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Abstract

Pure functional programming languages have been proposed
as a vehicle to describe, simulate and manipulate circuit
specifications. We propose an extension to Haskell to solve
a standard problem when manipulating data types repre-
senting circuits in a lazy functional language. The problem
is that circuits are finite graphs — but viewing them as an al-
gebraic (lazy) datatype makes them indistinguishable from
potentially infinite regular trees. However, implementations
of Haskell do indeed represent cyclic structures by graphs.
The problem is that the sharing of nodes that creates such
cycles is not observable by any function which traverses such
a structure. In this paper we propose an extension to call-
by-need languages which makes graph sharing observable.
The extension is based on non updatable reference cells and
an equality test (sharing detection) on this type. We show
that this simple and practical extension has well-behaved
semantic properties, which means that many typical source-
to-source program transformations, such as might be per-
formed by a compiler, are still valid in the presence of this
extension.

1 Introduction

In this paper we investigate a particular problem of embed-
ding a hardware description language in a lazy functional
language — in this case Haskell. The “embedded language”
approach to domain-specific languages typically involves the
designing a set of combinators (higher-order reusable pro-
grams) for an application area, and by constructing individ-
ual applications by combining and coordinating individual
combinators. There are a number of advantages in develop-
ing an embedded language rather than building a language
from scratch. One advantage is that the embedded language
can inherit desirable language properties and tools that the
host language already provides. Examples of these which
are relevant here are a strong type system, expressive syn-
tax, higher order functions, compilers and interpreters. Fur-
ther, if the host language enjoys a formal semantics and rich
reasoning principles, then these can also be inherited by the
the embedded language to formally reason about the embed-
ded program. See [Hud96] for examples of domain-specific
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languages embedded in Haskell.

In the case of hardware design the objects constructed are
descriptions of circuits; by providing different interpreta-
tions of these objects one can, for example, simulate, test,
model-check or compile circuits to a lower-level description.
For this application (and other embedded description lan-
guages) we motivate an extension to Haskell with a feature
which we call observable sharing, that allows us to detect
and manipulate cycles in data-structures — a particularly
useful feature when describing circuits containing feedback.
Observable sharing is added to the language by providing
immutable reference cells, together with a reference equal-
ity test. In the first part of the paper we present the problem
and motivate the addition of observable sharing.

A problem with observable sharing that it is not a conser-
vative extension of a pure functional language. It is a “side
effect” — albeit in a limited form — for which the semantic
implications are not immediately apparent. This means that
the addition of such a feature risks the loss of many of the
desirable semantic features of the host language. O’Donnell
[O’D93] considered a form of observable sharing (Lisp-style
pointer equality eq) in precisely the same context (i.e., the
manipulation of hardware descriptions) and dismissed the
idea thus:

“ This (pointer equality predicate) is a hack that
breaks referential transparency, destroying much
of the advantages of using a functional language
in the first place.”

But how much is actually “destroyed” by this construct?
In the second part of this paper we show — for our more
constrained version of pointer equality — that in practice
almost nothing is lost.

We formally define the semantics of the language extensions
and investigate their semantic implications. The semantics
is an extension to a call-by-need abstract machine which
faithfully reflects the amount of sharing in typical Haskell
implementations.

Not all the laws of pure functional programming are sound
in this extension. The classic law of beta-reduction for lazy
functional programs, which we could represent as:

let {x = M} in N=N[M/] (z¢ M)

does mot hold in the theory. However, since this law
could duplicate an arbitrary amount of computation (via



the duplication of the sub-expression M, it has been pro-
posed that this law is not appropriate for a language like
Haskell [AFM195], and that more restrictive laws should be
adopted. Indeed most Haskell compilers (and most Haskell
programmers?) do not apply such arbitrary transformations
— for efficiency reasons they are careful not to change the
amount of sharing (the internal graph structure) in pro-
grams. This is because all Haskell implemetations use a
call-by-need parameter passing mechanism, whereby the ar-
gument to a function in a given call is evaluated at most
once.

We develop the theory of operational equivalence for our lan-
guage, and demonstrate that the extended language has a
rich equational theory, containing, for example, all the laws
of Ariola et al’s call-by-need lambda calculus [AFMT95]. We
also show that the semantics satisfies evaluation-order inde-
pendence properties meaning that compiler optimisations
such as strictness analysis will not change the semantics of
programs.

The ideas in this paper are not only relevant to manipulating
circuit descriptions. They appear useful for programming
with other embedded description languages in Haskell. In
the conclusion of the paper we mention two other possible
applications.

2 Functional Hardware Description

We will deal with the description of synchronous hardware
circuits in which the behaviour of a circuit and also its com-
ponents can be modelled as functions from streams of inputs
to streams of outputs.

The description is realised using an embedded language in
the pure functional language Haskell. There are good mo-
tivations in literature for being able to use higher-order
functions, polymorphism and laziness to describe hardware
[She85, O’D96, CLM98, BCSS98]. In this paper however,
we are concerned with some specific details related to the
realisation of such an embedded language.

2.1 Describing Circuits

Viewing circuits as functions provides us with a way of em-
bedding them in a functional language: as functions from
in signals to out signals. This approach was taken as early
as in the days of uFP [She85], and later modernised in sys-
tems like Hydra [O’D96] and Hawk [CLM98]. The following
introduction to functional circuit description owes much to
the description in [O’D93].

