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Abstract

We consider a very simple algorithm to solve large scale 0-1 integer linear
programs - and a simple heuristic to encourage convergence to an integer so-
lution - which have been very successful in commercial applications. We find
it useful to revisit its main ideas and establish its relation to several known
algorithms, including the generalized iterative scaling algorithm. We discuss
ways to relate this linear programming based approach to the max-sum prob-
lem, and show that the algorithm has a close relation to convergent message
passing algorithms for MAP-inference in graphical models such as max-sum
diffusion. We further discuss non-conflicting and conflicting max-sum con-
straint updates, show that the two algorithms match with these concepts, and
that the heuristic has a relation to the max-sum algorithm. We finally give
a brief overview of known applications, including a commercial system for
airline crew scheduling.

1 Introduction

We consider a method for solving large 0-1 integer programming problems, orig-
inally developed from the author’s experiments with probabilistic inference and
loopy belief propagation (Wedelin, 1989), and first described in Wedelin (1995).
The method has been shown to be successful in applications, including a crew pair-
ing system used by many large airlines. In this paper we structure the method in
two algorithms, the in-the-middle algorithm and the in-the-middle heuristic.

The in-the-middle algorithm is a very simple algorithm, and we introduce it with
the assignment problem (weighted bipartite matching) as an example. Consider the

1



first cost matrix of Figure 1. The assignment problem can be described as matching
n people to n tasks, so that the sum of the costs for the chosen combinations is
maximal. With binary variables the problem can be written as

max
n∑

i=1

n∑
j=1

cijxij

s.t.
n∑

i=1
xij = 1, j = 1 . . . n

n∑
j=1

xij = 1, i = 1 . . . n

xij ∈ {0, 1}

(1)

The algorithm can be described as follows. Look at the first row, find the largest
and second largest numbers (8 and 6), compute their average and subtract from the
row. This yields the next updated cost matrix. This is an invariant transformation in
that the solution does not change. Do the same for the other rows, do the same for
each column, and iteratively repeat for rows and columns until no numbers change
sign. The final result is shown in the last table, where the positive numbers indicate
a feasible and also optimal solution.

⇒

⇒... ⇒

Figure 1: In-the-middle algorithm for the assignment problem.

Before we leave the example we will remark on some details. Just subtracting the
smallest number - attempting what in linear programming is known as complemen-
tary slackness, does not work since the iteration gets stuck almost immediately. By
subtracting the average, we choose a value in-the-middle of the interval that would
give the same resulting signs, hence the name of the algorithm. The treatment of 0
and 1 is symmetric which is often not the case in linear programming.
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In addition to the review of the existing method and its applications, specific new
contributions of this paper are: A clear separation between the in-the-middle al-
gorithm and the in-the-middle heuristic, the relationship to generalized iterative
scaling including intermediate concepts, the careful presentation of the relation-
ship between the linear programming (LP) dual and the height of a max-sum prob-
lem, the relationship to max-sum diffusion, the discussion on non-conflicting and
conflicting max-sum constraint updates, the relationship to these updates, and the
relationship to the max-sum algorithm.

2 The in-the-middle algorithm for 0-1 integer program-
ming

The in-the-middle algorithm naturally generalizes to the binary integer linear pro-
gram (ILP)

max cx

Ax = b

xj ∈ {0, 1}

where aij ∈ {−1, 0, 1}, and b is integer. While a subset of integer linear program-
ming, the stated problem is NP-hard and includes well known and important prob-
lems such as set partitioning. Inequalities are handled by slack variables, which
can be implicit in an implementation.

The in-the-middle algorithm is generalized to this problem as in the following way.
Consider the reduced cost vector c̄ = c− yA, this is standard linear programming
notation. For the assignment problem example, the vector c corresponds to a vector
with the original 16 costs, the vector y corresponds to the 8 values subtracted for
the constraints and and c̄ corresponds to the updated costs.

