
Software Product Line
Engineering
L4:Processes and SPL

L5:Organizational Issues

L6:SPI/SPA

Tony Gorschek - tony.gorschek@gmail.com

L4:Processes and SPL

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Techn.

Roles
Responsibilities

Relationships

People
Structures

L4

Processes

Software Engineering Process: the total set of software
engineering activities needed to transform requirements into
software

Product Development Process: the total set of engineering
activities needed to transform requirements into products

Software (product) engineering refers to the disciplined application of
engineering, scientific, and mathematical principles and methods to the
economical production of quality software (products).

Process examples

Requirements Engineering (Main Process Area)

Elicitation (Sub-process Area)

 Task observation (Activity/Action)

Configuration Management

Configuration Item Identification

Risk analysis

Volatility (change Prone) analysis

Process examples
Requirements Engineering (Main Process Area)

Elicitation (Sub-process Area)

 Task observation (Activity/Action)

Configuration Management (MPA)

Configuration Item Identification (SPA)

Risk analysis (Action), Change Prone analysis (Action)

Elicitation Documentation etcNegotiation

RE

Observation

Interviews

Legacy system

etc

Natural
language

Use-cases

etc

SPL Process

Feedback
(assets)

Coordination and
Control

Predictability

Quality

Delivered
functionality

Commonality
of engineering

Dependency
heavy

engineering

Requirements Engineering (RE)

Elicitation

Documentation

Analysis and Negotiation

Validation and Verification

Management

Domain RE Application RE

reference
architecture

particular
product

Gap btw platform (domain)
and application

requirements is analyzed

Satisfaction by
domain/platform

requirements

Satisfaction by
application specific

assets

Trade-off
Satisfaction vs.

e.g. pricing

Dismiss/postpone

Elicitation

Domain (Understanding it)

Problem (application) domain
Whatʼs the problem(s) and who
can explain it to you

History
Previous systems / current
systems
Documentation
Old requirements/design etc.

Competitors
Have they solved the problem
and how?

Surrounding environment
Other systems, processes
which the system should
support (and/or processes
which the system influences)

Stakeholders
(management, users, future users,
system managers, partners, sub
contractors, Law and Policy,
customerʼs customers, domain
experts, developers etc)

Finding them (Stakeholder
Identification)

Getting access to them (Cost,
Politics)

Domain Application

- internal (development org.) stakeholders (e.g. PM,
developers, architects, support, STRATEGIES)

- external (customer, domain, environmental, regulatory)

need vs. want
stakeholder weights (politics) and access

PREPARATION

Elicitation techniques

Interviews
+ Getting to know the present (domain, problems) and ideas for future system
- Hard to see the goals and critical issues, subjective

Group interviews
+ Stimulate each other, complete each other
- Censorship, domination (some people may not get attention)

Observation (Look at how people actually perform a task (or a combination of
tasks) – record and review…)
+ Map current work, practices, processes
- Critical issues seldom captured (e.g. you have to be observing when something
goes wrong), usability issues seldom captured, time consuming

Task demonstrations (Ask a user to perform a task and observe and study what is
done, ask questions during)
+ Clarify what is done and how, current work
- Your presence and questions may influence the user, critical issues seldom
captured, usability problems hard to capture

Elicitation techniques 2

Questionnaires
+ Gather information from many users (statistical indications, views, opinions)
- Difficult to construct good questionnaires, questions often interpreted
differently, hard to classify answers in open questions and closed questions may
be to narrow…

Use cases and Scenarios (Description of a particular interaction between the
(proposed) system and one or more users (or other terminators, e.g. another
system). A user is walked through the selected operations and the way in which
they would like to interact with the system is recorded)
+ Concentration on the specific (rather than the general) which can give greater
accuracy
- Solution oriented (rather than problem oriented), can result in a premature
design of the interface between the problem domain and the solution

Prototyping
+ Visualization, stimulate ideas, usability centered, (can be combined with e.g.
use cases)
- Solution oriented (premature design), “is it already done?!”