Here are some examples of primitive circuit components
modelled as functions. We assume the existence of a
datatype Signal, which represents an input, output or in-
ternal wire in a circuit.

inv :: Signal -> Signal
latch :: Signal -> Signal
and :: Signal -> Signal -> Signal
xor :: Signal -> Signal -> Signal

We can put these components together in the normal way
we compose functions; by abstraction, application, and local
naming. Here is an example of a circuit consisting of an

and-gate and an xor-gate. It takes in two inputs and has
two outputs.

halfAdd :: Signal -> Signal -> (Signal, Signal)
halfAdd a b = (xor a b, and a b)

Here is an example of a more complicated circuit. We use
local naming of results of subcomponents using a let ex-
pression.

fullAdd :: Signal -> Signal -> Signal
-> (Signal, Signal)
fullAdd a b ¢ =
let (s1, c1) halfAdd a b
(s2, c2) = halfAdd si1 c
in (s2, xor cl c2)

Here is a third example of a circuit. It consists of an inverter
and a latch, put together with a loop, also called feedback.
The result is a circuit that toggles its output.

toggle :: Signal

toggle =
let output = inv (latch output)
in output

Note how we express the loop; by naming the wire and using
it recursively.

2.2 Simulating Circuits

By interpreting the type Signal as streams of bits, and the
primitive components as functions on these streams, we can
run, or simulate circuit descriptions with concrete input.

Here is a possible instantiation, where we model streams by
Haskell’s lazy lists.

type Signal = [Bool] -- possibly infinite

inv bs = map not bs
latch bs = False : bs
and as bs zipWith (&&) as bs
xor as bs = zipWith (/=) as bs

‘We can simulate a circuit by applying it to inputs. Here are
the results of evaluating some of the circuits we have defined
so far:

> halfAdd [False, True] [True, Truel
[(True, False), (False, True)]

> fullAdd [False, True] [True, True] [True, True]
[(False, True), (True, True)]

> toggle
[True, False, True, False, True,

As parameters we provide lists or streams of inputs and
as result we get a stream of outputs. Note that the toggle
circuit does not take any parameter and results in an infinite
stream of outputs. The ability to both specify and execute
(and perform other operations) hardware as a functional
program is a claimed strength of the approach.



2.3 Generating Netlists

Suppose we have described a circuit component-wise in this
way, and perhaps tested its behaviour. Now we want to
realize the circuit — for example for implementation on an
FPGA. Or perhaps we want to use a theorem prover or
model checker to prove properties about the description. In
all of these cases, we want to know what components the
circuit are, and how they are connected. Such a description
is usually called a netlist. We can reach this goal by symbolic
evaluation. This means that we supply variables as inputs
to a circuit rather than concrete values, and construct an
expression representing the circuit.

In order to do this, we have to reinterpret the Signal type
and its operations. A first try might be along the following
lines. A signal is either a variable name (a wire), or the
result of a component which has been supplied with its input
signals.

data Signal
= Var String
| Comp String [Signall

inv b = Comp "inv" [b]
latch b = Comp "latch" [b]
and a b = Comp "and" [a, bl
xor a b = Comp "xor" [a, b]

Now, we can for example symbolically evaluate a half adder:

> halfAdd (Var "a") (Var "b")
(Comp "xor" [Var "a", Var "b"],
Comp "and" [Var "a", Var "b"1)

And, similarly a full adder. But what happens when we try
to look at the toggle circuit?

> toggle
Comp "inv" [Comp "latch" [Comp "inv" [Comp "latch"

Since the Signal datatype is essentially a tree, and the tog-
gle circuit contains a cycle, the result is an infinite structure.
This is of course not usable as a symbolic description in an
implementation. We get an infinite data structure repre-
senting a finite circuit.

We encounter a similar problem when we provide inputs to
the half adder that are not simple variables, but the result
of another component, for example an xor gate.

> halfAdd (xor (Var "x") (Var "y")) (Var "b")

(Comp "xor" [Comp "xor" [Var "x", Var "y"], Var "b"],
var ||y||] . var llb"])

leorll [var |Ix|| R

Comp "and" [Comp
The desired description here is one xor gate, whose output is
a wire which is used twice in the half adder. Instead, because
our signals are trees, the whole component is copied because
sharing of subtrees cannot be expressed in the datatype. We
have basically hit a wall because we have used trees (alge-
braic data types) to represent circuits, where as physically,
circuits have a richer graph-like structure.

2.4 A Previous solution: Explicit Tagging

One possible solution, proposed by O’Donnell [0’D93], is to
give every use of component a unique tag, explicitly. The
signal datatype is then still a tree, but when we then traverse
that tree, we can keep track of what tags we have already
encountered, and thus avoid cycles and detect sharing.

In order to do this, we have to change the signal datatype
slightly by adding a tag to every use of a component. To
make it easier to decorate every component in the circuit
with a unique tag, an operator (!) is introduced that can
create a new tag using an old tag and an integer.

data Signal = Var String
| Comp Tag String [Signall

type Tag = ...
(1) :: Tag -> Int -> Tag

Here are the definitions of the primitive components.

inv b t Comp t "inv" [b]

latch b t = Comp t "latch" [b]
and a b t = Comp t "and" [a, b]
xor a b t = Comp t "xor" [a, bl

This is how the toggle circuit would look.

toggle ::
toggle t =
let wir = latch out (t!1)
out = inv wir (t!12)
in out

Tag -> Signal

Though presented as “the first real solution to the problem
of generating netlists from executable circuit specifications
[..] in a functional language”, it is awkward to use. A
particular weakness of the abstraction is that it does not

. .enforce that two components with the same tag are actually

identical; there is nothing to stop the programmer from mis-
takenly introducing the same tag on different components.

