
Efficient Verification of
Software Product Lines

Ina Schaefer
Chalmers University

schaefer@chalmers.se

Guest Lecture
Software Product Line Engineering

8 December 2009

mailto:schaefer@chamers.se
mailto:schaefer@chamers.se

Verification of Software Product Lines

Software Product Lines

• A product line is “a family of products designed to take
advantage of their common aspects and predicted
variabilities.”[Weiss; 1999]

• A product line is “a set of systems sharing a common set
of features that satisfy the specific needs of a particular
market segment.” [Clements, Northrop; 2001]

2

Verification of Software Product Lines

Product Line Development

Family Engineering

Application Engineering

Product Line
Artifacts Base

Feature
Model

Feature
Configuration Product

3

Verification of Software Product Lines

Verification of SPL

• High configurative variability of products

• Correctness of products is crucial.

• Formal verification by theorem proving and model
checking can establish critical product properties.

• But, it is not feasible to verify each product in
isolation.

4

Verification of Software Product Lines

Reuse in Verification

5

Product 1

Product Line
Artifacts Base

Product N[...]

Verification of Software Product Lines

Reuse in Verification

5

Product 1

Product Line
Artifacts Base

Product N

➊ Verification of
Domain Artifacts

[...]

Verification of Software Product Lines

Reuse in Verification

5

Product 1

Product Line
Artifacts Base

Product N

➊ Verification of
Domain Artifacts➋ Instantiation of

Generic Proofs
(Compositionality)

[...]

Verification of Software Product Lines

Reuse in Verification

5

Product 1

Product Line
Artifacts Base

Product N

➊ Verification of
Domain Artifacts➋ Instantiation of

Generic Proofs
(Compositionality)

➌ Proof Reuse

[...]

Verification of Software Product Lines

Outline

• Model-based Software Product Line Engineering

• Variability Modelling using Δs

• Implementing SPL with FΔJ

• Proof Reuse for Verification of FΔJs

6

Verification of Software Product Lines

Product Map

7

Base Sync

BaseAccount x

SyncAccount x x

Ret Inv WHolder

AccWHolder x

RetAccount x

SyncAccWH x x

x

x

x

Example from [Batory et al., FOAL09]:

Verification of Software Product Lines

Base Sync (With) HolderInv(estment) Ret(irement)

Bank Account Product Line

« requires »

Feature Model

8

Master Thesis: Comparison between Product Maps and Feature Models

Verification of Software Product Lines

Model-based Development

9

Feature Modelling

Feature Model Feature Configuration

Core Design

Product Line Design

configure

configure
Δ-Designs

create

implement

Core Impl.

Product Line Implementation
configure

Δ-Impl. Product Impl.

Product Designs

Verification of Software Product Lines

Model-based Development

9

Feature Modelling

Feature Model Feature Configuration

Core Design

Product Line Design

configure

configure
Δ-Designs

create

implement

Core Impl.

Product Line Implementation
configure

Δ-Impl. Product Impl.

Product Designs

I. Schaefer, A. Worret, A. Poetzsch-Heffter: A Model-based Framework for Automated Product Derivation.
Workshop on Model-driven Approaches to Product Line Engineering (MAPLE), August 2009

Verification of Software Product Lines

Model-based Development

9

Feature Modelling

Feature Model Feature Configuration

Core Design

Product Line Design

configure

configure
Δ-Designs

create

implement

Core Impl.

Product Line Implementation
configure

Δ-Impl. Product Impl.

Product Designs

I. Schaefer, A. Worret, A. Poetzsch-Heffter: A Model-based Framework for Automated Product Derivation.
Workshop on Model-driven Approaches to Product Line Engineering (MAPLE), August 2009

Verification of Software Product Lines

Δ-Modelling

Guideline: The core product contains

• all mandatory features.

• a minimal number of required alternative features

The core product is a complete product for a valid feature
configuration. It is not uniquely determined.

10

A product line is represented by a core product and a set of
product-Δs.

Master Thesis: Impact of Core Product to SPL Design and Implementation

Verification of Software Product Lines 11

Δ-Modelling (2)

• Product-Δs specify Additions, Modifications, Removals
to the Core Product.

• Application constraint over the features in the feature
model determines for which feature configuration the
product-Δ has to be applied to the core product.

• Product-Δs can be partially ordered to avoid conflicting
changes of the core product.