Definition 1 We associate a current state x to any c̄, by assigning xj = 1 when
c̄j > 0, and xj = 0 when c̄j < 0. If c̄j = 0 then xj is undefined.

The algorithm proceeds by iterative updates of c̄, where each update attempts to
satisfy a single constraint, given this association.
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In-the-middle algorithm

For each constraint i in turn, update yi to make c̄ = c − yA feasible for this
constraint. Select yi in-the-middle of the possible interval. Iteratively repeat for
every constraint until a feasible solution is found.

In every step, update c̄ by updating yi := yi + ∆yi where

∆yi =
r+ + r−

2
(2)

Here, r+ is the (bi+N)’th largest ratio c̄j/aij and r− the (bi+N+1)’th largest
ratio. N is the sum of all negative coefficients aij of the constraint, so with no
negative coefficients N = 0. We denote r+ and r− as the critical values of the
constraint.

For this problem, the in-the-middle algorithm will sometimes succeed, and some-
times fail and not find a feasible solution. Note that selecting yi in the middle of
the interval [r−, r+] is a design choice - any interior point of the interval would
make the constraint feasible. For the special case r− = r+, see Section 3.

Normally, we are not seeking numerical convergence, but merely convergence to a
feasible solution, in terms of the sign of the costs, which thereafter do not change.
From this point of view we can see the algorithm as a form of local search, where
the current state x is iteratively changed until a feasible solution is found. If iter-
ation is continued, the experience is that the algorithm numerically converges to a
fixpoint.

The restrictions on the linear constraints are chosen to ensure that the two critical
variables (corresponding to the critical values), do not collapse into a single vari-
able, with the consequence that the reduced cost of that variable is forced to 0, and
the solution is undefined. However, one can always try to run the algorithm on a
wider set of constraints.

The reader who wishes to quickly get an overview of the algorithms can continue
to Section 3.

2.1 A dual interpretation

Choosing the state x as suggested is the same as solving the Lagrangian relaxation

max
0≤x≤1

cx+ y(b−Ax) = yb+ max
0≤x≤1

c̄x (3)
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Figure 2: Minimizing f(y) along one coordinate.

for a given y, where we have dualized the constraints Ax = b. Let the dual f(y)
be the value of this relaxation

f(y) = yb+ max
0≤x≤1

c̄x (4)

It is well known that finding an y so that the solution of (3) satisfies Ax = b, corre-
sponds to the unconstrained minimization of f(y), which is a convex and piecewise
linear function. More details about this function (in a minimization setting) are
given in Wedelin (1995). We here make two observations. First, satisfying a single
constraint is the same as minimizing f(y) along a single coordinate, since the two
main terms then balance each other, see Figure 2. The in-the-middle algorithm can
therefore be interpreted as a dual coordinate descent algorithm. Secondly, since
f(y) is convex it follows that if all constraints are satisfied, we have found a point
within a minimum plateau of f(y).

We remark that this coordinate descent algorithm can be interpreted in a plain LP
context, and be adapted for arbitrary Ax = b, but it would get stuck very quickly
for general problems.

The dual interpretation is useful to establish necessary conditions for when a fea-
sible solution can be found with the in-the-middle algorithm:

Theorem 1 (Wedelin, 1995) A dual y such that c̄ = c−yA gives a unique feasible
solution exists if and only if the LP-relaxation of (ILP) has a unique solution that
is also integer.

See Wedelin (1995) for the proof. There must be no more than a single optimal
solution, this is natural and trivial. That the LP-relaxation is integer is well known
to characterize easy cases of ILP, since they can then be solved by a plain LP-
algorithm. The LP-relaxation of the assignment problem is known to be tight in
this sense. So while the in-the-middle algorithm is useful for some problems, there
are also difficult problems that we cannot expect to solve in this way.

5



Another possible reason for failure of the in-the-middle algorithm has to do with
the fact that generally coordinate descent on a piecewise linear function may get
stuck and not reach the true minimum, a property that is well known and shared
with similar algorithms. On the other hand, the coordinate descent step is very
cheap compared to an iteration step in an arbitrary direction.