2.5 Another Solution: the Monadic Approach

If explicit tagging is not the desired solution, why not let
some underlying machinery take care of it? Monads are
a standard approach for such problems (see e.g., [Wad92]).
The monadic approach is taken in Lava [BCSS98]. A monad
M is a data structure that can abstract from an underlying
computation model. A monadic computation resulting in
something of type a has type M a.

A very common monad is the state monad, which threads
a changing piece of state through a computation. We can
use such a state monad to generate fresh tags for the signal
datatype. Here is a simple implementation of the monad.
Readers not familiar with the monadic style of programming
in Haskell may safely skim through to the next section.

type Tag = Int
type M a = Tag -> (a, Tag)

return :: a -> M a
return a = \t -> (a, t)



(>>=) :: Ma->(a->Mb) ->Mb>D
m>>=k =\t ->
let (a, t’°) =m+t in k a t’

There are two basic operations; return inserts a value into
the computation type, and >>=, also called bind, sequences
two computations, where the second can depend on the re-
sult of the first. Introducing a monad implies that the types
of the primitive components and circuit descriptions become
monadic, that is, their result is wrapped up in the monad
type M.

inv  :: Signal -> M Signal

latch :: Signal -> M Signal

and :: Signal -> Signal -> M Signal
xor :: Signal -> Signal -> M Signal
inv b = comp "inv" [b]

latch b = comp "latch" [b]
and a b = comp "and" [a, b]
xor a b = comp "xor" [a, b]

comp name args =
\t -> (Comp t name args, t+1)

A big disadvantage of this approach is not only that we
must change of types, but also that the syntax must change.
We can no longer use normal function abstraction and local
naming anymore, we have to express this using the monadic
bind (>>=). This means that, just as in the previous solu-
tion, we have to change the definitions of the circuits. Here
is what the half adder looks like in monadic style.

halfAdd :: Signal -> Signal -> M (Signal, Signal)
halfAdd a b =

xor a b >>= \sum ->

and a b >>= \carry ->

return (sum, carry)

Another unwanted consequence of not being able to use local
naming, is that we cannot use recursion anymore to express
feedback in circuits. We have to define an explicit monadic
fizpoint combinator to express loops.

loop :: (a ->Ma) >Ma
loop £ = \t -> let (a, t’) = f a t in (a, t’)

The definition of the toggle circuit serves as an example of
how to introduce loops in this style:

toggle :: M Signal

toggle = loop (\out ->
latch out >>= \wir ->
inv wir >>= \out’ ->
return out’

)

All this turns out to be very inconvenient for the program-
mer. Furthermore, the monadic approach forces us to spec-
ify the order in which we create components in a circuit.

This sequentiality is unnatural when specifying the compo-
nents of circuits, which are more naturally thought of as
executing in parallel. !

What we are looking for is a solution that does not require a
change in the natural circuit description style of using local
naming and recursion, but allows us to detect sharing and
loops in a description from within the language.

3 Proposed Solution

The core of the problem is: a description of a circuit is
basically a graph, but we cannot observe the sharing of the
nodes from within the program.

The solution we propose is to make the graph structure of
a program observable, by adding a new language construct.
This can be done in several ways. In the beginning of this
section we explain and motivate the particular constructs
we chose to enrich the language. At the end, we will discuss
and compare our choice with other possible solutions.

3.1 Objects with Identity

The idea is that we want the weakest extension that is still
powerful enough to observe if two given objects have actually
previously been created as one and the same object. The
reason for wanting as weak an extension as possible is that
we want to retain as many semantic properties from the
original language as possible. This is not just for the benefit
of the programmer — it is important because compilers make
use of semantic properties of programs to perform program
transformations, and because we do not want to write our
own compiler to implement this extension.

Since we know in advance what kind of objects we will com-
pare in this way, we choose to be explicit about this at cre-
ation time of the object that we might end up comparing.
In fact, you can view the objects as non-updatable refer-
ences. We can create them, compare them for equality, and
dereference them.

Here is the interface we provide to the references. We give
a formal description of the semantics in section 4.

type Ref a = ...
ref :: a -> Ref a
deref :: Ref a -> a

(<=>) :: Ref a -> Ref a -> Bool

The following two examples show how we can use the new
constructs to detect sharing. In the first example, we create
one reference, and compare it with itself, which yields True.

> let x = undefined in let r = ref xin r <=>r
True

In the second example, we create two different references to
the same variable, and so the comparison yields False.

1 Also, a possible problem that we noticed in practice when mod-
elling larger circuits (e.g. multipliers) is that the linearisation of com-
ponent creation seemed (in our programs) to have a disastrous effect
on run-time memory behaviour of the Haskell program. Although
these space-leaks could probably be fixed within the monadic pro-
gram, it is gratifying to note that these problems evaporated when
we used the solution described in the next section.



> let x = undefined in ref x <=> ref x
False

Thus, we have made a non conservative extension to the lan-
guage; previously it was not possible to distinguish between
a shared expression and two different instances of the same
expression. We call the extension observable sharing.

In appendix A, we will present a possible implementation
of references as presented here, suitable for most Haskell
compilers. The extension makes use of a standard “unsafe”
(side-effecting) operation that is included with most Haskell
implementations, but is not part of the language proper.

