka...
Domain-specific Automated Programming (DAP)

Focused Automated Programming

| propose we should study FAP! aka...
Domain-specific Automated Programming (DAP)
Task-specific Automated Programming (TAP)

Focused Automated Programming

| propose we should study FAP! aka...
Domain-specific Automated Programming (DAP)
Task-specific Automated Programming (TAP)
Defined as: “Focused application of search and
optimisation to create/adapt/tune (parts of) program
code during its development, setup and/or execution”

Focused Automated Programming

| propose we should study FAP! aka...

Domain-specific Automated Programming (DAP)

Task-specific Automated Programming (TAP)
Defined as: “Focused application of search and
optimisation to create/adapt/tune (parts of) program
code during its development, setup and/or execution’
Focused here essentially means “human-guided”, i.e.
it is a hybrid/interactive development philosophy

J

Focused Automated Programming

| propose we should study FAP! aka...
Domain-specific Automated Programming (DAP)
Task-specific Automated Programming (TAP)
Defined as: “Focused application of search and
optimisation to create/adapt/tune (parts of) program
code during its development, setup and/or execution”
Focused here essentially means “human-guided”, i.e.
it is a hybrid/interactive development philosophy
=> we need ideas, intuition and methods/processes
for how to use search/optimisation more actively in
the software development process

Example: Web extraction library

Example: Web extraction library

V Basili Google Scholar

Professor Emeritus University of Maryland
Software Engineering Q
Verified email at cs.umd.edu - Homepage

Citation indices All Since 2012
Citations 33501 9054
Title 1-20 Cited by Year h-index 82 41
i10-index 248 123
Experience factory
VR Basili, G Caldiera, HD Rombach 3557 1994
Encyclopedia of software engineering
A validation of object-oriented design metrics as quality indicators 2009 2010 2011 2012 2013 2014 2015 2016 2017

VR Basili, LC Briand, WL Melo 1755 1996

Example: Web extraction library

V Basili

Title 1-20

Experience factory
VR Basili, G Caldiera, HD Rombach
Encyclopedia of software engineering

VR Basili, LC Briand, WL Melo

Professor Emeritus University of Maryland
Software Engineering
Verified email at cs.umd.edu - Homepage

A validation of object-oriented design metrics as quality indicators

B4 Follow ~

Cited by Year
3557 1994
1755 1996

Google Scholar

Q,
Citation indices Al Since 2012
Citations 33501 9054
h-index 82 41
i10-index 248 123

2009 2010 2011 2012 2013 2014 2015 2016 2017

“name”: “W Basili”,

“citations”:

“h-1ndex”:

32

33501,

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Custom

code

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

AWE
=

Adaptive Libraries

Adaptive Libraries

A normal library (lib):

Adaptive Libraries

A normal library (lib):
1. has a number of functions that can be called

Adaptive Libraries

A normal library (lib):
1. has a number of functions that can be called
2. to solve specific tasks

Adaptive Libraries

A normal library (lib):
1. has a number of functions that can be called
2. to solve specific tasks
3. has documentation to describe the functions

Adaptive Libraries

A normal library (lib):
1. has a number of functions that can be called
2. to solve specific tasks
3. has documentation to describe the functions
4. and examples to understand API & how to put together

Adaptive Libraries

A normal library (lib):

1. has a number of functions that can be called

2. to solve specific tasks

3. has documentation to describe the functions

4. and examples to understand APl & how to put together
But only 1 above is directly useable without a human

Adaptive Libraries

A normal library (lib):

1. has a number of functions that can be called

2. to solve specific tasks

3. has documentation to describe the functions

4. and examples to understand API & how to put together
But only 1 above is directly useable without a human

2-4 requires a human to assemble solution based on text

Adaptive Libraries

A normal library (lib):

1. has a number of functions that can be called

2. to solve specific tasks

3. has documentation to describe the functions

4. and examples to understand APl & how to put together
But only 1 above is directly useable without a human

2-4 requires a human to assemble solution based on text
Adaptive libraries (AdaptiLibs):

Adaptive Libraries

A normal library (lib):

1. has a number of functions that can be called

2. to solve specific tasks

3. has documentation to describe the functions

4. and examples to understand API & how to put together
But only 1 above is directly useable without a human

2-4 requires a human to assemble solution based on text
Adaptive libraries (AdaptiLibs):

1. Still has basic “atoms” = functions to be called

Adaptive Libraries

A normal library (lib):

