
GI++ == Focused Auto Programming?

Robert Feldt
Chalmers University of Technology, Sweden
at the COW-50, UCL, London, 2017-01-31

@drfeldt

One view of SBSE: Ever-expanding Success!

A contrarian view of SBSE: Not quite there yet…

A contrarian view of SBSE: Not quite there yet…

A contrarian view of SBSE: Not quite there yet…

A contrarian view of SBSE: Not quite there yet…

"Evolution is the
natural way to
program” - Tom Ray

A contrarian view of SBSE: Not quite there yet…

"I would rather fly on a
plane running software
evolved by a program
like this, than fly on a
plane running software
I wrote myself," says
Hillis, programmer
extraordinaire.

Of course it all started much earlier (with Turing)… ;)

[Koza2010] in GPEM Anniversary issue

Some common GP/SBSE “cop outs”

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes
• Focus on non-mainstream/obscure languages /

processing formalisms where humans (currently)
have less experience

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes
• Focus on non-mainstream/obscure languages /

processing formalisms where humans (currently)
have less experience

• Evolve test data rather than programs

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes
• Focus on non-mainstream/obscure languages /

processing formalisms where humans (currently)
have less experience

• Evolve test data rather than programs
• Evolve test cases and not programs

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes
• Focus on non-mainstream/obscure languages /

processing formalisms where humans (currently)
have less experience

• Evolve test data rather than programs
• Evolve test cases and not programs
• Requiring lots and lots of example Input/Outputs

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes
• Focus on non-mainstream/obscure languages /

processing formalisms where humans (currently)
have less experience

• Evolve test data rather than programs
• Evolve test cases and not programs
• Requiring lots and lots of example Input/Outputs
• …

Some common GP/SBSE “cop outs”

• Tune only constants/numbers in fixed program
• Delete/remix existing code
• Focus on (minimal) interfaces between existing codes
• Focus on non-mainstream/obscure languages /

processing formalisms where humans (currently)
have less experience

• Evolve test data rather than programs
• Evolve test cases and not programs
• Requiring lots and lots of example Input/Outputs
• …

Clear goal, small search space,
less/short structure

A continuum of Automated Programming

A continuum of Automated Programming

Complexity

Time

A continuum of Automated Programming

Complexity

Time

GP

A continuum of Automated Programming

Complexity

Time

GP

AP?

A continuum of Automated Programming

Complexity

Time

GP

AP?

AP!

A continuum of Automated Programming

Complexity

Time

GP

AP?

AP!

GI!?

A continuum of Automated Programming

Complexity

Time

GP

AP?

AP!

GI!?

Focused
AP!?

Focused Automated Programming

Focused Automated Programming

• I propose we should study FAP! aka…

Focused Automated Programming

• I propose we should study FAP! aka…
• Domain-specific Automated Programming (DAP)

Focused Automated Programming

• I propose we should study FAP! aka…
• Domain-specific Automated Programming (DAP)
• Task-specific Automated Programming (TAP)

Focused Automated Programming

• I propose we should study FAP! aka…
• Domain-specific Automated Programming (DAP)
• Task-specific Automated Programming (TAP)

• Defined as: “Focused application of search and
optimisation to create/adapt/tune (parts of) program
code during its development, setup and/or execution”

Focused Automated Programming

• I propose we should study FAP! aka…
• Domain-specific Automated Programming (DAP)
• Task-specific Automated Programming (TAP)

• Defined as: “Focused application of search and
optimisation to create/adapt/tune (parts of) program
code during its development, setup and/or execution”

• Focused here essentially means “human-guided”, i.e.
it is a hybrid/interactive development philosophy

Focused Automated Programming

• I propose we should study FAP! aka…
• Domain-specific Automated Programming (DAP)
• Task-specific Automated Programming (TAP)

• Defined as: “Focused application of search and
optimisation to create/adapt/tune (parts of) program
code during its development, setup and/or execution”

• Focused here essentially means “human-guided”, i.e.
it is a hybrid/interactive development philosophy

• => we need ideas, intuition and methods/processes
for how to use search/optimisation more actively in
the software development process