3.2 Back to Circuits

How can we use this extension to help us to symbolically
evaluate circuits? Let us take a look at the following two
circuits.

circl =
let output = latch output
in output

circ2 =
let output = latch (latch output)
in output

In Haskell’s denotational semantics, these two circuits would
be identified, since circ2 is just a recursive unfolding of
circ2. But we would like these descriptions to represent
different circuits; circl has one latch and a loop, where
as circ2 has two latches and a loop. If the signal type
includes a reference, we could compare the identities of the
latch components and conclude that in circl all latches are
identical, where as in circ2 we have two different latches.

3.3 A New Signal Type

We can now modify the signal datatype in such a way that
the creation of identities happens transparently to the pro-
grammer. We play a similar trick as with the tagging, but
instead we use references.

data Signal = Var String
| Comp (Ref (String, [Signall))

inv b = comp "inv" [b]
latch b = comp "latch" [b]
and a b = comp "and" [a, b]
xor a b = comp "xor" [a, b]

comp name args = Comp (ref (name, args))

3.4 Subtleties of Sharing

Using the references we gain the ability to express differ-
ent degrees of sharing of subcomponents. The subtlety is
that the programmer must have a clear understanding of
the sharing properties of the semantics. Here are two differ-
ent definitions of the toggle function.

togglel =
let output = inv (latch output) in output

toggle2 () =
let output = inv (latch output) in output

Without references togglel would be indistinguishable from
toggle2 (). But the circuit togglel is a constant circuit.
This means that it will only occur at most once as a com-
ponent; every use of togglel refers to the same wire. Using
toggle2 () (applied to the dummy argument) creates a new
component every time you apply it.

Both views are relevant in circuit descriptions — but the pro-
grammer needs to be aware of such differences. To do this
the programmer must understand the basics of the call-by-
need execution mechanism. In togglel the output is ex-
ecuted (constructed) exactly once, the first time that it is
needed. In the output is constructed once for every applica-
tion of the toggle2 function. Most reasonably experienced
Haskell programmers are already aware of this difference;
with observable sharing it becomes essential knowledge.

3.5 Other Possible Solutions

‘We present two other possible solutions, both are more or
less well known extensions to functional programming lan-
guages.

Pointer Equality. The language is extended with an op-
erator (>=<) a -> a —-> Bool that investigates if two
expressions are pointer equal, that is, they refer to the same
bindings. There are a number of different semantics we can
give to the extension; they involve how much evaluation of
the arguments is done before comparing the pointers.

In our extension, we basically provide pointer equality in a
more controlled way; you can only perform it on references,
not on expressions of any type. This means we can imple-
ment our references using a certain kind of pointer equality:

type Ref a = a
ref a = a
deref a = a

rl <=>1r2 = rl >=< 12

The other way around is not possible however, which shows
that our extension is weaker. This corresponds to our goal,
as explained at the beginning of this section.

Gensym. The language is extended with a new type Sym of
abstract symbols with equality, and an operator that gener-
ates fresh such symbols, gensym.

type Sym = ...
gensym :: (Sym -> a) -> a
(== :: Sym -> Sym -> a

The symbol type and its operators can be implemented as
a reference to the unit type:

type Sym = Ref ()

gensym £ = £ (ref ())
sl == s2 = s1 <=> s2

The other way around is also possible; we implement a ref-
erence as a pair of a symbol and the value that the reference
points to.



type Ref a = (Sym, a)
ref a = gensym (\s —> (s, a))
deref (_, a) = a

(s1, _) <=> (s2, _) = sl == s2

Since the approaches can be implemented in terms of each
other, it is not clear which one is preferable. With the ref-
erence approach however, by get an important law by defi-
nition, which is:

rl <=> r2 = True = deref rl = deref r2

In the gensym approach, this becomes a proof obligation as
part of the implementation.

4 The Semantic Theory

In this section we formally define the operational seman-
tics of observable sharing, and study the induced notion of
operational equivalence.

4.1 Language

For the technical development we work with a de-sugared
core language based on an untyped lambda calculus with
recursive lets, structured data, and case expressions.

The language of terms, A is given by the following gram-
mar:

L M,N:=z|Xe.M|Mzx|cZ
| let {# =M}inN
| caseMof {ci & - N;}
| M
|

ref:z:|derefM|M N

where the term M ; N is strict sequential composition, cor-
responding to Haskell’s ‘seq‘ operator. We include it here
since it is useful for describing the compiler optimisations
which follow strictness analysis. Note that we work with a
restricted syntax in which the arguments in function appli-
cations and the arguments to constructors are always vari-
ables. It is trivial to translate programs into this syntax
by the introduction of let bindings for all non-variable ar-
guments. Such syntactic restrictions are common in com-
pilation schemes. In this particular case we follow its use
in the core language of the Glasgow Haskell compiler, e.g.,
[PJPS96, PJS98], and in [Lau93, Ses97]. Indeed, our lan-
guage is essentially an untyped core of the intermediate lan-
guage of the Glasgow Haskell Compiler, extended with im-
mutable references and equality testing on references.

Throughout, z,y, z etc. will range over variables, and ¢ will
range over constructors. The set of wvalues, Val C A,
ranged over by V and W are the constructor-expressions
cZ and the lambda-expressions Az.M. The constructors
are assumed to include the nullary constructors true and
false. Constructors have a fixed arity, and are assumed to
be saturated. By ¢Z we mean czi - -- x,. We will write

let {# = M} in N as a shorthand for
let {1 = M,... , 2, = Mp}inN

where the & are distinct, the order of bindings is not syn-
tactically significant, and the & are considered bound in N

and the M (i.e., all lets are potentially recursive). Similarly
we write case M of {c¢; & — N;} for

case M of {c1 @1 = Ni| - |cm Tm = N }-
where each Z; is a vector of distinct variables, and the ¢; are

distinct constructors. In addition, we will sometimes write
alts as an abbreviation for case alternatives {¢; Z; - N;}.