Documentation

Natural Language (NL) Specification
(most common in industry)
+ Everyone can do it/understand
+ NL is a powerful notation (if used
correctly)
- Imprecise and Quality may vary

Use of attributes can improve accuracy
ID, Title, Desc, Rationale, Source(s),
Conflict, Dependencies, Prio. etc

Context Diagrams
Event Lists
Screens & Prototypes
Scenarios
Task Descriptions
Standards
Tables & Decision Tables
Textual Process Descriptions
State Diagrams
State Transition Matrices
Activity Diagrams
Class Diagrams
Collaboration Diagrams
Sequence Diagrams

Modeling (where use-cases most common)
+ Relatively easy to do
+ Structure
+ Reuse of effort (e.g. code generation)
- Imprecise and Quality may vary
- Solution oriented, donʼt catch non
functional aspects (Quality
Requirements)
- Cost/time

Complete
Correct
Feasible
Necessary
Prioritized
Unambiguous
Verifiable

Documentation 2
variability has to
be mapped to
requirements

Decision support: Domain
or Application

Influences priority, risk,
timeline, cost

Analysis and Negotiation

Requirements

prioritization

Requirements

discussion

Requirement

agreement

Consistency,

completeness
checking

Necessity

checking

Feasibility

checking

Conflicting,

incomplete
requirements

Unnecessary

requirements

Infeasible

requirements

Aims to discover
problems with
requirements and
reach agreement
that satisfies all
stakeholders

- Premature design?
- Combined requirements?
- Realistic within Constraints?
- Understandable?
- Conformance with business goals?
- Ambiguous?
- Necessary requirement?

Customer Value
Gold Plating?

- Testable?
- Complete?
- Traceable?
- Consistent Terminology?
- Fit Criteria

Relevant?
Measurable?

- Requirement or Solution?

Techniques
Interaction Matrices

 Requirements Classification
Requirements Risk Analysis

Boundary Definition

Analysis

Negotiation

Verification and Validation (quality assurance)
Verification is the process of determining

that a system, or module, meets its
specification

Validation is the process of determining that
a system is appropriate for its purpose

are we building
the right system

check if we have elicited and
documented the right requirements

Reviews
Inspections
Checklists
Goal-Means Analysis
Req. Classifications
Prototyping
Simulation
Mock-Up
Test-Cases
Draft User Manual

Reviews/Inspections
Perspective based reading

Checklist based reading
Test Case Based Inspections

Two Man Inspection
(perspectives and checklist may
include product line specific items like
variability checks)

the earlier you find a problem...
errors introduced in the RE process
are the most resource intensive to fix
(50x more costly to fix defects during

test than during the RE)

RE Management
Definition of the RE process and its

interfaces and management of
requirements and the requirements
process over time

Configuration Management (!)

Tool support

Traceability policies(!)

Reuse (!)

Standards and policies (e.g.
documentation)

Criteria for when to ignore policies

change
management

version handling

tool that supports your process

source, forward, backward
(pre-requisite for reuse)

the artifacts you are creating may be reused =
quality and cost implications

least common denominator (what is good-enough)
for RE you have to see beyond your role/needs

what to put under
control

Focal Point, CaliberRM,
Serena, Rational Req. Pro

Product Management

Domain Design

Based on the reference requirements (delivered by PM and
RE) create a reference architecture
(variability and design covered in different lecture)

Domain Realization

Make (assets built in-house)

Buy (bought off-the-shelf)

Mine (reuse)

Commission (3rd party)

control technical but also from a business
perspective - is the asset a competitive

(innovative asset)

often resource intensive assets (e.g. OS,
middleware) but also infrastructure like RUP or

CMMI

reuse of existing assets (e.g. other products) - often requires a
lot of reengineering

BUT application specific assets can be used and turned into a
common asset

specification in-house as a order to 3rd party
(adherence to specification, specification quality,
use of e.g. implementation proposals to assure

common understanding)

Domain Testing

“Test” (QA) of
non-executables

is !critical!