Verification of Software Product Lines

Configuration

For a Feature Configuration:

• Determine product-Δs with valid application condition.

• Determine linear ordering of product-Δs compatible
with partial ordering.

• Apply changes specified by product-Δs to core product
in the linear order.

12

Variability in System Design
Core Design

class Account

int balance

void update(int x)

implements IAccount

+ class Client

+ IBonusAccount a
+ void payday(int x,int bonus)

Holder & (Inv | Ret)

+ implements IClient

class Account

Sync & (Ret | Inv)

 * class Account
+ void sync_addBonus(int x)

* void addBonus(int i)

* class Account

+ int 401balance

+ void addBonus(int i)

Ret & !Inv

- int balance

implements IBonus =
* IAccount

* void update(int i)

* class Account

+ int 401balance

+ void addBonus(int i)

Inv & !Ret

implements IBonus =
* IAccount

* void update(int i)

class Account

+ int lock

+ void sync(int i)

Sync

* void update(int i)

* class Account

Δ-Designs

Verification of Software Product Lines

Product: Base & Sync

class SyncAccount

void update(int x)

implements IAccount

int balance
int lock

void sync(int i)

class Account

int balance

void update(int x)

implements IAccount

class Account

+ int lock

+ void sync(int i)

Sync

* void update(int i)

* class Account

14

Configuring Designs

Configured Design

Core Design

Applicable Δs

Verification of Software Product Lines

class RetAccount

void update(int x)

implements IBonus

Product: Base & Ret & With Holder

int 401balance

void addBonus(int i)

class Client

IBonus a

void payday(int x, int bonus)

implements IClient

class Account

int balance

void update(int x)

implements IAccount
+ class Client

+ IBonusAccount a
+ void payday(int x, int bonus)

Holder & (Inv | Ret)

+ implements IClient

class Account* class Account

+ int 401balance

+ void addBonus(int i)

Ret & !Inv

- int balance

implements IBonus =
* IAccount

* void update(int i)

Configuring Designs

Configured Design

Core Design

Applicable Δs

15

Verification of Software Product Lines

Variability Modelling with Δs

16

• Evolutionary Development by Adding Product-Δs

• Explicit Treatment of Combinations of Features by
Complex Application Conditions

• Usable with Different Modelling Formalisms and
Implementation Techniques

• Model Refinements are Orthogonal to Variability Modelling.

Implementing SPL using Deltas and Traits

Model Refinement

17

It holds that:
refine(configure((Core, Δs),fc)) = configure(refine(Core,Δs),fc)

System
Core

Core

configure(fc)

configure(fc)
[...]

System
Δs

for each class

Δs

Product

Product Classes

refine refine

Master Thesis: Case Study and Tool Support for MDD with Δs

Verification of Software Product Lines

Model-based Development

18

Feature Modelling

Feature Model Feature Configuration

Core Design

Product Line Design

configure

configure
Δ-Designs

create

implement

Core Impl.

Product Line Implementation
configure

Δ-Impl. Product Impl.

Product Designs

Verification of Software Product Lines

FΔJ - A PL for SPL

19

• Extension of Java with Core and Δ-Modules

• Core Product is implemented by Core Module.

• Product-Δs are implemented by Δ-Modules.

• A Product Implementation is obtained by application of Δ-
Modules to Core Module.

• Type System ensures safety of Δ-application.

Verification of Software Product Lines

FΔJ - A PL for SPL

19

• Extension of Java with Core and Δ-Modules

• Core Product is implemented by Core Module.

• Product-Δs are implemented by Δ-Modules.

• A Product Implementation is obtained by application of Δ-
Modules to Core Module.

• Type System ensures safety of Δ-application.

