
 

 

Incremental Return on Incremental Investment: 
Engenio’s Transition to Software Product Line Practice 
William A. Hetrick 

Engenio Storage Group - LSI Logic 
3718 N. Rock Road 

Wichita, KS 67226 USA 
+1-316-636-8433 

bill.hetrick@engenio.com 

Charles W. Krueger 
BigLever Software 

10500 Laurel Hill Cove 
Austin, TX  78730  USA 

+1-512-426-2227 
ckrueger@biglever.com 

Joseph G. Moore 
Engenio Storage Group - LSI Logic 

3718 N. Rock Road 
Wichita, KS 67226 USA 

+1-316-636-8501 
joe.moore@engenio.com 

 
 

Abstract 
Engenio made the transition to software product line practice in 
order to keep pace with growing business demand for its products. 
By using an incremental transition strategy, Engenio avoided the 
typical upfront adoption barrier – the equivalent development 
effort of 2 to 3 standalone products – which in their case was 
projected to be 900 to 1350 developer-months. Engenio 
discovered that by making an upfront investment of only 4 
developer-months, they were able to start a chain reaction in 
which the tactical and strategic incremental returns quickly 
outpaced the incremental investments, making the transition pay 
for itself.   

Categories and Subject Descriptors   D.2.13 [Software 
Engineering]: Reusable Software – domain engineering, reusable 
libraries, and reuse models. 
General Terms  Design, Economics, Management, Measurement, 
Theory. 
Keywords  Software Product Lines, Transition to Software 
Product Line Practice. Incremental Methods. 

1. Introduction 
Engenio faced a daunting challenge. The business demand for its 
RAID storage server products was rapidly out pacing their ability 
to create, evolve and maintain the firmware for those products[1]. 
Software product line practice, which was just coming into view 
at the time, seemed to be the answer. But there was an apparent 
barrier. Prevalent in the software product line literature at the time 
was the assumption that it requires an upfront investment of 2 to 3 
products worth of development effort in order to see return on 
those investments[2,3]. Based on metrics from two recent 
deployments, Engenio’s projected upfront investment was 900 to 
1350 developer-months of effort, with a development staff of 100. 
There was absolutely no slack in Engenio’s contractually-dictated 
production schedules to divert this amount of upfront effort to re-
analyze and re-architect controllers, re-engineer and 
componentize assets, redesign production infrastructure, re-define 
processes, and re-organize management and development teams. 
Rather than attempt to surmount this formidable upfront adoption 
barrier, Engenio chose instead to make an incremental transition 

into product line practice. Not incremental in the sense of 
prolonging the time to make the large upfront investments and 
similarly prolonging the time to see returns. But rather, 
incremental in the sense of making a series of small investments, 
each of which would immediately yield the order-of-magnitude 
returns that are characteristic of software product line practice. 

Engenio discovered that with a relatively small upfront 
investment of 4 developer-months for its first incremental 
investment, the cumulative returns began to quickly outpace the 
cumulative investments in terms of time, effort and money. As a 
result, the return on investment was almost immediate and the 
resulting “profits” in time, effort and money from the return on 
investment could be used to fuel the remaining incremental 
transition. 

There are, of course, many different facets within a software 
development organization to consider when making an 
incremental transition to software product lines. For example, 
Clements and Northrop characterize 29 key practice areas that 
may be impacted by a software product line approach[2]. Any or 
all of these might be considered in an incremental transition. 
Engenio chose to incrementally address, in sequence, those facets 
that represented the primary inefficiencies and bottlenecks in their 
development organization. By eliminating the inefficiencies and 
bottlenecks in the most critical facet, the next most critical 
product line problem in the sequence was exposed and targeted 
for the next increment. 

To date, the sequence of incremental steps in the Engenio 
transition to software product line practice can be characterized 
by the following four primary stages: 

• Transition the infrastructure from conventional configuration 
management and builds to first class software product line 
variation management, configuration management and 
automated production 

• Transition from team organization by products to team 
organization by core assets 

• Transition from development processes defined by product 
releases to development process defined by feature releases 

• Transition from validation and quality assurance for individual 
products to validation and quality assurance for all of the 
software product line assets 

As of the writing of this paper, Engenio is in the fourth 
incremental stage. 