Variability makes
brute force test

impossible
Test suitable configurations (selected for best ROI)
alt.
Use of e.g. stubs (fill on for absent/future plug-ins)
BUT COST for creating and maintaining tests and
e.g. stubs has to be weighed in (not to mention
defects in test artifacts themselves)

the earlier you find a problem...
errors introduced in the RE process
are the most resource intensive to fix
(50x more costly to fix defects during

test than during the RE)

Testing Strategy BFS=Brute Force
PAS=Pure Application Strategy
SAS=Sample Application Strategy
CRS=Commonality and Reuse Strategy

BFS. A “+” indicates that the
strategy yields positive results for a criterion, a “-” indicates that the strategy
yields negative results for a criterion, and a “0” indicates that advantages and
disadvantages are almost balanced for a criterion. For the BFS, the time to
create test artefacts criterion is rated with a “-” due to the large amount of
test artefacts that must be created. The learning effort is rated with a “0” as
the BFS requires learning how to deal with different configurations, but
avoids having to learn how to deal with variability in test artefacts. The
inability of the strategy to deal with absent variants leads to a “-” for the
absent variants criterion. Early validation gets a “+” as all tests are performed
in domain testing. The overhead is rated with a “-” as most configurations
are tested unnecessarily.

PAS - pure application strategy
The time to create test artefacts is rated with a “0” as it is roughly equal to the time
needed in single-system engineering. As test engineers neither have to deal
with absent variants nor with variability, the absent variants criterion and the
learning effort are both rated with a “+”. Early validation is rated with a “-”
since no tests are performed in domain testing. The overhead is rated with a
“-” since similar test cases have to be defined for each application.

SAS - Sample Application Strategy
Tests created for a specific application (can be reused but with adaptation) average
Absent variants are handled through creation of test apps
Test like normal = not hard to learn
Expensive as test apps have to be built

CRS - Commonality and Reuse Strategy
Domain testing aims at testing common parts and preparing test artefacts
for variable parts. Application testing aims at reusing the test
artefacts for common parts and reusing the predefined, variable
domain test artefacts to test specific applications.
Tests can be reused in app testing = time low
Early validation not always possible as some test only possible after application engineering
Train testers to create test cases that include variability
Overhead low as reuse is possible

SAS/CRS
The composite strategy enforces the creation of reusable test
artefacts in domain testing and the reuse of these artefacts in application
testing. This leads to a good rating for the time criterion. In addition, an early
validation is performed with fragments of a sample application. This means
that no complete application is built, but only parts that are large enough to
perform the tests. This indeed implies a minor overhead, but the overhead is
significantly lower than the overhead of the SAS

L5:Processes and SPL and Organizations

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Techn.

Roles
Responsibilities

Relationships

People
Structures

L5

L5

Organization, roles and responsibilities

Mapping of activities (actions) and process and roles to
organization is critical as it is central to the successful
realization and use of a PL
Amount of people working together (coherence within unit vs. collaboration

btw units)

Accountability and funding

Decision hierarchy

why should we
bother with this...

Will people be able to see the
product line and have the product

line mindset?

same role distributed
(same work done in

several places)

Local profit
optimizations (e.g.

project over product)
Mean time to decision

is long (too many
people involved)

Organization, roles and responsibilities

Mapping of activities (actions) and process and roles to
organization is critical as it is central to the successful
realization and use of a PL
Organizational SIZE is crucial as it speaks to the impact of the organizational

structure and the role and responsibilities division on the product line...

why should we bother
with this (2)...

Small organization has “closeness” and
familiarity that can compensate for

inadequacies, LARGE organizations DO NOT

Personal mind-set, and motivational
structure plays a crucial role if a PL

succeeds or not, much more so than
having a perfect architecture or

variability analysis

“not my job”

Imbalance in the organization (e.g.
domination of application engineering

over domain engineering)

What are individual engineers good at (like to do), skill set!
E.g. Domain Eng. (high quality components and

maintenance) vs. App. Eng. (build apps fast w. given
components)

Roles and responsibilities

Product Manager (PM)
- Planning and evolution of the complete range of products (present and
future) taking features and BUSINESS value into consideration
- Business value -> Business owner, Features -> marketing and sales
- Domain requirements engineering -> evolution of the features (commonality
and variability)
- PM initiates application development and coordinates with the application
requirements engineer

Roles and responsibilities 2
Domain Requirements Engineer

- Development and maintenance of the requirements that are relevant for the
whole range of products (domain), i.e. the development of common and
variable requirements incl. a variability model (in accordance with the
roadmaps and plans of the PM)
- Estimation and feasibility feedback
- Common and variable req. + variability model -> input to domain architect