L. Bettini, V. Bono, F. Damiani, I. Schaefer: A Programming Language for Software Product Lines.
Draft, December 2009

Verification of Software Product Lines

Core Module

20

core BaseAccount {
class Account extends Object {

int balance;

void update(int x) { balance += x; }
}

}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;

renames update to unsync update;

adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
}

}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this

delta can only be applied after other deltas have been applied to the core module. Using

the after clause, it can be ensured, for instance, that a class that should be modified is

introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-

tory features, thus, in our example, the core contains only the class Account, as illus-

trated in Listing 1. Another strategy could be the one of implementing the core with

the most recurrent features in the products of the SPL (and then having some deltas

removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;

this modifies the class Account by adding a Lock field (whose class is not shown here)

and by wrapping the code for synchronization around the method update. In order to

do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before

it, and unlocking after it). Note that this delta must be applied after the deltas for re-

tirement and investment features, since the latter modify the update themselves. With

the after clause we ensure that the synchronization takes place on the correct, most

up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),

however, this is not expressed directly in the when clauses of their deltas (Listing 3

and 4, respectively), since it will be taken care of when the system selects the appli-

cability of deltas according to the feature model and the feature configuration. As ex-

A core module contains a set of Java classes.

Verification of Software Product Lines

Δ-Modules

• Modifications on Class Level:

• Addition, Removal and Modification of Classes

• Modifications of internal Class Structure:

• Adding, Removing, Renaming Fields

• Adding, Removing, Renaming Methods

• Application Condition in when clause: Boolean Constraint
on Features in Feature Model

• Partial Ordering of Δ-Modules by after clauses

21

Verification of Software Product Lines

Δ-Module for Sync

22

core BaseAccount {
class Account extends Object {

int balance;

void update(int x) { balance += x; }
}

}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;

renames update to unsync update;

adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
}

}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this

delta can only be applied after other deltas have been applied to the core module. Using

the after clause, it can be ensured, for instance, that a class that should be modified is

introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-

tory features, thus, in our example, the core contains only the class Account, as illus-

trated in Listing 1. Another strategy could be the one of implementing the core with

the most recurrent features in the products of the SPL (and then having some deltas

removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;

this modifies the class Account by adding a Lock field (whose class is not shown here)

and by wrapping the code for synchronization around the method update. In order to

do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before

it, and unlocking after it). Note that this delta must be applied after the deltas for re-

tirement and investment features, since the latter modify the update themselves. With

the after clause we ensure that the synchronization takes place on the correct, most

up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),

however, this is not expressed directly in the when clauses of their deltas (Listing 3

and 4, respectively), since it will be taken care of when the system selects the appli-

cability of deltas according to the feature model and the feature configuration. As ex-

Verification of Software Product Lines

Δ-Application

23

delta DwithHolder when WithHolder {
adds class Client {

Account a;
void payday(int x, int bonus) { a.addBonus(bonus); a.update(x); }

}
}

Listing 6: Delta module adding the With Holder feature

class Account extends WaMu {
int balance;
int 401kbalance;
Lock lock;
void original update(int x) { balance += x; }
void unsync update(int x) { x = x/2; original update(x); addBonus(x); }
void unsync addBonus(int x) { 401kbalance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
void addBonus(int x) { lock.lock(); unsync addBonus(x); lock.unlock(); }

}

Listing 7: Account with Base, Sync and Investment features

Holder requires Retirement or Investment, thus the result of the application of delta
will be guaranteed to provide that method.

As an example of a resulting product we show the Account with Base, Synch and
Investment in Listing 7. This is the result of applying first delta Dinvestment, then
DsyncUpdate and DsyncBonus.3

The reader may have noticed that the deltas for Retirement and Investment have
some similarities: they both add the field 401balance and the addBonus method. Thus,
an alternative approach for writing the deltas is to write a common delta DaddBonus,

3 Note that our example relies on the fact that if the same thread calls lock() on the same lock
instance twice it will not deadlock.

class Account extends Object {
int balance;
Lock lock;
void unsync update(int x) { balance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}

Listing 8: Account with Base, Sync and Investment features

core BaseAccount {
class Account extends Object {

int balance;

void update(int x) { balance += x; }
}

}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;

renames update to unsync update;

adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
}

}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this

delta can only be applied after other deltas have been applied to the core module. Using

the after clause, it can be ensured, for instance, that a class that should be modified is

introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-

tory features, thus, in our example, the core contains only the class Account, as illus-

trated in Listing 1. Another strategy could be the one of implementing the core with

the most recurrent features in the products of the SPL (and then having some deltas

removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;

this modifies the class Account by adding a Lock field (whose class is not shown here)

and by wrapping the code for synchronization around the method update. In order to

do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before

it, and unlocking after it). Note that this delta must be applied after the deltas for re-

tirement and investment features, since the latter modify the update themselves. With

the after clause we ensure that the synchronization takes place on the correct, most