 

Copyright is held by the author/owner(s). 
OOPSLA’06   October 22–26, 2006, Portland, Oregon, USA. 
ACM 1-59593-491-X/06/0010. 

798



 

 

2. Background 
In today's customer-driven environment, most companies target 
the needs of their prospective customers by creating a product line 
– a portfolio of closely related products with variations in features 
and functions – rather than just a single product. For companies 
that utilize standalone or embedded software in their products, 
this poses a serious problem. Tools and techniques for software 
development tend to focus on individual products. As a result, 
developing software for a product line is extremely complex due 
to multiple intertwined products, features and production 
deadlines – all aimed at moving target markets. These tactical 
software development challenges are big enough to impede the 
realization of business-critical goals and strategies. More 
specifically, they can greatly hinder a company’s ability to hit 
market windows, provide competitive pricing, maximize product 
quality, and expand the scale or scope of their product line 
portfolio. 

A new class of software development methods, tools and 
techniques – collectively referred to as software product line 
development – is emerging to address this problem, offering 
improvements in development time-to-market, cost, quality, and 
portfolio scale and scope[4]. What is most interesting is the 
magnitude of tactical and strategic improvements that are 
possible, not measured in percentage points, but more commonly 
in factors of two to ten. These improvements are so large that they 
impact the fundamentals of how companies compete[2]. 

Manufacturers have long used analogous engineering techniques 
to create a product line of similar products using a common 
factory that assembles and configures parts designed to be reused 
across the varying products in the product line. For example, 
automotive manufacturers can now create tens of thousands of 
unique variations of one car model using a single pool of carefully 
architected parts and one factory specifically designed to 
configure and assemble those parts. 

The idea of manufacturing software from reusable parts has been 
around for decades, but success has been elusive. Recent 
advances in the software product line field have demonstrated that 
narrow and strategic application of these concepts can yield order 
of magnitude improvements in time-to-market, quality, portfolio 
scalability and software engineering cost. The result is often a 
discontinuous jump in competitive business advantage, similar to 
that seen when manufacturers adopt mass production and mass 
customization paradigms. 

The characteristic that distinguishes software product lines from 
previous efforts is predictive versus opportunistic software reuse. 
Rather than put general software components into a library in 
hopes that opportunities for reuse will arise, software product 
lines only call for software artifacts to be created when reuse is 
predicted in one or more products in a well defined product 
line[4]. 

Conventional methods of portfolio development typically include 
ad hoc combinations of code-level techniques such as: 

• configuration management branching or clone-and-own, 
which often lead to wasteful duplication and divergence of 
effort 

• #ifdefs, templates, file naming conventions or runtime 
conditionals with configuration files, which often lead to 
unmanageable complexity 

In contrast, software product line development tools, methods and 
techniques give first-class engineering status to the issues of 
portfolio development, providing constructs that allow 
development organizations to take advantage of the similarities 
among the products, to effectively manage the variations among 
the products. For example, see [5] for specific tools and methods 
utilized by Engenio in this case study. 

• Feature modeling language, used by software architects to 
model the features that cause variation among the products in 
a portfolio and to model the feature profile for each of the 
products in the portfolio. 

• Variation points, used by developers to encapsulate 
implementation-level differences among the products in the 
portfolio and the logic about how to instantiate a variation 
point based on the feature profile for a product.  Variation 
points, which are use in software assets such as requirements, 
source code, test cases and documentation, enable a single 
software asset with variation points to be used for all products 
in a portfolio.  This consolidation is what allows the portfolio 
to be developed as though it were a single system. 

• Configurator, used by engineers doing a product build, takes a 
feature profile for a product and instantiates that product by 
composing assets and by instantiating variation points within 
those assets.  The configurator enables continuous builds for 
the entire portfolio (analogous to continuous builds of 
individual products in agile methods), where any developer 
can automatically compose and configure all of the assets 
(requirements, source code, test cases, documentation) for any 
product at any time, based on the current state of the assets 
under development. For example, a developer’s change to 
source code and test cases can immediately and automatically 
be built and tested in all products in the portfolio. 

Software product line development approaches provide a shift in 
perspective, so that development organization can engineer their 
entire portfolio as though it were a single system rather than a 
multitude of products. 