2.2 The relationship to the generalized iterative scaling algorithm

Iterative Proportional Fitting (Fienberg, 1970) (also called IPF, IPFP, IPS or Deming-
Stephan algorithm), is a well known iterative algorithm which in its simplest form
adjusts values in a two way contingency table to given marginals. The algorithm
proceeds by scaling each row to fit the marginals, then scaling each column to fit
its marginals, repeating until the marginals are sufficiently close. We assume this
algorithm to be known by the reader.

In Darroch & Ratcliff (1972) a generalization is described (generalized iterative
scaling, GIS), which solves a scaling problem where we from a given initial dis-
tribution q, wish to find a distribution p satisfying given linear constraints Ap = b
and the normalization constraint

∑
i pi = 1. The relationship between p and q is

pj = qjµ0
∏
i

µ
aij
i (5)

where µi is the scaling factor for constraint i of Ap = b, and where µ0 is the
scaling factor for the normalization constraint. Just as the IPF, the GIS iteratively
considers one constraint at a time, by updating the corresponding scaling factor
so that p satisfies this constraint. If a solution exists, it is known to minimize the
Kullback-Leibler divergence

H(p, q) =
∑
j

pj log pj −
∑
j

pj log qj (6)

subject to the constraints, and the GIS is known to converge if q is positive. In
(Darroch & Ratcliff, 1972) it is assumed that

∑
j pj = 1 and

∑
j qj ≤ 1, however

if the rhs of these expressions are modified to any constants,H(p, q) scales linearly
without changing fundamental results.

We model (ILP) as a scaling problem in the following way:

• We associate the variables p with the variables of (ILP), and let the con-
straints Ap = b be the same as Ax = b of (ILP). We initialize q from c as
qj = dcj , where d > 1 is a parameter.

6



• We create a binary scaling problem by adding complementary variables
p̃, and complementary constraints pj+p̃j = 1. This ensures that all pj ≤ 1,
independently of other constraints. Further, the sum of all variables

∑
j pj +∑

j p̃j will be constant for any solution, making the separate normalization
constraint redundant. We initialize p̃ with q̃, where q̃j = 1.

We observe that with this model, the sum of the second term of (6) corresponds to
the linear objective of (ILP), which for large d will dominate over the first term,
creating a close relationship between the solution to the binary scaling problem
and that of (ILP) (its LP-relaxation). However, details are non-trivial, and the rest
of this section does not depend on this observation.

We now turn to the GIS constraint update, using the constraint p1+p2+p3+p4 = 1
as an example. The constraint is satisfied by updating (5) with µi := vi µi, where
vi is determined from the equation

vi(p1 + p2 + p3 + p4) = 1 (7)

We note that this standard GIS will converge very slowly for a typical (ILP) due to
an expected huge variation in the magnitude of the qj .

In order to establish a relationship with the in-the-middle-algorithm we need to
take two important steps. The first step is to consider a new GIS-C algorithm
(C for Critical), which only takes into account two critical values p+ and p− of
the constraint, defined analogously with the critical values of the in-the-middle
algorithm. For the constraint of (7), the critical values are the two largest p-values
of p1, . . . , p4, the other p-values are taken as 0, and (7) is modified to

vi(p
+ + p−) = 1 (8)

As long as the pi are of very different order of magnitude, the so calculated vi will
be close to that of GIS.

The other important step is to simultaneously update a constraint and the comple-
mentary constraints for all variables of the constraint. So we let one accelerated
update perform the equivalent of a repeated iterative update of these single con-
straints. If we do this for the GIS-C algorithm, we receive an accelerated GIS-C
algorithm for the binary scaling problem. By considering the GIS-C and not the
GIS, the accelerated update becomes easy to compute in one step. All we need to
determine vi is to consider a subproblem with three constraints

vi(v
+ p+ + v− p−) = 1
v+(vi p

+ + p̃+) = 1
v−(vi p

− + p̃−) = 1
(9)
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The first equation corresponds to (8). The two other equations are for the comple-
mentary constraints of the critical variables, with v+ and v− as their scaling factors.
The equations for the other complementary constraints are not needed to determine
vi. We may also w.l.o.g. assume that p̃+ = p̃− = 1, i.e. that any previous scaling
of the complementary constraints is removed before the simultaneous update. In
fact, in an implementation the complementary variables and their constraints do
not need to be explicitly represented, so there is no need to actually update them.