up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),

however, this is not expressed directly in the when clauses of their deltas (Listing 3

and 4, respectively), since it will be taken care of when the system selects the appli-

cability of deltas according to the feature model and the feature configuration. As ex-

core BaseAccount {
class Account extends Object {

int balance;

void update(int x) { balance += x; }
}

}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;

renames update to unsync update;

adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
}

}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this

delta can only be applied after other deltas have been applied to the core module. Using

the after clause, it can be ensured, for instance, that a class that should be modified is

introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-

tory features, thus, in our example, the core contains only the class Account, as illus-

trated in Listing 1. Another strategy could be the one of implementing the core with

the most recurrent features in the products of the SPL (and then having some deltas

removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;

this modifies the class Account by adding a Lock field (whose class is not shown here)

and by wrapping the code for synchronization around the method update. In order to

do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before

it, and unlocking after it). Note that this delta must be applied after the deltas for re-

tirement and investment features, since the latter modify the update themselves. With

the after clause we ensure that the synchronization takes place on the correct, most

up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),

however, this is not expressed directly in the when clauses of their deltas (Listing 3

and 4, respectively), since it will be taken care of when the system selects the appli-

cability of deltas according to the feature model and the feature configuration. As ex-

Core
Module

Δ- Module

Product

Verification of Software Product Lines 24

class Account extends Object {
int balance;

Lock lock;

void unsync update(int x) { balance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

class Client {
Account a;

void payday(int x, int bonus) { a.addBonus(bonus); a.update(x); }
}

}

Listing 8: Account with Base, Sync and Investment features

delta DaddBonus when (Retirement || Investment) {
modifies class Account {

adds int 401balance;

adds void addBonus(int x) { 401balance += x; }
}

}

Listing 9: Delta module containing the common code of the Retirement and Invest-
ment features

delta Dretirement after DaddBonus when Retirement {
modifies class Account extends Lehman {

removes balance;

removes update;

adds void update(int x) { addBonus(x); }
}

}

Listing 10: Delta module adding the Retirement feature (alternative implementation

using DaddBonus)

delta Dinvestment after DaddBonus when Investment {
modifies class Account extends WaMu {

renames update to original update;

adds void update(int x) { x = x/2; original update(x); addBonus(x); }
}

}

Listing 11: Delta module adding the Investment feature (alternative implementation

using DaddBonus)

delta DwithHolder when WithHolder {
adds class Client {

Account a;
void payday(int x, int bonus) { a.addBonus(bonus); a.update(x); }

}
}

Listing 6: Delta module adding the With Holder feature

class Account extends WaMu {
int balance;
int 401kbalance;
Lock lock;
void original update(int x) { balance += x; }
void unsync update(int x) { x = x/2; original update(x); addBonus(x); }
void unsync addBonus(int x) { 401kbalance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
void addBonus(int x) { lock.lock(); unsync addBonus(x); lock.unlock(); }

}

Listing 7: Account with Base, Sync and Investment features

Holder requires Retirement or Investment, thus the result of the application of delta
will be guaranteed to provide that method.

As an example of a resulting product we show the Account with Base, Synch and
Investment in Listing 7. This is the result of applying first delta Dinvestment, then
DsyncUpdate and DsyncBonus.3

The reader may have noticed that the deltas for Retirement and Investment have
some similarities: they both add the field 401balance and the addBonus method. Thus,
an alternative approach for writing the deltas is to write a common delta DaddBonus,

3 Note that our example relies on the fact that if the same thread calls lock() on the same lock
instance twice it will not deadlock.

class Account extends Object {
int balance;
Lock lock;
void unsync update(int x) { balance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}

Listing 8: Account with Base, Sync and Investment features

Δ-Application
Δ- Module

Product

Verification of Software Product Lines

Type System for FΔJ

• The core and Δ-modules can be typed in isolation.

• If a core module and a set of Δ-modules are type
correct, Δ-application is safe:

• all renamed/removed fields and methods exist

• all added fields and methods do not exist

• removed classes exists and added classes do not
exist

• there are not conflicting modifications in a class

25

Verification of Software Product Lines

Verification of FΔJ

26

• We use the KeY System for deductive verification.

• Input: Java Program + JML Specifications

• KeY generates proof obligations in dynamic logic.

• KeY supports interactive and automatic verification
of the proof obligations.