3. Initial State of Engenio’s Development Practice 
Engenio is in the business of providing feature-rich, high-
performance, storage servers to major OEM vendors such as IBM, 
SGI, Cray, StorageTek and Teradata. Each OEM customer wants 
to take advantage of Engenio’s core competence in storage 
technology, but each one also wants unique and differentiated 
solutions. Thus, the need for efficient product line engineering is 
central to its business model. Furthermore, Engenio has recently 
completed the process of becoming a standalone division within 
its parent company, LSI Logic Corporation (Engenio was 
formerly known as LSI Logic Storage Systems), so the ability to 
extend its product line to attract and retain a growing customer 
base is key for establishing investor value. 

Engenio’s Controller Firmware Development group is the focal 
point for the evolution to a software product line. In recent years, 
this group has grown include to 180 developers, working at four 
distinct geographic sites. The group currently provides firmware 
for 82 products, with about one million lines of embedded 

799



 

 

software going into each product. Approximately 80% of the code 
is common among all products. 

In the late 1990s, the Engenio Controller Firmware Development 
staff lived in far simpler world. The firmware was constructed as 
a single software build, applicable to all deployments. Any 
required product variability was resolved at runtime, using 
downloadable configuration data stored in non-volatile memory. 
Evolution of the firmware over time was managed using the 
concept of formal releases. These releases were managed in a 
disciplined manner, with a formal waterfall process guiding the 
way. Each release would transition through the stages of analysis, 
design, implementation and test. Once a release was complete and 
products were shipping to customers, work on the next release 
could begin. In retrospect, it is apparent that it was the sequential 
nature of the release cycle that kept the firmware development 
world simple and sane. 

Market pressures eventually emerged that greatly disrupted the 
simple, sequential release-based perspective that had guided the 
firmware team through the nineties. The 21st century brought 
increased success in the marketplace, but this success was 
accompanied by a furor of development demands that could not 
be accommodated by sequential development cycles. The tranquil 
world of sequential releases was replaced with the nonstop chaos 
of a half dozen intertwined and overlapping release cycles. 

In the midst of the market-driven turbulence, the need for change 
within the engineering group at Engenio was not readily apparent. 
Instead, the evolution from a single product to a product line 
stealthily crept into Engenio’s product development world. The 
initial portent of change was the introduction of a new, low-end, 
hardware platform. While the feature content of the low-end 
product was to be the same and the bulk of the firmware code was 
to be shared between the new low-end and existing mid-range 
products, there were substantial differences between the two 
hardware platforms. The introduction of a second, substantially 
independent, development environment to support the new 
platform was the initial solution for managing this variability. 
Although this move solved the immediate problem of supporting 
the variation among the old and new products, it proved to be a 
less than ideal way to manage the commonality. 

During the evolution from one to multiple products, the primary 
tool utilized by Engenio’s firmware group was a proven, well-
integrated, configuration and problem tracking system. This 
system did an excellent job in the role for which it was intended, 
but it created the tendency for product variability problems to be 
treated as configuration management problems. For example, 
variability to satisfy differing platform requirements was managed 
by branched versions of the same source files. Similar branching 
was introduced to support the concurrent development of diverse 
features. The end result of the evolution from a single product to a 
diversity of hardware platforms and firmware features was 
success in the marketplace, but chaos within the code base. 
Eventually, approximately 34% of the 3300 files in the Engenio 
source code base had anywhere from 2 to 16 active branches 
under development. The resultant branching, merging, duplication 
and divergence became the dominant effort in the firmware 
development team, leading to the realization that a change in 
development practice was imperative. 

4. Decision to Transition to Software Product 
Line Approach 

The negative impact of the rapidly increasing file branches 
became evident from two complimentary viewpoints, one from 
the architects and one from the managers. First, an architect began 
to observe code quality degeneration due to excessive file 
branching. As new features were implemented, there was a 
statistical likelihood that 34% of the impacted files would have 
branches (recall that 34% of the files in the code base were 
branched). The feature implementation on a branched file had to 
be duplicated on each branch of that file, which was labor 
intensive and highly error prone since each branch of a file might 
be slightly different in subtle ways.  