1. has a number of functions that can be called

2. to solve specific tasks

3. has documentation to describe the functions

4. and examples to understand API & how to put together
But only 1 above is directly useable without a human

2-4 requires a human to assemble solution based on text
Adaptive libraries (AdaptiLibs):

1. Still has basic “atoms” = functions to be called

(2a) But also executable examples that uses atoms to

perform specific, named sequences

Adaptive Libraries

A normal library (lib):

1. has a number of functions that can be called

2. to solve specific tasks

3. has documentation to describe the functions

4. and examples to understand API & how to put together
But only 1 above is directly useable without a human

2-4 requires a human to assemble solution based on text
Adaptive libraries (AdaptiLibs):

1. Still has basic “atoms” = functions to be called

(2a) But also executable examples that uses atoms to

perform specific, named sequences

(2b) And allow fuzzy mapping of user needs to tasks

Example: Adaptive Web Extraction (AWE!) library, in practice

Example: Adaptive Web Extraction (AWE!) library, in practice

examples = |
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en"”,
{“name”: “W Basili”,

“citations”: 33501,

“h-index”: 82}),
(“scholar.google.se/citations?user=2j897NoAAAAJT&hl=en”,

{“name”: “Lionel Briand”,
“citations”: 21505,
“h-—1ndex”: 69})]

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Example: Adaptive Web Extraction (AWE!) library, in practice

examples = |
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en"”,
{“name”: “W Basili”,

“citations”: 33501,

“h-index”: 82}),
(“scholar.google.se/citations?user=2j897NoAAAAJT&hl=en”,

{“name”: “Lionel Briand”,
“citations”: 21505,
“h-—1ndex”: 69})]

gscholar ex = create extractor (examples)

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Example: Adaptive Web Extraction (AWE!) library, in practice

examples = |
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en"”,
{“name”: “W Basili”,

“citations”: 33501,

“h-index”: 82}),
(“scholar.google.se/citations?user=2j897NoAAAAJT&hl=en”,

{“name”: “Lionel Briand”,
“citations”: 21505,
“h-—1ndex”: 69})]

gscholar ex = create extractor (examples)

extract (gscholar ex, “scholar.google.se/citations?
user=CQDOm2gAAAAJ&hl=en’)

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Example: Adaptive Web Extraction (AWE!) library, in practice

examples = |
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en"”,
{“name”: “W Basili”,

“citations”: 33501,

“h-index”: 82}),
(“scholar.google.se/citations?user=2j897NoAAAAJT&hl=en”,
{“name”: “Lionel Briand”,

“citations”: 21505,

“h—-1ndex”: 69})]

gscholar ex = create extractor (examples)

extract (gscholar ex, “scholar.google.se/citations?
user=CQDOm2gAAAAJ&hl=en’)

returns:

{“name”: “Barbara Ann Kitchenham”,
M“citations”: 63,

“h-index”: 154})]

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Big benefits with semantically similar task

V Basili Google Scholar

Professor Emeritus University of Maryland
Software Engineering Q
Verified email at cs.umd.edu - Homepage

Citation indices All Since 2012
Citations 33501 9054
Title 1-20 Cited by Year h-index 82 41
i10-index 248 123
Experience factory
VR Basili, G Caldiera, HD Rombach 3557 1994
Encyclopedia of software engineering
A validation of object-oriented design metrics as quality indicators 2009 2010 2011 2012 2013 2014 2015 2016 2017

VR Basili, LC Briand, WL Melo 1755 1996

“name”: “W Basili”,
“citations”: 33501,
“h-1ndex”: 82

Big benefits with semantically similar task

Victor R. Basili
1,257 36,839
m Highly Influential Citations Citation Velocity Citations Citations Per Year
Authors who most influenced Victor R. Basili: Authors most influenced by Victor R. Basili:
Barry W. Boehm > Forrest J Shull

“name”: “W Basili”,
“citations”: 33501,
“h-1ndex”: 82

Big benefits with semantically similar task

Victor R. Basili
1,257 36,839
m . Highly Influential Citations Citation Velocity Citations Citations Per Year
Authors who most influenced Victor R. Basili: Authors most influenced by Victor R. Basili:
Barry W. Boehm B Forrest J Shull

|

“name”: “Victor R. Basili”,
“citations”: 36839,
“influential”: 322

}
Only change 2 I/0 examples & re-adapt!