The only kind of substitution that we consider is variable
for variable, with o ranging over such substitutions. The
simultaneous substitution of one vector of variables for an-
other will be written M [Y/z], where the & are assumed to be
distinct (but the ¢ need not be).

4.2 The Abstract Machine

The semantics for the standard part of the language pre-
sented in this section is essentially Sestoft’s “mark 1”7 ab-
stract machine for laziness [Ses97]. Transitions in this ma-
chine are defined over configurations consisting of (i) a heap,
containing a set of bindings, (ii) the expression currently be-
ing evaluated, and (iii) a stack, representing the actions that
will be performed on the result of the current expression.

There are a number of possible ways to represent references
in such a machine. One straightforward possibility is to use
a global reference-environment, in which evaluation of the
ref operation creates a fresh reference to its argument. The
representation we present here is essentially equivalent, but
syntactically more economical. Instead of reference environ-
ment, references are represented by a “hidden” constructor
(i.e. a constructor which is not part of Ars), which we de-
note by ref .

Let At = Awr U {refz |z € Var}, and Valeg = ValU
{refx | € Var}.

We write (I', M, S) for the abstract machine configuration
with heap I', expression M € Ay, and stack S. A heap is a
set of bindings from variables to terms of A ; we denote the
empty heap by @, and the addition of a group of bindings
& = M to a heap T by juxtaposition: T{& = M}.

A stack is a list of stack elements. The stack written b : S
will denote the a stack S with b pushed on the top. The
empty stack is denoted by €, and the concatenation of two
stacks S and T by ST (where S is on top of T'). Stack
elements are either:

a variable z, representing the argument to a function,

e an update marker #z, indicating that the result of the
current computation should be bound to the variable
z in the heap,

e a group of case-alternatives, one of which will be chosen
according to the outcome of the current evaluation,

e the second argument of a strict sequence, denoted
(M), or

e a pending reference equality-test of the form (= M),
or (refz =),

e a dereference deref , indicating that the location which
is produced by the current computation should be
dereferenced.



We will refer to the set of variables bound by I' as domT,
and to the set of variables marked for update in a stack S as
dom S. Update markers should be thought of as binding oc-
currences of variables. Since we cannot have more than one
binding occurrence of a variable, a configuration is deemed
well-formed if domT and dom S are disjoint. We write
dom(T", S) for their union. For a configuration (I', M, S)
to be closed, any free variables in I', M, and S must be
contained in dom(T", S).

For sets of variables P and @ we will write P 4 @ to mean
that P and Q are disjoint, i.e., PNQ = (). The free variables
of a term M will be denoted FV (M); for a vector of terms
M, we will write FV (M).

The abstract machine semantics is presented in figure 4.2;
we implicitly restrict the definition to well-formed configu-
rations.

The first group of rules are the standard call-by-need rules.
Rules (Lookup) and (Update) concern evaluation of vari-
ables. To begin evaluation of x, we remove the binding
x = M from the heap and start evaluating M, with z,
marked for update, pushed onto the stack. Rule (Update)
applies when this evaluation is finished, and we may update
the heap with the new binding for z.

Rules (Unwind) and (Subst) concern function application:
rule (Unwind) pushes an argument onto the stack while the
function is being evaluated; once a lambda expression has
been obtained, rule (Subst) retrieves the argument from the
stack and substitutes it into the body of that lambda ex-
pression.

Rules (Case) and (Branch) govern the evaluation of case
expressions. Rule (Case) initiates evaluation of the case ex-
pression, with the case alternatives pushed onto the stack.
Rule (Branch) uses the result of this evaluation to choose
one of the branches of the case, performing substitution of
the constructor’s arguments for the branch’s pattern vari-
ables.

Rule (Letrec) adds a set of bindings to the heap. The side
condition ensures that no inadvertent name capture occurs,
and can always be satisfied by a local a-conversion.

Rules (Seq?) and (Seg2) implement the Haskell-style strict
sequential evaluation, by first evaluating the left argument,
then discarding the result in favour of the right argument.

The second collection of rules concern the observable shar-
ing. Rule (RefEq) first forces the evaluation of the left argu-
ment, and (Ref1) switches evaluation to the right argument;
once both have been evaluated to ref constructors, variable-
equality is used to implement the pointer-equality test.

4.3 Convergence

Two terms will be considered equal if they exhibit the same
behaviours when used in any program context. The be-
haviour that we use as our test of equivalence is simply ter-
mination. Termination behaviour is formalised by a conver-
gence predicate:

Definition 4.1 (Convergence) A closed configuration
(D, M, S) converges, written (', M, S|, if there ez-
its heap A and value V such that

(T, M, S) =" (A, V, €).

We will also write M}, identifying closed M with the initial
configuration (@, M, €).

Closed configurations which do not converge are of four
types: they either (i) reduce indefinitely, or get stuck be-
cause of (ii) a type error, (iii) a case expression with an
incomplete set of alternatives, or (iv) a black-hole (a self-
dependent expression as in let *+ = z in z). All non-
converging closed configurations will be semantically identi-
fied.

4.4 Approximation and Equivalence

To define equivalence we take the standard approach of
defining a contextual preorder which says that M approxi-
mates (is less than) NV in the ordering if whenever a program
containing M terminates, then replacing M by N will not
worsen the termination behaviour. Let C, D range over con-
texts — terms containing zero or more occurrences of a hole,
[] in the place where an arbitrary subterm might occur. Let
C[M] denote the result of filling all the holes in C with the
term M, possibly causing free variables in M to become
bound.