Second, from the managers’ viewpoint, defect resolutions were 
also becoming increasingly expensive, since defects resulted in a 
large percentage of development capacity spent on analysis, 
correction, and validation on multiple file branches. The change 
management tool in use modeled this duplication of defect 
resolution tasks as clone requests. The development management 
team then used this data to track clone metrics – the ratio of clone 
requests versus the total number of change requests. The 
management team considered clone work a waste item in the 
development capacity because the duplication of effort prevents a 
developer from working on new revenue-generating features. 

Clone metrics were increasing over time, mirroring the code 
quality issue observed by the architect. The root cause was 
attributed to the file branching, which was a result of the growing 
number products under concurrent development, which in turn 
was a direct result of Engenio’s success in their OEM business. 

To the architects and managers faced with this growing problem, 
software product lines intuitively resonated as a viable solution, 
though no one on the team had direct experience with this 
emerging field of practice. Before launching into a full-scale 
change initiative, they decided to expand their understanding of 
basic product family development principles with consulting and 
an assessment by an outside organization specializing in software 
product line development tools and practices, BigLever 
Software[5]. 

During the assessment, a pilot project plan emerged based on a 
vision of the development and production environment after a 
full-scale transition. The development and production 
environment would be based a unified set of core assets, residing 
on the single common trunk in configuration management – no 
more branches. The software product line development tool, 
BigLever Software Gears[5], would be used to manage variation 
at the source configuration binding time. Product instantiation, or 
production, would be fully automated, driven from decisions in 
the Gears feature model and extracted from the core assets. All of 
the common and varying source code would exist as core assets 
with variation points under Gears, so no manual application 
engineering would be required. 

Over the next few months, the pilot project plan was refined. Two 
products were selected to become the initial baseline for core 
assets in the product line. The pilot was designed to be an initial 
transition step in a deployment, if proven successful.  

The pilot project was budgeted as a six-week effort, beginning on 
May 17, 2004. After consolidating the two product code sets with 

800



 

 

the Gears feature model and variation points, the methods and 
results of the prototype production line were shared with all of the 
development managers, architects, and their superiors on June 8, 
2004 – three weeks ahead of schedule. With considerable 
discussion and analysis, projecting business requirements and 
scenarios in the development organization, the group concurred 
that the product line environment would eliminate the branching 
and clone problem, enabling the development staff better satisfy 
Engenio’s business and engineering requirements. Development 
management agreed to the final deployment plan on June 17, 
2004, one month after the beginning of the pilot. After hardening 
the pilot prototype and documenting the new configuration 
management and production procedures, the new software 
product line development environment was put into daily 
production use by the development staff on July 30, 2004. The 
entire effort to get to this point was 4 developer-months. 

5. Engenio’s Transition 
Engenio structured its transition to software product line practice 
into four sequential and incremental stages. Each of these four 
stages had nested incremental substructure. The objective was to 
make small incremental investments in product line practice – 
small enough not to disrupt ongoing production schedules – in an 
effort to immediately reap larger incremental returns on those 
incremental investments. 

The four stages were ordered sequentially to address, in order, the 
most prominent inefficiencies and bottlenecks first. 

• Transition the infrastructure and core assets 
• Transition the team organization 
• Transition the development processes 
• Transition the validation and quality assurance 

 

5.1 Transition of the Infrastructure and Source 
Code Assets 

The most critical issue identified to address first was the growing 
problem of file branching degrading quality and productivity. To 
accomplish this, the development infrastructure was enhanced to 
support a single consolidated collection of core assets rather than 
highly branched files in configuration management. The subtasks 
within this stage were to: 

• validate the approach with a pilot project  
• create the software product line development and production 

infrastructure 
• incrementally extract a core asset base from existing source 

code branches 
• incrementally transition development teams away from branch 

and clone methods to core asset development using the new 
infrastructure 

• incrementally refactor the core assets to maximize 
commonality and to optimize abstraction in variation points 

When the transition started, eight product releases were 
concurrently in various stages of active development. The pilot 
project consolidated the branched source code for two of these 
products, resulting in the initial core asset base. To minimized the 
potential disruption of the critical product releases under 
development, the pilot and initial deployment strategically 
targeted two products that were early in their release cycle. 

The initial code base for the two products was comprised of 3300 
files, 1000 of which had anywhere from 2 to 16 branches, 
organized into 212 directories. The core asset base after 
consolidation was comprised of 3103 common files, 51 Gears 
variation point files, 211 common directories, 1 Gears variation 
point directory, and 0 branches. 

