
78 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

S
oftware product line (SPL) engineering has
proven to enable organizations to develop appli-
cations with less effort, in shorter time, and with
higher quality when compared with the develop-
ment of single software systems [2, 7, 11]. There
are two essential differences between SPL engi-

neering and the development of single software systems (see
[7] for details):

• Differentiation between two SPL development processes:
In the domain engineering process, the commonalities and
the variability of the SPL are defined and the domain arti-
facts are realized (see Figure 1). In the application engi-
neering process, actual SPL applications are derived from
the domain artifacts. 

• Explicit definition and management of variability: The
central concepts for defining and documenting the vari-
ability of a SPL are variation point and variant. A variation
point indicates and specifies what can vary, such as the 

By Klaus Pohl and Andreas Metzger

SOFTWARE PRODUCT
LINE TESTING
Exploring principles and potential solutions.

                  



communications proto-
col of a mobile phone.
A variant defines a con-
crete variation, for
example, the UMTS
protocol. In application
engineering, the varia-
tion points are bound
by selecting the variants
that satisfy the applica-
tion-specific require-
ments. Thereby, SPL
applications are derived
from the domain arti-
facts.

Like in the develop-
ment of single software
systems, the aim of testing
in SPL engineering is to
uncover the evidence of defects. However, the two
key differences described here lead to distinct chal-
lenges faced in SPL test-
ing (see [3, 9, 10] for
details):

Which artifacts should be
tested in domain engi-
neering and which ones
in application engineer-
ing? As testing is part
of both product line
engineering processes
(see Figure 1), an obvi-
ous answer to this
question would be to
test the domain artifacts
in domain testing and
the application artifacts
in application testing. However, due to the vari-
ability defined in the domain artifacts, completely
testing the domain artifacts in domain testing is
impossible except for trivial cases.1

How to facilitate the reuse
of SPL test artifacts?
Domain test artifacts
(test case designs, test
data) should be reused
in application testing.
But how can we per-
form such reuse in the
presence of variability
and application-spe-
cific variability bind-
ings? For example, how
should the variability
binding in the applica-
tion requirements and
the application archi-

tecture be taken into account when deriving
application test cases from domain test cases? 

How to ensure correct variability bindings? Applica-
tion testing should establish evidence that the
binding of the variability in the produced applica-
tion conforms to the variability defined in the

application require-
ments. For example,
testing should establish
evidence that a variant
that is not included in
the application require-
ments is not acciden-
tally bound in the
application.

In this article, we out-
line six essential principles
for SPL system testing
that address these chal-

lenges and that should be taken into account when
developing test techniques for SPL engineering. The
principles are based on our experience in SPL testing
and the research results established in the European
ITEA/Eureka projects ESAPS, CAFÉ, and FAMI-
LIES [5]. Our SPL testing technique, ScenTED,
which was successfully applied in industry, demon-
strates how we utilized these principles.

PRINCIPLES FOR SPL SYSTEM TESTING

P-1: Preserve Variability in Domain Test Artifacts.
System tests are performed to evaluate if a system

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 79

Pohl fig 1 (12/06)

Figure 1. Framework for software product
line engineering [PBL05].

Domain
Req. Eng.

D
om

ai
n

E
ng

in
ee

ri
ng

 P
ro

ce
ss

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

 P
ro

ce
ss

Application
Req. Eng.

Application Artifacts (Application 1)

Domain Artifacts (including Variability)

Application Artifacts (Application n)

Domain
Design

Domain
Realization

Domain
Testing

Application
Design

Application
Realization

Application
Testing

Pohl fig 2 (12/06)

Figure 2. Requirements-based software product
line testing with ScenTED.

Application
Requirements

Application
Test Cases

Domain
Requirements

Domain 
Test Cases

(1)
Model 

Behavior

(2)
Generate

Test Paths
Domain

Test Case
Scenarios

Domain
Test Model

(3)
Determine Test 

Data

(4)
Derive Test 

Cases

D
om

ai
n

E
ng

in
ee

ri
ng

 P
ro

ce
ss

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

 P
ro

ce
ss Binding Information

Trace Links Trace LinksTrace Links

Figure 1. Framework for SPL
engineering [7].

Figure 2. Requirements-based
SPL testing with ScenTED.

1As an example, if the domain artifacts contain 15 variation points with two variants
each (which can be combined without any constraints), approximately one billion pos-
sible bindings for these variation points are possible; either none of the variants, one out
of two variants, or both variants can be chosen for any variation point, leading to (1 +
2 + 1)15~~109 combinations.



80 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

complies with its requirements [1, 6]. System test arti-
facts (including system test cases) should thus be
derived from the system requirements. In addition to
the domain requirements, the variability defined for
the SPL must be taken into account when deriving
system test artifacts for SPL applications.

To consider the variability in system testing, we sug-
gest explicitly defining the variabil-
ity in domain test artifacts and
interrelating this variability with
the variability defined in the
domain requirements. Application
test artifacts can then be derived by
employing the variability binding
of the application requirements to
bind the variability defined in the
domain test artifacts (see Figure 2).