Definition 4.2 (Operational Approximation) We say
that M operationally approximates N, written M T N, if

for all C such that C[M] and C[N] are closed,

CIMly = C[N}J.

We say that M and N are operationally equivalent, written
M = N, when M T N and N C M. Note that equiva-
lence is a non-trivial equivalence relation; In Figures 2 and
3 we present a collection of basic laws of equivalence. As
usual with a “semantic” definition of equivalence, it is not a
recursively enumerable relation.

Remark: The fact that the reference constructor ref is
abstract (not available directly in the language) is crucial to
the variable-inlining properties. For example a (derivable)
law like

let {x =2} in N = N[%/,]

would fail if terms could contain ref. This failure could
be disasterous in some implementations, because in effect
a configuration-level analogy of this law is applied by some
garbage collectors.

4.5 Laws for Reduction Contexts

A reduction contert R is a context in which the hole is the
target of evaluation; in other words, evaluation cannot pro-
ceed until the hole is filled. We use the following simple
grammar for reduction contexts; more complex definitions
are also possible, but are not needed here.

Ru=[]|let {£ =M} in R| Rz | case R of {c; & —» M;}
| RsM|R= M |derefR

Figure 4 contains a collection of laws relating to reduction
contexts.



(IM{e =M}, z, S) > (D, M, #z:5) (Lookup)

(0, V, #z:S)y > (T'{z =V}, V, S) (Update)

(T, Mz, S) > (T, M, z:S) (Unwind)

(D, Ae. M, y:S)y—= (T, M[Y,], S) (Subst)

(T, case M of alts, S) = (I', M, alts: S) (Case)
(L, ¢; 4, {cidi » N;}:S) = (T, Nj[g/@*j], S) (Branch)
(T, let {# =M} in N, S) —» (T{# =M}, N, S) &4 dom(T,S) (Letrec)
(I, M5N, S) - (', M, ;N):S) (Seql)

(I, V, GN) = §) = (L, N, S) (Seq2)

(D, ref M, S) = (I{z =M}, refz, S) z ¢ dom(T,S) (Ref)

(T, deref M, S) — (T, M, deref : S) (Deref1)

(T, refz, deref : S) = (T, z, S) (Deref2)

(I, M=N, S)—=>(I', M, (=N):S) (RefEq)

(T, refa, (= N):S) = (T, N, (tefw =): ) (Reft)

(L, refy, (refz =):5) = (1,5 5) b= {:;Tsee ioftlfejw?;se (Ref?)

Figure 1: Abstract machine semantics

4.6 Laws for Strictness

In Figure 5 we present a collection of laws for refs, and stric-
ness. The term Q denote any closed term which does not
converge. For example, the “black-hole” term, letz =z inz,
would suffice as a definition for 2. € is the bottom element
of the operational approximation ordering. The last of this
collection of laws represents the transformation induced by
strictness analysis. Operationally, a term M is strict in a
free variable z if it is equivalent to 2 whenever x is bound
to €. This corresponds to the usual denotational definition
of strictness for the function Axz.M. The rule expresses that
if M is strict in  then z can safely be evaluated in ad-
vance. This repressents the typical compiler optimisation
that follows after performing strictness analysis. We sketch
the proof of this property in the next section.

4.7 Proof Techniques for Equivalence

We have presented a collection of laws for approximation
and equivalence — but how are they established? The defi-
nition of operational equivalence suffers from the standard
problem: to prove that two terms are related requires one
to examine their behaviour in all contexts. For this reason,
it is common to seek to prove a contezt lemma [Mil77] for
an operational semantics: one tries to show that to prove
M operationally approximates /N, one only need compare
their immediate behaviour. The following context lemma
simplifies the proof of many laws:

Lemma 4.1 (Context Lemma) For all terms M and N,
M T N if and only if for allT', S and substitutions o,

(T, Mo, S)} = (T, No, S){

It says that we need only consider configuration contexts of
the form (T, [], S} where the hole [-] appears only once.
The substitution o from variables to variables is necessary
here, but all the laws are closed under such substitutions, so
there is no noticeable proof burden.

The proof of the context lemma follows the same lines as
the corresponding proof for the improvement theory for call-
by-need [MS99], and it involves uniform computation argu-
ments which are similar to the proofs of related properties
for call-by-value languages with state [MT91].

Here we give a flavour of such proofs by stating a few key
properties, and outline the proof of the inference rule which
says that if a term strict in a given variable, then the it is
safe to evaluate the variable in advance.

It is useful and meaningful to allow computation over open
configurations; this is a handy way to express certain prop-
erties of computations.

Proposition 4.2

1. (Open Computation) If (T, M, Sy —* (I', N, §")
then (T'A, M, ST) —»* (I'A, N, S'T) for any
bindings A and stack T such that the corresponding
configurations are well-formed.

2. (Subcomputation) (I, M, S)| <
A VAT, M, e) =" (A, V, e) & (A, V, SN

3. (Value Stability)
If(T{x =V}, M, S) =" (A, W, €) then
{r=V}CA

4. (Reordering) If (I, M, €} =* (A, V, €) and
(A, N, e) =* (A, V', €) then there exists some I”
such that (T, N, €) = (T, V', €) and
(T, M, e) 5" (A", V, €).