The transition plan dictated that the remaining product releases 
currently in flight would be completed using existing 
branch/merge/clone methods. All subsequent product and feature 
releases were to deploy from the core assets of the product line. 
As illustrated in Figure 1, over the subsequent 9 months, 
developers rolled off of projects developed under the legacy 
methods, while the core assets and production line evolved to 
initially deploy 23 products. 

Early in this stage of the transition, the Gears variation points 
were unceremoniously extracted from the existing branched code 
base with no attempt to re-architect or re-engineer the core assets 
other than to encapsulate, characterize, and program variation 
points based on a simple Gears feature model. This allowed, for 
example, all 51 variation points to be extracted from the 3300 
files, 1000 of which were branched, in less than 3 days during the 
pilot. However, over time, the variation points were incrementally 
revisited in order find opportunities for greater commonality and 
to find better product line abstractions. 

 

Figure 1. Incremental Transition of People and Products 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Aug-
04

Sep-
04

Oct-
04

Nov-
04

Dec-
04

Jan-
05

Feb-
05

Mar-
05

Apr-
05

May-
05

%
 d

e
v
e
lo

p
e
rs

 i
n

v
o

lv
e
d

 i
n

 S
P

L

0

5

10

15

20

25

Aug-
04

Sep-
04

Oct-
04

Nov-
04

Dec-
04

Jan-
05

Feb-
05

Mar-
05

Apr-
05

May-
05

#
 o

f 
p

ro
d

u
ct

s 
b

u
il
t 

fr
o

m
 p

ro
d

u
ct

 l
in

e

801



 

 

The incremental investment during the first stage of the transition 
was to establish a new software product line development and 
production infrastructure, create a baseline of core assets from the 
existing branched source base, and train developers on the new 
Gears-based product line development environment and 
methodology. The initial investment to conduct the pilot project 
and then to go into live product line development and production 
with those 2 products was 4 developer-months.  Subsequent 
transition of the remaining 21 products and product teams 
required less than one half developer-month per product. 

The incremental return on investment originated from improved 
efficiencies at the tactical developer level. Developers spent less 
time manipulating the configuration management tool, navigating 
and making cloned modifications on intricate file-by-file branch 
structures. As a result they could spend more time developing 
new features. 

The dramatic reduction in branch complexity is illustrated in 
Figure 2 using a file branch factor metric, defined as the number 
of file branches normalized by the number of products. Note from 
the graph that branches have been eliminated in the product line 
core asset base. 

 
Figure 2.  File Branch Factor During the Transition 

Our historical metrics demonstrated a strong correlation between 
the number of branched files and the number of duplicate defect 
resolutions required. As a result, the reduction in file branches led 
to a derivative return on investment – the elimination of clone 
defect resolutions. 

Finally, at a strategic level, Engenio quickly gained increased 
confidence in their software product line development capabilities 
and, as a result, their ability to respond to  more aggressively to  
expanding business opportunities. As is typical with software 
product line transitions, the strategic returns on investment 
overshadow the tactical returns. 

5.2 Transition of the Organization 
The new software product line development environment and 
transition to core assets facilitated the development of concurrent 
product releases and also helped with the deployment and 
validation of new features across multiple hardware platforms. 
However, after the first stage of the transition, most of the 
development focus still remained product release centric. The 
second stage in the incremental transition was to start a shift in 
development focus to core assets by restructuring the 
development organization. Developers on product release teams 

incrementally transitioned to a set of teams defined by collections 
of core asset components. The collections of core assets were 
grouped by affinities and service layers in the firmware 
architecture. 

Each team in the new organizational structure has a core asset 
manager and a technical team leader. The core asset manager is 
responsible for making sure that their core assets provide the right 
capabilities at the right time on the product release roadmap. The 
core asset technical team lead is responsible for implementing 
their core assets according to the architectural and feature 
requirements on the product roadmap. Core asset managers and 
team leads also have an internal focus with their team on core 
asset stewardship, or maintaining and optimizing the integrity of 
their core assets. Core asset stewardship includes tasks such as 
refactoring to optimize commonality and variability, maintaining 
an appropriate balance for the requirements tradeoffs across the 
entire product line, and searching for emerging abstractions in the 
variation points[6]. 