Example: Web extraction library

Example: Web extraction library

Example: Web extraction library

{
“name”: “V Basili”,
“citations”: 33501,
“h-index”: 82

}

Web extraction, traditional solution vs AdaptiLib

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Regex
Lib

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Regex
Lib

+

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Regex
Lib

+
Custom

code

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Regex
Lib

+
Custom

code

AWE
Lib

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Regex
Lib

+
Custom

code

AWE
Lib +

Web extraction, traditional solution vs AdaptiLib

WebGet
Lib +

XML
Parser

Lib

Regex
Lib

+
Custom

code

AWE
Lib + Examples

Adaptive Libraries

Adaptive Libraries

• A normal library (lib):

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

• But only 1 above is directly useable without a human

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

• But only 1 above is directly useable without a human
• 2-4 requires a human to assemble solution based on text

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

• But only 1 above is directly useable without a human
• 2-4 requires a human to assemble solution based on text

• Adaptive libraries (AdaptiLibs):

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

• But only 1 above is directly useable without a human
• 2-4 requires a human to assemble solution based on text

• Adaptive libraries (AdaptiLibs):
• 1. Still has basic “atoms” = functions to be called

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

• But only 1 above is directly useable without a human
• 2-4 requires a human to assemble solution based on text

• Adaptive libraries (AdaptiLibs):
• 1. Still has basic “atoms” = functions to be called
• (2a) But also executable examples that uses atoms to

perform specific, named sequences

Adaptive Libraries

• A normal library (lib):
• 1. has a number of functions that can be called
• 2. to solve specific tasks
• 3. has documentation to describe the functions
• 4. and examples to understand API & how to put together

• But only 1 above is directly useable without a human
• 2-4 requires a human to assemble solution based on text

• Adaptive libraries (AdaptiLibs):
• 1. Still has basic “atoms” = functions to be called
• (2a) But also executable examples that uses atoms to

perform specific, named sequences
• (2b) And allow fuzzy mapping of user needs to tasks

Example: Adaptive Web Extraction (AWE!) library, in practice

Example: Adaptive Web Extraction (AWE!) library, in practice
examples = [
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en”,
{“name”: “V Basili”,

“citations”: 33501,
“h-index”: 82}),

(“scholar.google.se/citations?user=Zj897NoAAAAJ&hl=en”,
{“name”: “Lionel Briand”,

“citations”: 21505,
“h-index”: 69})]

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Example: Adaptive Web Extraction (AWE!) library, in practice
examples = [
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en”,
{“name”: “V Basili”,

“citations”: 33501,
“h-index”: 82}),

(“scholar.google.se/citations?user=Zj897NoAAAAJ&hl=en”,
{“name”: “Lionel Briand”,

“citations”: 21505,
“h-index”: 69})]

gscholar_ex = create_extractor(examples)

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Example: Adaptive Web Extraction (AWE!) library, in practice
examples = [
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en”,
{“name”: “V Basili”,

“citations”: 33501,
“h-index”: 82}),

(“scholar.google.se/citations?user=Zj897NoAAAAJ&hl=en”,
{“name”: “Lionel Briand”,

“citations”: 21505,
“h-index”: 69})]

gscholar_ex = create_extractor(examples)

extract(gscholar_ex, “scholar.google.se/citations?
user=CQDOm2gAAAAJ&hl=en”)

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Example: Adaptive Web Extraction (AWE!) library, in practice
examples = [
(“scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en”,
{“name”: “V Basili”,

“citations”: 33501,
“h-index”: 82}),

(“scholar.google.se/citations?user=Zj897NoAAAAJ&hl=en”,
{“name”: “Lionel Briand”,

“citations”: 21505,
“h-index”: 69})]

gscholar_ex = create_extractor(examples)

extract(gscholar_ex, “scholar.google.se/citations?
user=CQDOm2gAAAAJ&hl=en”)

returns:
{“name”: “Barbara Ann Kitchenham”,
“citations”: 63,
“h-index”: 154})]

http://scholar.google.se/citations?user=B3C4aY8AAAAJ&hl=en

Big benefits with semantically similar task

{
“name”: “V Basili”,
“citations”: 33501,
“h-index”: 82

}

Big benefits with semantically similar task

{
“name”: “V Basili”,
“citations”: 33501,
“h-index”: 82

}

Big benefits with semantically similar task

{
“name”: “Victor R. Basili”,
“citations”: 36839,
“influential”: 322

}

Only change 2 I/O examples & re-adapt!