The properties are established in a reasonably straightfor-
ward way by induction on the length of the computations.
The last property of the list, reordering, can be established
along the lines of Theorem 3.5.1 of [SPJ97]. Note that the

In the satement of all laws, we follow the standard conven- reordering property would not hold if we had updatable ref-
tion that all bound variables in the statement of a law are erences.

distinct, and that they are disjoint from the free variables. .
Let us illustrate the use of the context lemma and some

(Az.M)y = M[Y/,] pf the properties above in a sketch proof of the strictness
5 inference rule from figure 5.
case ¢j y of {ci & - M;} = M; [y/:z?j]
let {o =V,§=Dla]} in Clz] Zlet {a =V,7=DBVI}inC[V] 3, 0.
]
let {x = 2z, = D[z]} in C[z] Zlet {z = z, D[z]} in C[z]
R S ~ v . PrOOF. Under the assumption we will show that
— — o~ = = Z, Z
let {e =z2,7=M}in N =let {x = z,§= M[7]} in N[ /x]M Cxz;M. By the context lemma, it is sufficient to
show, for arbitrary I and S (x € domTI,S), that if

Proposition 4.3 Iflet {x = Q} in M = Q then

@ oy

Figure 2: Beta laws for call-by-need. (T, M, S)} then (T, x5 M, S)I. Assume (T, M, S){.
By (Subcomputation) and (Uniform Computation) we
know that
let {# =M}in NN, ifi4FV(N) .
S L (T, M, ) =" (A, V, €) (1)
let {# =L} inlet {f=M}inN (T, M, §)>* (A, V. $)0 @)

~let{#=L,j=M}inN
let { =let {f=L,7=DM}in N} in N’
let {z =let {Z#=M}inN,j=L}inN
Cllet {# =V} in M] = let {§ =V} in C[M]

Now, by the assumption that let {z = Q} in M = Q we ar-
gue that there must be an intermediate state:

IR

(T, M, e) =" (T, 2, T) =" (A, Vi €)

Applying the subcomputation argument again, we can see
that (I, z, €) =* (A'{x = W}, W, ¢) for some A’. By

Figure 3: Laws for dealing with lets. value stability we know that {x = W} C A, so
(A, z, €)= (A, W, €) (3)
R[case M of {pat; > N;}] = case M of {pat; - R[N;]}
Rllet {Z = M} in N] = let {Z = M} in R[N] Thus by (Reordering) (1) and (3), we know that
let {x =M} in Rlz] =2 R[M], ifz¢FV(MR) (T, z, €) =" (T", W, €) (4)
(T", M, ¢) =" (A, V, ¢€) (5)

Figure 4: Laws for Reduction Contexts. .
& And thus, by open extension we can construct the following

computation sequence:

M=NZN=M

(L, 25M, S) = (T, =, GM):S)
r = x = deref x jtrue .,
ref M = N = deref IV ;false AT W, M) = S) (by 4)
/!
ref M;N =N = (I, M, S)
ViN®N M;NCN M;MCM = (A, V, SN (by 5, 2)
Li(M;N)=(L;M);N a
LiM;N=2M;L;N
QLM 4.8 Relation to Other Calculi
Many authors have considered the semantics of functional
et {z=Q}inM=2Q languages extended with with various forms of state. The
MCaz; M approach pioneered by Felleisen et al (e.g. [FH92]) has been

to study term-based reduction-calculi. The advantage of
this approach is that it builds on the idea of a core calculus
Figure 5: Laws for Refs, Q and Strictness. of equivalences (generated by a confluent rewriting relation
on terms) which is conservatively extended with each addi-
tional language feature. The price paid for this modularity
is that the theory of equality is rather limited. The approach
we have taken — studying operational equivalence — is exem-
plified by Mason and Talcott’s work on call-by-value lambda




calculi and state [MT91]. An advantage of the operational-
equivalence approach is that it is a much richer theory, in
which induction principles may be derived that are inex-
pressible in reduction calculi.

A reduction-calculi approach to call-by-need was introduced
in [AFM™95]. An operational theory subsuming this calcu-
lus, the call-by-need improvement theory, was introduced by
Moran and Sands [MS99]. In improvement theory, the oper-
ational equivalences allow the observation of the number of
reduction steps to convergence. This makes sharing observ-
able indirectly. The approach in this paper is based closely
on the development of [MS99]. Interestingly all the laws
which do not involve refs are also “cost equivalences within
a constant factor” in the improvement theory. We have not
been able to find a cost equivalence which is not an equiva-
lence in Aref, and it would be interesting and useful if it were
possible to prove that equivalence in A.f was an extension
of cost equivalence.

There is also some work on the theory of side-effects to
non-strict languages. Odersky [Ode94] considered a min-
imal extension to the pure lambda calculus with binding
constructs for local names, and with equality of names as
their only primitive. (Pitts and Stark considered a simi-
lar extension for call-by-value [PS93] lambda calculus.) Be-
cause of the call-by-name operational model underlying this
work, it is not directly relevant to the applications we have
in mind, and the operational theory is somewhat simpler
to develop. More relevant is the recent work of Ariola and
Sabry [AS98], who consider the call-by-need lambda calcu-
lus extended with mutable state. Had we taken a reduction-
calculus approach, rather than developing operational equiv-
alence, we could have cut down their language and reduction
theory. It would not, however, have been possible to treat
e.g. strictness properties in such a reduction-theory. Their
work could be very useful to prove the correctness of an
implementation of our language.

We have only scratched the surface of the existing theory.
Induction principles would be useful — and seem straightfor-
ward to adapt from [MS99]. For techniques more specific to
the subtleties of references, work on parametricity proper-
ties of local names e.g., [Pit96], might also be adaptable to
the current setting.