Asset team staffing was determined by existing and planned 
domain expertise needs of the clustered components and the asset 
evolution requirements for new features. This was a difficult 
transition culturally as developers, who were accustomed to 
working on any file in the code base, were now expected to 
request changes from the domain experts of other asset teams. 

The investment for this increment was the planning to define the 
asset teams and training to educate team members, team leaders, 
and development managers in the roles and responsibilities of the 
asset team roles.  

The return on that investment was better planning and a more 
controlled and efficient asset evolution. This has resulted in better 
designs and improved defect resolutions due to improved 
visibility into the product family and core asset requirements. 
Technical experts are making better generalized technical 
decisions for the assets they own, based on a deeper knowledge of 
those components.  Having teams with ownership and deep 
expertise in a narrow collection of core assets ultimately reduced 
the rework in both designs and defect resolutions. 

Although it has not been formally characterized yet, there is clear 
evidence that the feature development capacity within the 
organization has been increased by at least 50%. Rather than 
scrambling to reallocate overextending developers to meet 
production schedules, managers now have the luxury of choosing 
where to allocate this newly gained development capacity. 

5.3 Transition of the Development Processes 
One of the difficulties in transitioning the development team 
focus to an asset focus was that Engenio’s development process 
was release centric. The third stage in the transition was to align 
the development process with product family development. The 
process needed to include a mapping step from feature and release 
requirements to asset requirements. It needed to increase 
communication effectiveness of product family requirements at 
the asset evolution level. The process needed to allow for an asset 
assembly and feature or product validation function through the 
development cycle. Engenio’s process needs extended beyond 
compatibility with software product line practices by increasing 
the ability to respond to changing customer requirements as well 

0%

5%

10%

15%

20%

25%

30%

35%

40%

1Q
20
02

2Q
20
02

3Q
20
02

4Q
20
02

1Q
20
03

2Q
20
03

3Q
20
03

4Q
20
03

1Q
20
04

2Q
20
04

3Q
20
04

4Q
20
04

1Q
20
05

2Q
20
05

A
v
e
ra

g
e
 %

 b
ra

n
ch

e
d

 f
il
e
s 

p
e
r 

p
ro

d
u

ct

802



 

 

as addressing the growing geographic distribution of the 
development staff.  

Engenio made a significant investment to address its process 
needs by assembling a task force comprised of its Software 
Engineering Process Group (SEPG) along with management 
representation from other development and quality assurance 
roles. The task force held a face-to-face process summit with a 
clearly defined purpose of creating a software development 
process that addressed the needs of the company.  

Amazingly enough, the group reached consensus at the summit on 
a process structure. The process definition was refined and 
incrementally put into practice. This stage of the transition 
completed the shift of asset team focus to product family 
development, further reducing the development overhead by 
satisfying multiple component requirements with coordinated 
development efforts and leveraging the domain expertise of asset 
team developers. 

5.4 Transition of the Validation And Quality 
Assurance 

The fourth incremental transition stage, currently in the 
deployment phase, is feature validation and quality assurance. 
This stage is improving the product engineering capability of the 
organization by completing all feature requirements validation 
iteratively as part of the development work, and shifting the 
responsibility of the product certification group to the 
interoperability matrix of Engenio’s controller platforms, server 
systems, operating systems, network adapters, and network 
switches. This transition is another significant investment, 
affecting multiple cross functional groups and processes. The 
expected return from this investment is to move beyond efficiency 
improvements in development capacity to efficiency 
improvements in product production and release. For example, 
there are significant opportunities to reduce the time to complete 
final product validation, thereby further reducing the time-to-
market for new products and new features. 

5.5 Future Transition Work 
The ultimate objective is to do software product line development 
at an optimal level of effectiveness and efficiency. After the four 
major transition stages are complete, we expect to continually 
evolve and search out areas of waste and overhead, though we 
expect these to be smaller and more focused optimizations rather 
than major transition efforts. 

6. Conclusions and Lessons Learned 
Engenio’s transition to software product line practice 
demonstrated that a large development organization with a large 
legacy code base can make the transition to software product line 
practice without a large upfront investment and without disrupting 
ongoing production schedules. By investing only 4 developer-
months of effort upfront and 12 developer-months overall, 
Engenio incrementally transitioned 23 products – each comprising 
1 million lines of code – and 135 developers to a sophisticated 
software product line practice. This is two orders of magnitude 
less than comparable transitions reported elsewhere. 