Domain Architect
- Development and maintenance of the reference architecture for the complete
set of products
- Collaborates a lot with the domain requirements engineer
- The common and variable parts of the arch. are provided to the domain asset
manager who performs management on variants and versions
- Reference architecture -> input to domain developer (includes the selection
of reusable domain components and interfaces)
- The domain architect validates that the designs of the reusable assets fulfill/
adhere to the reference arch.
- To enable configuring, the domain arch. determines what configuration
mechanisms should be used to build end products.
- Domain architect validates application architectures - adherence to domain
arch. + reference arch -> is used by the application architectures

Roles and responsibilities 4

Domain Developer
- Development and maintenance of reusable components and interfaces for
the complete range of products
- Development of configuration mechanisms (e.g. through parameters, on
model/design level, on CM level (e.g. versions) etc) to support the variance of
the systems in the product line

Domain Tester
- Development and maintenance of reusable test assets for the complete
range of products
- Testing of integrated products, but also integration and system tests on
domain assets, and prepare common and variable test assets to be used by
the application tester (make sure to plan what has to be tested from a domain
perspective in the individual applications)
- Domain tester -> input to RE (testability etc), -> to PM regarding costs, -> to
architect and domain developer as to testability on domain level

Domain Asset Manager
- Maintaining versions and variants of all domain assets! (everything from
requirements to test cases and executables)
- Traceability and configuration control (-> e.g. versions of individual artifacts
to application configurations are kept traceable and under CM control)
- Large potential of overhead!

Roles and responsibilities 4
Application Requirements Engineer

- Development and maintenance of the requirements for a single product
- Use present requirements, if not available create new application specific
ones that are validated against the PM
- Submit suggestions for candidate domain requirements
- Application RE -> supplies selected requirements application architect and
developer, and asset manager gets list for CM purposes

Application Architect, Developer, Tester
- Specific application
- Reuse what is possible from the domain level, develop what is needed for the
application level
- Validate against Domain PM and Architect as to adherence to domain assets
and architecture
- Suggest additions (alterations for new variants) to domain level artifacts
- Early estimation of impact and cost (short and long-term) - not only
development but product line impact and cost...

Organizational structures
The way people interact can be captured in communication patterns. The patterns

determine what kinds of mechanisms are used for communication and by
whom

Communication patterns are influenced by organizational structure, as it dictates
what information needs to be communicated to whom, and who is concerned
with what part (functionality wise) and aspect (life cycle perspective)

Organizational structures for PL are linked with roles and responsibilities:

Domain and Application engineering - go through a development life-cycle
(sequence or in parallel)

Interactions btw domain and application engineering are on functional level
(requirements, design, realization, test level)

Domain asset manager interacts with most engineering roles

Product Manager provides input to domain engineering and initiates
application engineering

domain and application engineering and their
interaction influence organizational structure the

most

PM, Asset manager,
testing lead to additional

structure

Product-Oriented Organizations
Most common type of organization

Clear division of responsibility and
accountability (domain vs application

and for each application)

Application units are responsible for
obtaining income

Division btw applications can be
dependent on both similarity (e.g.

one type of applications in same part
and/or market targeted)

A key is to have communication
heavy parts in the same unit

Main challenges:
- Funding the domain unit

- Functional interactions btw
developers of different units

(also for e.g. architects)

(especially during formation of the PL) app units
tempted to go outside the company for the platform

communication btw units considered as overhead
(also sometimes as competition)

double development!

Funding: budgetpressure... application units tempted to choose other company to provide
domain (base)...
(especially initially when forming the PL, then after the domain part is so adapted to the apps
that the apps cant find a better match

Interactions: communication btw units -> overhead, addition of additional structure - can be
compensated by accepting some overhead + formation of functional units

Process-Oriented Organizations
Functional hierarchy is prime!

Functional interaction is facilitated

Flexible allocation of resources
depending on need (btw application
but also btw domain and application)

People develop similar functionality for
different products:
- Easier to ensure integrity of architecture
- Focus on reusability as it benefits you...