5 Conclusions

We have motivated a small extension to Haskell which pro-
vides a practical solution to a common problem when manip-
ulating data structures representing circuits. The feature is
likely to be useful for other embedded description languages,
and we briefly consider two such applications below.

The extension we propose is small, and turns out to be
easy to add to existing Haskell compilers/interpreters in the
form of an abstract data-type (a module with hidden data
constructors). In fact similar functionality is already hid-
den away in the nonstandard libraries of many implemen-
tations.? A simple implementation using the Hugs-GHC
library extensions is given in the appendix. The hbc com-
piler contains a module with essentially the same signature
and functionality (plus a reference-update operation) in the
UnsafeDirty library.

2www.haskell.org/implementations/
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An important contribution of our work is to show that, in
the absence of an update operation, these features are nei-
ther “unsafe” nor “dirty”! We have presented a precise
operational semantics for this extension, and investigated
laws of operational approximation. We have shown that
the extended language has a rich equational theory, which
means that the semantics is robust with respect to program
transformations which respect sharing properties. For ex-
ample, we have shown that standard compiler transforma-
tions which use strictness analysis to turn call-by-need in to
call-by-value are still sound in this extension.

5.1 Other Applications of Observable Sharing
Here we mention two other potential applications of observ-
able sharing to other embedded description languages.

Grammars and Parsers

A popular example of an embedded description language is a
language for grammars. This is usually realised as a library
with parsing combinators [Hut92] for building more com-
plex parsers from more basic ones. Parsing combinators are
higher-order functions corresponding to grammatical con-
structs such as sequencing, alternation and repetition. Such
parsers are simple to construct and easy to understand, since
their form follows the grammar.

However, not all grammars are immediately executable
when interpreted as parsers in this style. For example, the
following grammar is left recursive:

T::=T+T|n

Executing the grammar as a parser as it stands will result in
an infinite loop, because a T will first parse a T, and so on.
This is a known problem with parser combinators (and other
top-down parsing methods), and usually one must transform
a grammar so that it is not left recursive.

An alternative idea (due to Magnus Carlsson) is the follow-
ing: if every parser had its own identity, and knew the iden-
tity of all its parents, it could detect the fact that it was used
left recursively (if it occurs as one of its own parents). In
that case, it could avoid infinite looping. We implemented
a prototype parser based on this idea, using references to
parsers.

Decision Trees

Another possible application area is decision trees. A deci-
sion tree is a binary tree with yes/no questions at its nodes
and results at the leaves. We can obtain a result by walking
down the tree and answering each question by yes or no,
taking the left or right tree accordingly.

We can make such a decision tree more efficient by remov-
ing those nodes for which both subtrees are the same. In
that case, the given answer does not matter. We can im-
plement this using references, so that the comparison of the
two subtrees only takes constant time.

type DT = Ref DecTree

Leaf Result

data DecTree =
| Node Quest DT DT



We introduce a special node creation function that checks if
the two subtrees are identical.

node :: Quest -> DT -> DT -> DT
node quest yes no
| yes <=> no = yes
| otherwise = ref (Node quest yes no)

One problem is that two subtrees might be equal, but not
identical. This happens when we create two equal trees sep-
arately. We can leave it up to the programmer to make sure
that if two trees are equal, they are shared. Another pos-
sibility is to use memo functions [CL97, PJME99] to make
sure that equal subtrees are identical. Using this idea, we
have made a simple functional implementation of Binary
Decision Diagrams (BDD’s) [Bry86]. Exploring the seman-
tic theory of extensions such as memo-tables or hashable
references remains as a topic for future work.

Acknowledgements We thank John Hughes for many
helpful discussions in the initial stages of this work. An-
drew Pitts suggested that we might be able to do without
an environment in the abstract machine — as turned out to
be the case.
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A Appendix

Here is one way we can implement our proposed extension in
a Haskell system. Since we are making a non conservative
extension to Haskell, we cannot express it using standard
Haskell contructs. Therefore, we have to use some “unsafe”
operation, called unsafePerformI0. This operation, which
is not part of the Haskell standard but supported by all
major compilers, allows the execution of impure actions by
a function that looks pure from the outside.

The only way to perform side-effecting actions in Haskell
is to embed them in the IO monad, an abstract datatype
that allows an encapsulated treatment of imperative ac-
tions. So I0 a is the type of a computation that per-
forms some side-effect and produces a result of type a. The
type of the “unsafe” operation simply hides the side-effect:
unsafePerformI0 :: I0 a -> a.

In the implementation in Figure 6 we use the IO references of
nonstandard library IOExzts, which is part of the Hugs-GHC
extension libraries.®> We implement our references by creat-
ing an abstract datatype Ref, which only supports creating,
reading and the comparison of such references.

Swww.haskell.org/libraries/
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module Ref
( Ref -- type
, ref -—:: a —> Ref a
, deref --:: Ref a -> a
, (<=>) --:: Ref a -> Ref a —> Bool
)

where

import IOExts -- The Hugs-GHC Extension Libraries

(IORef, newIORef, readIORef, unsafePerformI0)

-- Ref: the type of references
newtype Ref a = MkRef (IORef a)

—-- operations

ref :: a -> Ref a
ref x = MkRef (unsafePerformI0 (newIORef x))

deref :: Ref a -> a
deref (MkRef ref) = unsafePerformI0 (readIORef ref)

(<=>) :: Ref a -> Ref a -> Bool
(MkRef refl) <=> (MkRef ref2) = refl == ref2

Figure 6: A Possible Implementation