Solving (9) for vi gives

vi =
1√
p+p−

(10)

The relationship to the in-the-middle algorithm can now be established by match-
ing c̄ = c − yA with the d-logarithm of (5) (w.l.o.g let µ0 = 1). This gives
c̄j = logd pj and yi = − logd µi. Further, r+ = logd p

+, r− = logd p
− and

∆yi = − logd vi. The d-logarithm of (10) then becomes

∆yi =
r+ + r−

2
, (11)

which is the expression for the in-the-middle algorithm. Generalization to all con-
straint types in (ILP) is straightforward. In summary, we have shown the following:
With these definitions, we have the following theorem:

Theorem 2 The in-the-middle algorithm is equivalent to the accelerated GIS-C
algorithm for the binary scaling problem.

3 The in-the-middle heuristic

We first illustrate how the in-the-middle algorithm fails when we extend the assign-
ment problem to a weighted 8-queens problem (placing 8 queens on a chessboard
so that they do not threaten each other). The ILP model is based on the assignment
problem (1), adding diagonal inequality constraints of the type x12+x23+x34 ≤ 1.
In (ILP) these are represented as equality constraints with binary slack variables.
Repeated iteration then converges to the situation of Figure 3 (the slack variables
are not shown). Here many constraints include two or more zeros. This is a fix-
point for the in-the-middle algorithm where x is undefined, so no feasible solution
is found. This behavior of the in-the-middle algorithm is characteristic also for
other difficult problems.

We will now show how we can help the algorithm to converge to a feasible solution
by adding a simple feature, see Figure 4. Relating to the assignment problem
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−0.1 0 −3.1 −0.2 −0.4 0 −0.3 −1.1
−2.2 0 −0.2 −0.3 0 −0.1 −0.1 −0.1

0 −0.1 −0.4 −2.3 −1.9 −0.2 −0.1 0
−0.2 −0.3 0 −0.2 −0.1 0 −0.5 −1.0

0 −1.1 −0.1 0 0 −0.4 −0.2 −0.3
−0.1 −0.3 0 −0.1 −1.5 −0.2 0 0

0 −0.7 −0.2 −0.8 −0.3 −0.3 −0.1 0
−0.2 −0.5 −0.1 0 −0.2 −1.2 0 −0.4



Figure 3: Convergence for 8-queens problem.

not invariant!

Figure 4: The in-the-middle heuristic.
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example, the first figure depicts the costs in the first row of the assignment problem
using bars. The next figure shows the in-the-middle update as described. Now,
the last figure shows how we heuristically move the costs away from 0 by adding
additional offsets (the red sections in the figure). This counters the observed effect
of convergence towards 0, and helps to keep the costs strictly positive or negative.

Unfortunately, the offsets have an undesirable effect in that the problem is not
invariant to this change. The offsets should therefore be as small as possible to
allow the iteration to converge to a feasible and close to optimal solution. We
can interpret this as running the in-the-middle algorithm on a problem where the
costs are modified in a non-invariant way. The heuristic can therefore be seen
as a way to disturb the problem as little as possible so that it becomes easy to
solve. An important positive side-effect is that the heuristic makes the algorithm
significantly faster, by taking larger steps in the typical zig-zag behavior of the
coordinate descent (see Wedelin (1995)).

