
Variability and Architecture
SPLE Course, DAT165, L2 & L3

Richard Torkar - richard.torkar@gmail.com

Robert Feldt - robert.feldt@gmail.com

tisdag den 3 november 2009



Acronyms used

DE = Domain Engineering

AE = Application Engineering

RefArch = Reference Architecture

TTM = Time To Market

SW = Software

SPL = Software Product Line

SPLE = SPL Engineering (and course book!)

Dev = Development

tisdag den 3 november 2009



Definitions

Variability subject - a var 
item of the real world

Var object - particular 
instance of a subject

Var point - represents a 
var subject + contextual 
info

Variant - represents a var 
object

Internal/External var

For SPL, having 10 
variation points with 3 
possible variants, gives 
310 (59,049) configs

tisdag den 3 november 2009



Lectures - Overview (BAPO Model)

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Roles
Responsibilities

Relationships

People
Structures

tisdag den 3 november 2009



Lectures - Overview (BAPO Model)

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Techn.

Roles
Responsibilities

Relationships

People
Structures

2&3

tisdag den 3 november 2009



Domain and Application Engineering

tisdag den 3 november 2009



Domain and Application Engineering

tisdag den 3 november 2009



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

tisdag den 3 november 2009



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Variability is a 
first-class 
concept!

tisdag den 3 november 2009



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variability is a 
first-class 
concept!

tisdag den 3 november 2009



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variation, 
supported in SPL

Variability is a 
first-class 
concept!

tisdag den 3 november 2009



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variation, 
supported in SPL

Product-specific, 
not supported (now)

Variability is a 
first-class 
concept!

tisdag den 3 november 2009



Types of Variability

tisdag den 3 november 2009



Variability Documentation

What varies?

Variation points

Why does it vary?

Context, Reasons

How does it vary?

Variants, Dependencies, Constraints

For whom is it documented?

Internal & External Stakeholders

Improves: Decision Making, Communication & 
Traceability

tisdag den 3 november 2009



Graphical Variability Modeling

tisdag den 3 november 2009



Graphical Variability Modeling

Separate Model!

tisdag den 3 november 2009



Same variability notation throughout

tisdag den 3 november 2009



Packages of variants

tisdag den 3 november 2009



Variability in packages/sub-systems

tisdag den 3 november 2009



Architecture

tisdag den 3 november 2009



Reference Architecture

Single, shared architecture, common to all products

Normal architecture for commonalities

Variation points, variants etc for rest

Not always there in practice, too plan-driven

Extract the reference architecture gradually

tisdag den 3 november 2009



Time for a paper...

tisdag den 3 november 2009



Industry example: Meantime Game Company

Brazilian company developing mobile games

60 games, 400 devices, 6 languages, 40 developers

Critical requirement: Portability (Many mobiles)

User interface differences

CPU, memory and size constraints

Support API differences (J2ME, BREW & proprietary)

Carrier-specific requirements

Internationalization

tisdag den 3 november 2009



Industry example: Meantime Game Company

Developed MG2P = Meantime Game Porting Platform

Mobile Domain Database (MDD)

Meantime Base Architecture (MBA)

Meantime Build System (MBS)

MDD captures basic Commonality + Variability

Variations: Device-specifics, Game types/APIs, Known issues, 
Language, Game features

Families of similar MobApps and Games (in porting context)

Typical device for each family chosen (least powerful, most 
issues)

tisdag den 3 november 2009



Configuration knowledge in MDD

tisdag den 3 november 2009



Industry example: Meantime Game Company

Meantime base Architecture

Same code base and file structure for all games

J2ME does not allow libraries => MBA copied for each new 
game

Pre-processing tokens from MDD handles variability

Meantime build system

Built on Antenna pre-processor and Ant, more flexible

tisdag den 3 november 2009



Architectural Concerns

Architecturally significant requirements

Key requirements affecting the whole architecture

Conceptual architecture

Key concepts of architecture

Architectural structure

Decomposition into components and relations

Architectural texture

Rules for using, instantiating and evolving architecture

tisdag den 3 november 2009



Architecturally Significant Requirements

Central to the purpose of the products, or,

Technically challenging / Technical constraints

Examples:

The system must encrypt all network traffic

The game must deploy on all mobile phones by the top 5 manufacturers 
that are released after 2007

The system must always give responses to user queries within 3 seconds

The system must provide a visual overview of the current flow of resources 
in the factory being managed

Quality/Non-func. requirements often decisive

tisdag den 3 november 2009



Conceptual Architecture

Most important concepts + their relations

Mental model of of domain to understand and simplify 
the problem

(Related to “System Metaphor” in Extreme Programming)

tisdag den 3 november 2009



Architectural Structure

Division into components

Sub-systems/units with clear interfaces

Connections between components

tisdag den 3 november 2009



Architectural Texture

“Manual” for the Reference Architecture

Guidelines, rules, “Philosophy” for

Using and

Evolving the RefArch

Examples:

Coding standard

Design patterns

Architectural styles

tisdag den 3 november 2009



Creating a Reference Architecture

“Normal” architecting methods can be used

Attribute-Driven Design, ..., OO, ..., Design Patterns, ...

Differences:

More products, often more Stakeholders => Communicate

Also more Requirements conflicts => Resolve (elicited)

Three basic ways to support variability:

Adaptation

Replacement

Extension

tisdag den 3 november 2009



Variability mechanisms

tisdag den 3 november 2009



Variability Mechanisms

tisdag den 3 november 2009



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

tisdag den 3 november 2009



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific

tisdag den 3 november 2009



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific

Generic interface for 
adding components

tisdag den 3 november 2009



Adaptation mechanisms 

Inheritance

subclass changes/overrides behavior

Patching

partial behavior change with little maintenance

DE: component, AE: patch

Compile-time config

Pre-processors or macros, Makefiles

Configuration

Interface to choose between multiple implementations

Parameters or configuration file to make choice

tisdag den 3 november 2009



Replacement mechanisms 

Code generation

Generates code from high-level description (model, script)

Glue code or whole components/sub-systems

Component replacement

Default component is replaced with another one

Often 3rd party components

Wrappers may be needed

tisdag den 3 november 2009



Extension mechanisms 

Plug-ins

Architecture has interface to “plug in” components

Example: CORBA, COM, etc

Example: Strategy Design Pattern (functionality can be selected 
at runtime)

tisdag den 3 november 2009



Variability & Commonality SPL Motivations

Increase in the number of products that can be released

Manage multiple, diverse products in one portfolio

Improve product commonality

Not only for complexity management,

also for marketing (same look-and-feel)

tisdag den 3 november 2009



Time for a paper...

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

16,000 employees, €10 Billion turnover (1/3 is TVs)

250 developers

Single SPL for mid- and high-range TVs 

SPL developed 1996-2000, in use since then

Trends, more complex SW: 

More features (MPEG4, Sound processing, HW->SW)

Globalized market

Shorter product cycles and TTM

Product convergence

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

Hundreds of Variability parameters -> Hierarchy

Evolution rules: What can be changed without affecting 
other parts? (HW dependencies)

Compositional approach technically

Describe which components to combine into new 
product

Simplified convergence (DVD+TV, TV+VCR, ...)

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

Koala Component Model

Component = Specification + Implementation

Hierarchical - group of components can be one 
component at higher level

Implemented in C, interfaces in separate files

Component descriptions to generate build/make files

Interface Description Language + Tools to work with it

No extra run-time costs (resource-constrained HW)

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

Variability

Compound components can have “Diversity 
parameters”

Switches to choose sub-components

Packages group components and interfaces to larger 
units

Also the packages are hierarchical

Product is a selection of packages

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

Reference architecture?

What are the Variability mechanisms? (Adaptation, 
Replacement, Extension)

Documentation of variability?

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

Reference architecture?