P-2: Test Commonalities in
Domain Engineering. An undis-
covered defect in a commonality
of a SPL will affect all SPL appli-
cations and thus will have a
severe effect on the overall quality
of the SPL. We therefore suggest
testing the commonalities of the
SPL as early as possible, ideally in
the domain engineering process. 

Unfortunately, due to the vari-
ability defined in the domain
artifacts, typically no executable
system, which could be tested,
exists in domain engineering.
One solution for testing the com-
monalities is to develop place-

holders for the variable parts in
the domain artifacts and to define
test cases that consider these
placeholders. Another solution
will be introduced with principle
P-4.

P-3: Use Reference Applica-
tions to Determine Defects in
Frequently Used Variants. If a
variant is used in most of the SPL
applications, an undiscovered
defect in this variant can have a
nearly as severe effect on the SPL
quality as a defect in a commonal-

ity. We thus recommend testing all variants that are
likely to be used in many SPL applications as early
as possible. 

To facilitate the testing of such variants in domain
testing, reference applications that contain these vari-
ants should be created in parallel to the development
of the domain artifacts (see [10]).

Table 1.  Key steps of the ScenTED technique  (see  Figure  2).

Pohl table 1 (12/06)

Step Description

(1)

(2)

(3)

(4)

Model Behavior: Based on the behavior defined in domain use cases and use case scenarios, 
domain test models for the SPL are derived. The domain test models are defined as extended 
UML activity diagrams. To facilitate the definition of the variability in these test models, we 
have extended UML activity diagrams by introducing special concepts for modeling variation 
points and variants (see [9]). The explicit representation of the variability in the 
domain test model is a prerequisite for the derivation of application test cases (see step (4)).

Generate Test Paths: From the domain test model, domain test case scenarios are generated. 
The generated test case scenarios again include variability. The generation of the test case 
scenarios is guided by a test quality criterion. Currently, we use an adapted branch coverage 
criterion to guide the test scenario generation (see [9]).

Determine Test Data: For the generated domain test case scenarios, the test inputs and 
expected results are defined. This step is not automated so far. The key obstacle for automation 
is the lack of detail in the description of the inputs and the domain use cases and use case 
scenarios.

Derive Application Test Cases: Application test cases are derived by binding the variability in 
the domain test cases according to the binding of the variability in the application requirements. 
This derivation is supported by the trace links between the different domain artifacts (see 
Figure 2). The trace links facilitate the propagation of the binding of the variability defined for 
a particular application at the requirements level to the test level, that is, the application test 
cases can be derived from the domain test cases based on the variability bindings in the 
requirements defined for the application.

Table 1. Key steps of the ScenTED technique
(see Figure 2).

Table 2.  The  realization of the SPL testing  principles in ScenTED.

Pohl table 2 (12/06)

Principle Addressed
by

ScenTED

Yes

Partial

Yes

Yes

Under 
Development

P-1: Preserve 
      Variability in 
      Domain Test 
      Artifacts

P-2: Test 
 Commonalities 
 in Domain 
 Engineering

P-3: Use Reference 
 Applications 
 to Determine 
 Defects in 
 Frequently 
 Used Variants

P-4: Test 
 Commonalities 
 based on a 
 Reference 
 Application

P-5: Test 
 Correct 
 Variability 
 Bindings

P-6: Reuse 
 Application 
 Test Artifacts 
 across 
 Different 
 Applications

1. 
Testing 
in both 

SPL 
Processes

X

X

X

X

2. 
Reuse 
of Test 
Artifacts

3. 
Ensure 
Correct 
Binding

X

X

X

X

X

Support Offered by 
ScenTED

Challenges for SPL
Testing

Variability is explicitly defined in the 
domain test cases  
(see Figure 1 and Table 1).

During the derivation of the domain 
test cases, the ScenTED technique 
generates test paths without variability 
as intermediate artifacts. These test 
paths can be used for testing the 
commonalities of the product line, 
once placeholders for variability have 
been developed.

The mechanism provided by ScenTED 
for deriving application test cases can 
of course be applied to derive test 
cases for the reference applications.

ScenTED explicitly supports the 
derivation of application test cases 
used to test the presence and/or the 
absence of variants in an application 
(see [3] for details).

We are currently integrating regression 
testing techniques from the development 
of single systems into ScenTED. We do 
this by extending existing regression 
testing techniques to determine if the 
SPL variability or an application-specific 
extension has side effects on potentially 
reusable test artifacts.

Table 2. The realization of the SPL testing
principles in ScenTED. 



P-4: Test Commonalities based on a Reference
Application. If a reference application is used to test
frequently used variants, the reference application
can also be used to test the commonalities of the
SPL. Thereby, the additional effort required to
implement placeholders (see P-2) can be reduced.

P-5: Test Correct Variability Bindings. When
binding the variation points in the domain artifacts
to derive SPL applications, errors can be made. For
example, an SPL application could include variants
that should not be included in the application. Sim-
ilarly, a variant can be omitted that should have been
bound for the application. 