Main challenges:
- Different phases of

engineering are not close
- Domain engineering spread

out

communication btw units and planning is necessary

accountability (especially for domain assets is not
clear)

more common in smaller
organizations where

communication is less of a
problem

Matrix Organizations
Compromise btw

product and process
focus

Main challenges:
- Scattered focus

- Complex management

Process Evaluation and Improvement

Model based Inductive

Framework/
Standard

Internal (extern)
knowledge

according to
model

Changes -
follow model

What do we do
vs

Framework

open inductive
improvement

Change -
according to

priority

What do we do
vs What do we

want to do

Process Evaluation and Improvement 2

Model based Inductive

+ external knowledge
+ pre-packaged
+ best practices
- top down
- fit (generic)
- superfluous parts
- priority set

+ adapted to the organization
+ only what is needed
+ org. priority
+/- learning process
+ up-down, down-up
- internal knowledge
- larger demands on internal
commitment

CMM/CMMI

ISO
SPICE

QIP PDCA
iFLAP

Process Evaluation and Improvement 2

etc

Project

Line

A B

DC

People Artifacts

Result

interviews

etc
process

documentation

project artifacts

manuals

observation system/tools

“Triangulation of Results”

Family Evaluation Framework (FEF)

Focuses on the evaluation of product lines (focus on
aspects relevant to PLs)

companies that have nothing like a product
line = FEF might be a wrong fit

BAPO view

FEF should be used to evaluate product line
organizations (or product line “like” organizations...)

For the case study in this course, see FEF
(available on course homepage!) - more

detailed than the BAPO paper...

http://trind.dyndns.org/~feldt/cth/sple/papers/
linden_2005_fef_intro_and_overview.pdf

Family Evaluation Framework (FEF) 2

BAPO

Family Evaluation Framework (FEF) 3
- Business: business involvement in the SPL engineering and variability
management. Business relationships between domain and application
engineering, and the cost, profits, market value, and planning of
variability.

- Architecture: domain and application architecture relations and how
they are related via variability.

- Process: process usage and process maturity (use e.g. CMMI)

- Organization: effectiveness and distribution of domain and application
engineering over the organization. Coordination, communication, how
well is the organization suited to PL engineering and to the company

Family Evaluation Framework (FEF) 4

Each dimension
has aspects

 Level 1
 Level 2
 Level 3
 Level 4
 Level 5

basic

advanced

based on the
maturity of the

aspects

... the dimension
gets a rating...

Family Evaluation Framework (FEF) 5

- For each level FEF gives a characterization of the maturity for each
aspect.

Business

Financial

Vision...

Strategic
planning...

there is no, or little,
involvement by the
business. Systems are
planned, sold, marketed
on a single system basis

Commercial

marketing and sales
know the cost, profits,
and ROI of SPLE and
use this knowledge to
improve business
strategy

Level 1 Level 5

Family Evaluation Framework (FEF) 6

Architecture

Ref. architecture

Variability

there is no or
unsystematic reuse
(not planned or
controlled and
systematized)

Reuse

there is a systematic
reuse based on an asset
repository (asset under
CM that is used for
reuse)

Level 1 Level 5

Family Evaluation Framework (FEF) 7

Process

Application

Collaboration

CMMI level 1Domain CMMI level 5

Level 1 Level 5

CMMI is used to evaluate the
processes used, FEF uses parts of
CMMI (and Level 1 in FEF does not

always correspond to CMMI Level 1!)

http://www.sei.cmu.edu/cmmi/

Family Evaluation Framework (FEF) 8

balance, one dimension influences
the other...

Case study
Do the evaluation (or suitability analysis) according to relevant framework (see ass. desc.)

The interview questions, design (e.g. selection of whom you talk to) and how these
questions relate to the framework should be mapped.

The subjects answers (raw data) should also be turned in (appendix).

Your interpretations of the answers should be a part of the report, e.g. why you judge a
certain level

Some aspects are more suited to other data sources than interviews, but you may use
interviews. Bonus if you use triangulation (e.g. confirm in other sources, e.g. two
interviews or one interview and documentation)

E.g. ask about reuse, get an answer that indicated Level 5, then you look at their asset
management and control that the opinion of the interview subject corresponds to
reality.

E.g. 2: ask two different developers (separate interviews) about reuse, compare
answers.

The interviews you design should be semi-structured to reflect FEF, but do not be leading.
Ask follow-up questions to be sure you understand enough to make judgement.