No, since it would not help for creating combi-
products

Maybe for small line of TVs, not for whole range over 
multiple years

What are the Variability mechanisms? (Adaptation, 
Replacement, Extension)

Documentation of variability?

Only: Component & Interface data sheets + sub-system 
design notes

tisdag den 3 november 2009



Industry Case: Philips Consumer Electronics

Results / Lessons learned

Diversity of products produced on time, Variability not a problem

Late-joining architects don’t understand Koala’s motivation

Architecture has lasted longer than any previous

Took three years to be successful

Config Management system fails at sub-file level variability

Better to solve variability in arch & use traditional CM

tisdag den 3 november 2009



Evolving a Reference Architecture

Evolution is a must:

Market changes

Features or products become redundant

Company mergers

3rd party component updates

New technology

Unintentional evolution:

Software/documentation rot, Maintenance, Erosion

Refactoring can counter

tisdag den 3 november 2009



Domain and Application Engineering

tisdag den 3 november 2009



Domain and Application Engineering

tisdag den 3 november 2009



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

tisdag den 3 november 2009



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

Variation point

tisdag den 3 november 2009



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

Variation point

Variation 1

tisdag den 3 november 2009



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

Variation point

Variation 1

Variation 2

tisdag den 3 november 2009



Requirements Variability - Use Cases

tisdag den 3 november 2009



Scoping

Defining the scope of the product line

Which products are within the boundaries of the SPL?

Which products are not supported by the SPL?

Product Portfolio Scoping

Technical, Marketing and Strategic Decision 

Other levels (built on PPS):

Domain scoping = Identify major domains relevant for SPL

Asset scoping = Define functionality for reusable components

Active research area

tisdag den 3 november 2009



Example scoping: Philips Consumer Elec.

Main SPL Scope = “Mid- and High-range TVs”

Support convergent/combi-products

Not low-end TVs

Less features => less variability

Less product-to-product changes => less variability

HW+SW mainly bought from 3rd party

Flexible and Ongoing Domain Scoping

Convergence & short cycles requires new domains

Asset scoping built into component framework

tisdag den 3 november 2009



Product Portfolio Scoping

1. Define Product Line Market

2. Determine relevant Product Types

Product Map = List of example products/types with their 
main features = Defines the Portfolio

3. Analyze Market Position & Define Products

KANO Model (next slide)

4. Analyze interrelations between products

Competition - PL Cannibalization

Support - Entry-level sells premium-level

tisdag den 3 november 2009



Product Portfolio Scoping

1. Define Product Line Market

2. Determine relevant Product Types

Product Map = List of example products/types with their 
main features = Defines the Portfolio

3. Analyze Market Position & Define Products

KANO Model (next slide)

4. Analyze interrelations between products

Competition - PL Cannibalization

Support - Entry-level sells premium-level

Identifying Commonality 
and Variability is natural 

in scoping => 
SPL good fit

tisdag den 3 november 2009



KANO Model

tisdag den 3 november 2009



Domain Requirements Engineering & Analysis

Normal RE and Analysis but Precise Variability Defs

Commonality Analysis

Variability Analysis

Variability Modeling

Methods

App-Req Matrix

Priority-based Analysis (KANO)

Checklists

tisdag den 3 november 2009



L2: Variability & Architecture

Introduction to Variability and Variability Management

Motivation

Realizing variability - adaptation, replacement & extension

Reference architecture

Creation & Variation points

Architecture concerns

Experiences from industry

tisdag den 3 november 2009



L3: Variability, scoping & domain analysis

Concrete variation mechanisms

Inheritance, Patching, Compile-time config, 
Configuration, Code generation, Component 
replacement, Plug-ins

Domain design & realization

Ref Architecture Evolution

Experiences from industry

tisdag den 3 november 2009



References

V. Alves, T. Camara, C. Alves, “Experiences with Mobile Games 
Product Line Development at Meantime”, SPLC’08, Limerick, 
Ireland, 8-12 Sept, 2008.

tisdag den 3 november 2009