In-the-middle heuristic (or ”Wedelin heuristic”)

Iteratively repeat for every constraint until a feasible solution is found:

1. Subtract the non-invariant offsets of the previous iteration of this constraint.

2. Update c̄ by updating yi := yi + ∆yi where

∆yi =
r+ + r−

2
(12)

3. Add the non-invariant offsets

c̄j := c̄j ± α
r+ − r−

2
(13)

for all c̄j of the constraint, so that they are moved away from 0. Remember the
change to each variable so it can be undone in the next iteration.

The exact form of the heuristic requires further explanation. Here, α ≥ 0 is a
parameter controlling the magnitude of the offsets. Using the difference between
r+ and r− is simple, and is successful empirically. It also gives the heuristic a close
relationship to the max-sum algorithm, as shown in section 5.1. An alternative
multiplicative heuristic is to multiply the costs with a suitable factor, i.e. c̄j :=
(1 + α) c̄j . This can give similar results, but is slightly slower in implementation.

The heuristic is completed by adding two important secondary features:

• Sweep strategy It is desirable to keep α as low as possible to avoid problem
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distortion, but it needs to be sufficiently high to enable convergence. Since
it is difficult to know how to set α for a given problem instance, we can
employ a sweep strategy, where we begin to iterate with α = 0 and then
slowly increase during iteration. This means that we begin by running the
plain in-the-middle algorithm, and then gradually introduce the heuristic.

• Randomization To resolve ties, we look for reduced costs close to 0, and
add small random perturbations to create asymmetry.

With these features added, the heuristic is able to find solutions to problems where
the plain in-the-middle algorithm fails. However, it shares the common property of
most heuristics, in that they do generally not provide any guarantees with regard to
their output. In this case, this is somewhat alleviated by the fact that the dual f(y)
provides an LP-based bound for the optimal solution.

In Wedelin (1995), the parameter in the heuristic is described as interpolating
between different algorithmic design principles: linear programming (α = 0),
dynamic programming (α = 1, also see Section 5.1), and a greedy algorithm
(α =∞), effectively fixing the variables to best satisfy the constraint.

4 The max-sum problem as an ILP

Working with linear costs and constraints enables the theoretical support of op-
timization theory. However, for non-linear costs and constraints represented as
tables, e.g. for statistical models, we commonly consider the max-sum problem
(in Bertele & Brioschi (1972) called a nonserial unconstrained problem, in con-
straint programming known as a Valued CSP (Schiex et al., 1995)). We define the
max-sum problem as

max
w

f(w) =
∑
k

gk(wk) + C (14)

where gk(wk) ∈ R are distinct arbitrary functions over subsets wk of w, and where
C is a constant. We call the terms components, distinguishing between variable
components with one variable, and constraint components with two or more vari-
ables.

Modeling the max-sum problem as an ILP is straightforward and well known, al-
though there can be some variations. Let the resulting ILP be the max-sum ILP.
For every table entry in every component we introduce a binary variable in the
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.

Figure 5: modeling the max-sum problem: variables, marginalization constraints
and normalization constraints.

ILP, see Figure 5 left. To model the constant C, we introduce an extra variable xc,
together with the constraint xc = 1.

We need marginalization constraints to link constraint components and variable
components, see Figure 5 middle. They are written as x1 = x5 +x6, x2 = x7 +x8
and so on.

We also need normalization constraints to ensure that exactly one value is se-
lected in each component, see Figure 5 right. We have x1 + x2 = xc, x5 + x6 +
x7 + x8 = xc and so on. Since xc = 1 we can write xc in the rhs instead of 1,
simplifying for the next section.

4.1 The height and its relation to f(y)

An upper bound for the max-sum problem can be obtained as the sum of the largest
value of each component (plus the constant C). Let this be the height of the prob-
lem (Werner, 2007). We can write the height as a function of c̄ as

h(c̄) = max
0≤x≤1,norm constr,xc=1

c̄x (15)

This actually corresponds to the Lagrangian relaxation of the max-sum ILP where
only the marginalization constraints have been dualized (the term yb disappears in
the relaxation since all dualized constraints have bi = 0). Likewise, f(y) for the
max-sum ILP simplifies from (4) to

min
y
f(y) = max

0≤x≤1,xc=1
c̄x (16)

We then receive

Proposition 3 h(c̄) = f(y) when the normalization constraints are satisfied, and
h(c̄) ≤ f(y) otherwise.
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Figure 6: Max-sum diffusion.