GI would not help: Only semantic, not syntactic similarity

“...>Citations</td><td class="gsc_rsb_std">33501</
td><td class=“gsc_rsb_std”>9054</td>..."

“...:{“hIndex”:51,”estimatedTotalCitationCount”:{“min":
31675,"value":36839,"max":42905,...”

Design Rules for AdaptiLibs (so far…)

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.
• Feldt’s Law for Designing Lib incl. Search, consider in order:

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.
• Feldt’s Law for Designing Lib incl. Search, consider in order:

• 1. Deterministic / Exact (fastest, most efficient)

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.
• Feldt’s Law for Designing Lib incl. Search, consider in order:

• 1. Deterministic / Exact (fastest, most efficient)
• 2. Heuristics / Approximations (order by applicability)

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.
• Feldt’s Law for Designing Lib incl. Search, consider in order:

• 1. Deterministic / Exact (fastest, most efficient)
• 2. Heuristics / Approximations (order by applicability)
• 3. Focused Search (part of solution only, then aggregate)

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.
• Feldt’s Law for Designing Lib incl. Search, consider in order:

• 1. Deterministic / Exact (fastest, most efficient)
• 2. Heuristics / Approximations (order by applicability)
• 3. Focused Search (part of solution only, then aggregate)
• 4. Interact / Ask Developer (in adapt step)

Design Rules for AdaptiLibs (so far…)

• Start by defining basic “atomic” operations
• Type conversion operations: parseToInt, parseToFloat
• Data transformation: uppercase, lowercase, leadingcase
• Basic data access: get_url
• Matching: matchregexp, matchregexp_ignorecase

• Go through concrete task from example & note how a
human solves it in as atomic steps as possible

• Extend with atoms, and possibly (complex) atom seq.
• Feldt’s Law for Designing Lib incl. Search, consider in order:

• 1. Deterministic / Exact (fastest, most efficient)
• 2. Heuristics / Approximations (order by applicability)
• 3. Focused Search (part of solution only, then aggregate)
• 4. Interact / Ask Developer (in adapt step)
• 5. Full/free search (search from atoms & up, warn dev)

Conclusions

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP
• As techniques and processing power increase we will see

more practical AP

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP
• As techniques and processing power increase we will see

more practical AP
• But semantic similarity does not imply syntactic similarity

=> less opportunity for detailed code reuse

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP
• As techniques and processing power increase we will see

more practical AP
• But semantic similarity does not imply syntactic similarity

=> less opportunity for detailed code reuse
• But we can also deliver practical AP now by hybridising it

with human intelligence and guidance

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP
• As techniques and processing power increase we will see

more practical AP
• But semantic similarity does not imply syntactic similarity

=> less opportunity for detailed code reuse
• But we can also deliver practical AP now by hybridising it

with human intelligence and guidance
• We are developing AdaptiLibs, general libraries that adapt to

I/O examples of users/developers

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP
• As techniques and processing power increase we will see

more practical AP
• But semantic similarity does not imply syntactic similarity

=> less opportunity for detailed code reuse
• But we can also deliver practical AP now by hybridising it

with human intelligence and guidance
• We are developing AdaptiLibs, general libraries that adapt to

I/O examples of users/developers
• Combines task-driven design & experience of humans

Conclusions

• Despite many promises of GP & SBSE it has under
delivered on practical Automated Programming

• Compared to other SBSE, GI comes closer to AP
• As techniques and processing power increase we will see

more practical AP
• But semantic similarity does not imply syntactic similarity

=> less opportunity for detailed code reuse
• But we can also deliver practical AP now by hybridising it

with human intelligence and guidance
• We are developing AdaptiLibs, general libraries that adapt to

I/O examples of users/developers
• Combines task-driven design & experience of humans
• with brute force and flexibility of search, only wh. needed

Thank you!

robert.feldt@chalmers.se

@drfeldt

mailto:robert.feldt@chalmers.se?subject=

But what about Bartoli et al?!

But what about Bartoli et al?!