The omission of desired variants can be uncov-
ered by normal system tests. If a variant is missing,
the application lacks functionality and thus the sys-
tem test will fail. However, system tests will typically
not uncover the accidental inclusion of a variant. 

To uncover the undesired inclusion of a variant,
the test engineers must define additional test cases. If
one wants to test that a particular variant is not
included in the application, a system test case for
testing the functionality provided by the variant
should be defined. If this test passes, the variant was
accidentally bound in the application under test.

P-6: Reuse Application Test Artifacts Across Dif-
ferent Applications. Two or more SPL applications
can have the same bindings for one or more varia-
tion points and, as a result, these applications will
contain a common set of variants. In such a case, the
test cases and the test results that consider these vari-
ants might be reused across the applications. There-
fore, the test effort can be significantly reduced. 

However, similar to regression testing for the
development of single software systems, the test
engineers must ensure that no side effects on the
reusable test cases and test results exist. For example,
such side effects can be caused by differences in the
binding of other variation points and/or application-
specific extensions. 

THE SCENTED TECHNIQUE

Our ScenTED technique (Scenario-based Test case
Derivation) facilitates the systematic, requirements-
based derivation of system test cases in SPL engineer-
ing. The system test cases are derived from domain
requirements, more precisely, from domain use cases
enriched with variation points and variants.

Figure 2 depicts the major steps of ScenTED,
which are briefly described in Table 1. Table 2 shows
how ScenTED employs the principles that have
been described in this article to address the chal-
lenges for SPL testing. Details about ScenTED can
be found in [4, 7, 9].

Early evaluation of the ScenTED technique in
industry indicates that ScenTED significantly sup-
ports the derivation of system test cases in SPL engi-
neering, as has been confirmed by test engineers and
test managers [9]. In addition, our experience sup-
ports previous observations that the systematic
derivation of test cases from domain requirements
leads to requirements specifications of higher quality
(see [8]).

References
1. Bühne, S., Lauenroth, K., and Pohl, K. Modelling requirements vari-

ability across product lines. In J.M. Atlee, Ed., Proceedings of the 13th
IEEE International Conference on Requirements Engineering (Paris,
France, Sept. 2005), IEEE Computer Society, 2005, 41–50.

2. Clements, P. and Northrop, L. Software Product Lines: Practices and
Patterns. Addison-Wesley, Reading, MA, 2001.

3. Käkölä, T. and Dueñas, J.C. Research Issues in Software Product Lines—
Engineering and Management. Springer, Heidelberg, 2006. 

4. Kamsties, E., Pohl, K., Reis, S., and Reuys, A. Testing variabilities in
use case models. In F. van der Linden, Ed., Proceedings of the 5th Inter-
national Workshop on Software Product-Family Engineering, PFE-5
(Siena, Italy, Nov. 2003), Springer, Heidelberg, 6–18.

5. van der Linden, F. Software product families in Europe: The ESAPS
and CAFÉ projects. IEEE Software 19, 4 (2002), 41–49.

6. Myers, G.J. The Art of Software Testing, Second Edition, Revised and
updated by Badgett, T. and Thomas, T.M., with Sandler, C., Wiley,
Hoboken, NJ, 2004.

7. Pohl, K., Böckle, G., and van der Linden, F. Software Product Line
Engineering—Foundations, Principles, and Techniques. Springer, Berlin,
Heidelberg, New York, 2005. 

8. Pretschner, A., Prenninger, S., Wagner, S., et al. One evaluation of
model-based testing and its automation. In G.C. Roman, W.G. Gris-
wold, and B. Nuseibeh, Eds., Proceedings of the 27th International Con-
ference on Software Engineering (ICSE 2005) (St. Louis, MO, May
2005), ACM, 392–401.

9. Reuys, A., Kamsties, E., Pohl, K., and Reis S. Model-based system test-
ing of software product families. In O. Pastor, and J. Falcao e Cunha,
Eds., Proceedings of the 17th Conference on Advanced Information Systems
Engineering, CAiSE 2005 (Porto, Portugal, June 2005), Springer, Hei-
delberg, 519–534.

10. Tevanlinna, A., Taina, J., Kauppinen, R. Product family testing—A
survey. ACM SIGSOFT Software Engineering Notes 29, 2 (2003),
12–17.

11. Weiss, D.M. and Lai, C.T.R. Software Product Line Engineering—A
Family-Based Software Development Process. Addison-Wesley, Reading,
MA, 1999.

Klaus Pohl (pohl@sse.uni-due.de) is the scientific director 
of Lero (The Irish Software Engineering Research Center) and a 
professor for software systems engineering at the University of
Duisburg-Essen, Germany and for software engineering at the 
University of Limerick, Ireland.
Andreas Metzger (metzger@sse.uni-due.de) is a senior research
assistant in the Software Systems Engineering group at the University
of Duisburg-Essen in Germany.

This research was supported by Science Foundation Ireland under the CSET grant
03/CE2/I303_1.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. 

© 2006 ACM 0001-0782/06/1200 $5.00

c

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 81