Gl would not help: Only semantic, not syntactic similarity

V Basili EEEM Google Scholar

Professor Emeritus University of Maryland
Software Engineering Q
Verified email at cs.umd.edu - Homepage

Citation indices All Since 2012
Citations 33501 9054
Title 1-20 Cited by Year h-index 82 4
i10-index 248 123
Experience factory
VR Basili, G Caldiera, HD Rombach 3557 1994
Encyclopedia of software engineering
A validation of object-oriented design metrics as quality indicators 2009 2010 2011 2012 2013 2014 2015 2016 2017

VR Basili, LC Briand, WL Melo 1755 1996

“...>Citations</td><td class="gsc rsb std">33501</

td><td class=%gsc rsb std”>9054</td>..."

Victor R. Basili
1,257 36,839
m . Highly Influential Citations Citation Velocity Citations Citations Per Year
Authors who most influenced Victor R. Basili: Authors most influenced by Victor R. Basili:
Barry W. Boehm P Forrest J Shull

... {YhIndex”:51,"”estimatedTotalCitationCount”
31675, "value":36839, "max":42905, ..."”

{“min":

Design Rules for AdaptiLibs (so far...)

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parseToFloat

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseloint, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations

Type conversion operations: parseTlolnt, parseToFloat

Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url

Matching: matchregexp, matchregexp_ignorecase

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.
Feldt’s Law for Designing Lib incl. Search, consider in order:

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.
Feldt’s Law for Designing Lib incl. Search, consider in order:
1. Deterministic / Exact (fastest, most efficient)

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.
Feldt’s Law for Designing Lib incl. Search, consider in order:
1. Deterministic / Exact (fastest, most efficient)
2. Heuristics / Approximations (order by applicability)

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.
Feldt’s Law for Designing Lib incl. Search, consider in order:
1. Deterministic / Exact (fastest, most efficient)
2. Heuristics / Approximations (order by applicability)
3. Focused Search (part of solution only, then aggregate)

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.
Feldt’s Law for Designing Lib incl. Search, consider in order:
1. Deterministic / Exact (fastest, most efficient)
2. Heuristics / Approximations (order by applicability)
3. Focused Search (part of solution only, then aggregate)
4. Interact / Ask Developer (in adapt step)

Design Rules for AdaptiLibs (so far...)

Start by defining basic “atomic” operations
Type conversion operations: parseTlolnt, parse ToFloat
Data transformation: uppercase, lowercase, leadingcase
Basic data access: get_url
Matching: matchregexp, matchregexp_ignorecase
Go through concrete task from example & note how a
human solves it in as atomic steps as possible
Extend with atoms, and possibly (complex) atom seq.
Feldt’s Law for Designing Lib incl. Search, consider in order:
1. Deterministic / Exact (fastest, most efficient)
2. Heuristics / Approximations (order by applicability)
3. Focused Search (part of solution only, then aggregate)
4. Interact / Ask Developer (in adapt step)
5. Full/free search (search from atoms & up, warn dev)

Conclusions

Conclusions

Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

Conclusions

Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP

Conclusions

Despite many promises of GP & SBSE it has under

delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP

As techniques and processing power increase we will see

more practical AP

Conclusions

Despite many promises of GP & SBSE it has under

delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP

As techniques and processing power increase we will see

more practical AP
But semantic similarity does not imply syntactic similarity

=> less opportunity for detailed code reuse

Conclusions

Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP
As techniques and processing power increase we will see
more practical AP
But semantic similarity does not imply syntactic similarity
=> less opportunity for detailed code reuse
But we can also deliver practical AP now by hybridising it
with human intelligence and guidance

Conclusions

Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP
As techniques and processing power increase we will see
more practical AP
But semantic similarity does not imply syntactic similarity
=> less opportunity for detailed code reuse
But we can also deliver practical AP now by hybridising it
with human intelligence and guidance
We are developing AdaptiLibs, general libraries that adapt to
/O examples of users/developers

Conclusions

Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP
As techniques and processing power increase we will see
more practical AP
But semantic similarity does not imply syntactic similarity
=> less opportunity for detailed code reuse
But we can also deliver practical AP now by hybridising it
with human intelligence and guidance
We are developing AdaptiLibs, general libraries that adapt to
/O examples of users/developers
Combines task-driven design & experience of humans

Conclusions

Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming
Compared to other SBSE, Gl comes closer to AP
As techniques and processing power increase we will see
more practical AP
But semantic similarity does not imply syntactic similarity
=> less opportunity for detailed code reuse
But we can also deliver practical AP now by hybridising it
with human intelligence and guidance
We are developing AdaptiLibs, general libraries that adapt to
/O examples of users/developers
Combines task-driven design & experience of humans
with brute force and flexibility of search, only wh. needed

Thank you!

robert.feldt@chalmers. se

v [

mailto:robert.feldt@chalmers.se?subject=

But what about Bartoli et al?!