By staging an incremental transition, small incremental 
investments very quickly yielded much larger incremental 
returns. These returns – in effort, time and money – could then be 

partially or fully reinvested to fuel the next incremental steps in 
the transition. Furthermore, the efficiency and effectiveness of the 
development organization constantly improved throughout the 
transition, demonstrating that development organizations do not 
need to take a hit in order to reap the benefits of software product 
line practice. 

Stated a little more strongly, the Engenio transition refutes the 
conventional wisdom that it takes an upfront transition effort 
equivalent to developing 2 or 3 standalone products in order to 
achieve return on investment. Engenio achieved return on 
investment after an incremental investment of only 4 developer-
months of effort. In contrast, the conventional wisdom of 2 or 3 
products predicted the return on investment for Engenio to be 900 
to 1350 developer-months, or 200 to 300 times greater than that 
actually experienced. 

The incremental transition approach provided the same strategic 
benefits as experienced by waterfall transitions. Following the 
initial transition of the infrastructure, organization and processes, 
the strategic benefits quickly materialized. Over the next 5 
months, the size of the product line portfolio grew 225% – from 
23 products to 52 products – expanding at an average rate of a 
new product every 4 days. At the time of this writing, the product 
line comprises 82 products. 

A big part of this success, we believe, is that Engenio made an 
explicit decision to transition to software product line practice 
utilizing the emerging knowledge, technology and best practices 
coming out of the software product line field. The data and 
experiences at Engenio are consistent with others that have 
utilized these emerging approaches[7,8]. 

Another of the lessons learned from this experience is that the 
transition in product line practice areas such as infrastructure, 
core assets, organizational structure, development processes, and 
QA practices do not have to occur in parallel. Engenio 
incrementally addressed these in sequential order, choosing to 
solve the problems with the largest potential return on investment 
first. With the sequential approach, after the transition in one area 
was complete, the need for transition in the next was more clearly 
illuminated. For example, after creating the production 
infrastructure and formal core assets, it was easier to argue why 
teams should be organized around core assets and limited to 
modifying their core assets rather than be organized around 
products and free to modify any source file. 

The “people issues” are always the most difficult when imparting 
change in an organization[9]. A final lesson learned that we found 
to be particularly important was that the incremental transition 
made one aspect of the people issues easier than expected. By 
quickly and continually showing benefit, it is much easier to quell 
the detractors. In fact, we found that the biggest skeptics and 
detractors quickly became the strongest advocates, once they 
experienced the benefits of software product line practice. By 
quickly and incrementally showing return on investment, 
detractors have less time and opportunity to derail the initiative. 

7. References 
[1] Engenio Information Technologies, Inc., Milpitas, CA. 

http://www.engenio.com 

803



 

 

[2] Paul Clements and Linda Northrop. 2001.  Software Product 
Lines: Practice and Patterns, AddisonWesley, Reading, MA.  

[3] Davis Weiss and Chi Tau Robert Lai. 1999.  Software 
Product-line Engineering. Addison-Wesley, Reading,  MA. 

[4] SoftwareProductLines.com, see Resources section, 
http://www.SoftwareProductLines.com 

[5] BigLever Software, Inc. Austin, TX. 
http://www.biglever.com 

[6] Charles Krueger and Dale Churchett. Eliciting Abstractions 
from a Software Product Line, in Proceedings of the 
OOPSLA 2002 PLEES International Workshop on Product 
Line Engineering. Seattle, Washington. November 2002, 
pages 43-48 

[7] Ross Buhrdorf, Dale Churchett, Charles Krueger. Salion’s 
Experience with a Reactive Software Product Line 
Approach. Proceeding of the 5th  International Workshop on 
Product Family Engineering. Nov 2003. Siena, Italy.  
Springer-Verlag LNCS 3014, p 315. 

[8] Charles Krueger. Variation Management for Software 
Product Lines, Proceeding of the Software Product Lines 2nd 
International  Conference, SPLC 2, San Diego, CA, Aug 
2002, Springer-Verlag LNCS 2379, p 257. 

[9] John Kotter. 2002. The Heart of Change, Harvard Business 
School Press. Cambridge, MA. 

 
 

804