Verification of Software Product Lines

Specification of Base Account

27

/*@
 @ public instance invariant balance >= 0;
 @*/

public class BaseAccount {
!
! int balance;
!
! /*@
! @ ensures \result.balance==0;
! @*/
! public BaseAccount(){
! balance = 0;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

Instance Invariant

Method Contract

We want to prove that the balance of an account is always positive.

Verification of Software Product Lines

Specification of SyncAccount

28

/*@
 @ public instance invariant balance >= 0;
 @*/

public class SyncAccount {
!
! int balance;
! Lock lock;
!
!
! /*@
! @ ensures \result.balance==0;
! @*/
! public SyncAccount(){
! balance = 0;
! lock = new Lock();
! }
!
!

/*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void unsync_update(int x){!
! ! balance = balance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){
! lock.lock(); unsync_update(x); lock.unlock();
! ! }

}

We want to prove that the balance of an account is always positive.

Verification of Software Product Lines

Comparison

29

public class BaseAccount {
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

public class SyncAccount {
!
[...]

/*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void unsync_update(int x){!
! ! balance = balance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){
! lock.lock(); unsync_update(x); lock.unlock();
! ! }

}

Verification of Software Product Lines

Comparison

29

public class BaseAccount {
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

public class SyncAccount {
!
[...]

/*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void unsync_update(int x){!
! ! balance = balance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){
! lock.lock(); unsync_update(x); lock.unlock();
! ! }

}

Method Renaming

Verification of Software Product Lines

Comparison

29

public class BaseAccount {
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

public class SyncAccount {
!
[...]

/*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void unsync_update(int x){!
! ! balance = balance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){
! lock.lock(); unsync_update(x); lock.unlock();
! ! }

}

Method Renaming

→ Proof Reuse for Method Contract

Verification of Software Product Lines

More Proof Reuse

30

public class RetAccount {
!
! int bbalance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void update(int x){!
! ! bbalance = bbalance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void addBonus(int x){!
! ! bbalance = bbalance + x;
! }
}

public class BaseAccount {

int balance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

Verification of Software Product Lines

More Proof Reuse

30

public class RetAccount {
!
! int bbalance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void update(int x){!
! ! bbalance = bbalance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void addBonus(int x){!
! ! bbalance = bbalance + x;
! }
}

public class BaseAccount {

int balance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

Field Renaming

Verification of Software Product Lines

More Proof Reuse

30

public class RetAccount {
!
! int bbalance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void update(int x){!
! ! bbalance = bbalance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void addBonus(int x){!
! ! bbalance = bbalance + x;
! }
}

public class BaseAccount {

int balance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

Method
Renaming

Field Renaming

Verification of Software Product Lines

More Proof Reuse

30

public class RetAccount {
!
! int bbalance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void update(int x){!
! ! bbalance = bbalance + x;
! }
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures bbalance >= \old(bbalance);
! @*/
! public void addBonus(int x){!
! ! bbalance = bbalance + x;
! }
}

public class BaseAccount {

int balance;
!
[...]
!
! /*@
! @ public normal_behavior
! @ requires x > 0;
! @ assignable \everything;
! @ ensures balance >= \old(balance);
! @*/
! public void update(int x){!
! ! balance = balance + x;
! }

}

Method
Renaming

Field Renaming

→ Proof Reuse for
 Both Method Contracts

Verification of Software Product Lines

Observations
• 17 Method Contracts in 6 Variants of the Bank

Account SPL verified.

• Only 3 Contracts have to be proven from scratch.

• Δ-Modules imply Specification-Δs.

• Structure of Δ-Modules indicates Proof Reuse
Potential

• Proofs can be reused if only fields and methods are
renamed, but internal class structure is unchanged.

• More reuse scenarios to be identifed.

31

Master Thesis: Case Study on Proof Reuse for Example SPL

Verification of Software Product Lines 32

Conclusion

• Model-based Software Product Line Engineering

• Variability Modelling using Δs

• Implementing SPL with FΔJ

• Proof Reuse for Verification of FΔJs

Verification of Software Product Lines

Master Thesis Proposals

• Comparison between Product Maps and
Feature Models

• Impact of the Core Product in Δ-Modelling

• Evaluation and Tool Support for Model-based
Development using Δ-Modelling

• Case Study on Proof Reuse for FΔJ

33