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016 1217

Inference of Regular Expressions
for Text Extraction from Examples

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Abstract—aA large class of entity extraction tasks from text that is either semistructured or fully unstructured may be addressed by
regular expressions, because in many practical cases the relevant entities follow an underlying syntactical pattern and this pattern may
be described by a regular expression. In this work, we consider the long-standing problem of synthesizing such expressions
automatically, based solely on examples of the desired behavior. We present the design and implementation of a system capable of
addressing extraction tasks of realistic complexity. Our system is based on an evolutionary procedure carefully tailored to the specific
needs of regular expression generation by examples. The procedure executes a search driven by a multiobjective optimization strategy
aimed at simultaneously improving multiple performance indexes of candidate solutions while at the same time ensuring an adequate
exploration of the huge solution space. We assess our proposal experimentally in great depth, on a number of challenging datasets.
The accuracy of the obtained solutions seems to be adequate for practical usage and improves over earlier proposals significantly. Most
importantly, our results are highly competitive even with respect to human operators. A prototype is available as a web application at
http://regex.inginf.units.it.

Index Terms—Genetic programming, information extraction, programming by examples, multiobjective optimization, heuristic search

+

But what about Bartoli et al?!

BARTOLI ET AL.: INFERENCE OF REGULAR EXPRESSIONS FOR TEXT EXTRACTION FROM EXAMPLES 1225
TABLE 1
Results and Salient Information about the Extraction Tasks
On E On E*
Extraction task E; | Eo| Yo ls) g 1 Xl XelXd LR Fm Prec Rec Fm EC TtL
ReLIE-Web/All-URL 3,877 4,240 502 24 5.0 99.2 90.0 91.9 90.9 2.6 15
50 10.0 99.2 92.1 95.0 93.5 6.4 35
100 199 98.9 94.8 96.5 95.6 137 7
ReLIE-Web/HTTP-URL 3,877 4,240 499 24 5.0 99.2 86.3 89.0 87.6 2.5 11
50 10.0 99.0 91.0 93.3 92.2 58 32
100 20.0 98.8 929 96.8 94.8 131 66
ReLIE-Email /Phone-Number 41,832 8,805 5,184 24 0.5 97.7 37.1 92.6 48.3 34 8
50 1.0 99.0 29.9 96.6 43.3 6.0 16
100 19 98.9 22.7 98.3 35.8 144 39
Cetinkaya-HTML /href 3,425 154 214 24 11.7 100.0 98.7 99.2 98.9 2.5 12
50 234 100.0 98.1 98.7 98.4 49 26
100 46.7 99.8 98.4 99.1 98.8 9.0 59
Cetinkaya-HTML/href-Content* 3,425 154 214 24 11.7 98.4 74.9 98.7 80.6 24 16
50 234 98.5 85.1 98.8 88.2 48 29
100 46.7 98.5 83.2 96.8 86.2 105 67
Cetinkaya-Web/All-URL 1,234 39 168 24 14.9 99.2 99.4 98.8 99.1 1.7 3
50 29.8 100.0 95.5 98.6 96.9 3.2 N
100 59.5 99.5 98.8 98.8 98.8 5.2 16
Twitter/Hashtag+Citation 50,000 4,344 56,994 24 0.1 100.0 98.8 100.0 99.4 12 3
50 0.1 99.6 99.2 100.0 99.6 22 4
100 0.2 99.8 99.0 100.0 99.5 4.6 7
Twitter/All-URL 50,000 4,344 14,628 24 0.2 100.0 94.7 98.5 96.6 1.8 3
50 0.3 100.0 96.2 98.3 97.2 34 N
100 0.7 99.4 96.1 98.0 97.0 7.7 16
Twitter/Username* 50,000 4,344 42,352 24 0.1 100.0 99.3 100.0 99.7 1.2 2
50 0.1 100.0 99.2 100.0 99.6 22 2
100 0.2 99.9 99.3 100.0 99.7 46 2