We see that the height is equal to f(y) for the normalized version of this problem
(i.e. after the normalization constrains are updated according to the in-the-middle
algorithm). We can then in max-sum algorithms minimize the height instead of
f(y), and not care about this trivial normalization until we so desire.

4.2 The relationship to max-sum diffusion

So one way to solve a max-sum problem is simply to run the in-the-middle al-
gorithm on the max-sum ILP. This approach is similar to an algorithm known as
max-sum diffusion, and we will now compare the two.

Max-sum diffusion is an algorithm for the max-sum problem developed by Schlesinger
et al., see Werner (2007) for a review. In comparison to the in-the middle algorithm
which operates on any set of linear constraints, max-sum diffusion, implicitly as-
sumes the max-sum problem and the normalization constraints, and updates only
the marginalization constraints.

The algorithm decreases the height by iteratively leveling out the costs between
constraint and variable components, with the help of invariant transformations (also
known as equivalence preserving transformations (Werner, 2007; Cooper et al.,
2000; Cooper, 2008), this is the same as changing y in the max-sum ILP). In one
update, it updates the marginalization constraints between one variable component
and one constraint component so that the max-marginals of these components be-
come equal. For an example, see Figure 6 where from the initial costs (left), the
row-wise marginalization constraints are updated with max-sum diffusion (mid-
dle), and the in-the-middle algorithm (right).

We see that the update of the in-the-middle algorithm is different to that of max-
sum diffusion for the upper row, but identical for the lower row. The two algorithms
both consider two critical values for each constraint, and updates with the help of
their average. But in the constraint of the upper row the in-the-middle algorithm
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identifies the two values in the constraint component as critical - this can never
happen with max-sum diffusion. However, we can eliminate this possibility by
an invariant transformation of the normalization constraints so that all costs of the
max-sum problem (except C) become negative. Max-sum diffusion is fundamen-
tally unaffected by this change, but for the in-the-middle algorithm we have have
the following theorem:

Theorem 4 If all costs are negative, running the in-the-middle algorithm on the
marginalization constraints is equivalent to max-sum diffusion.

Proof sketch For the marginalization constraint −x1 + x5 + x6 = 0, we shall
according to the definition of the in-the-middle algorithm select the the critical
values as the two largest values of−c1, c5 and c6. If all costs are negative,−c1 and
the largest of c5 and c6 will always be selected. These values are also used by max-
sum diffusion, and both algorithms will apply the same invariant transformation to
make these values equal. The costs will remain negative also after the update, so
the in-the-middle algorithm will continue to behave exactly as max-sum diffusion.
2

This observation also establishes a link between max-sum diffusion and the GIS
algorithm, via the in-the-middle algorithm as described in section 2.2.

5 Non-conflicting and conflicting constraint component up-
dates

Rather than solving the max-sum problem by just seeing it as an ILP, another nat-
ural approach is to design a constraint component update, and in one step solve a
subproblem consisting of a single constraint component and all its associated vari-
able components. This can be interpreted as a simultaneous update of all involved
linear constraints in the max-sum ILP with invariant transformations.

This is similar to what is common in constraint programming and belief propa-
gation. Like in constraint programming, this is also a path towards finding very
efficient specialized update algorithms for constraints with special structure, in-
cluding more general linear constraints than what can be handled directly with the
in-the-middle algorithm.

The purpose of this section is to clarify the nature of such updates, and establish
when max-sum constraint updates lead to exact or to heuristic algorithms. This is
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Figure 7: A basic non-conflicting update.

useful in itself, and for further understanding the in-the-middle approach in Section
5.1.

We first consider properties of a solution to the max-sum problem.

Definition 2 A variable component solution selects a maximum value from every
variable component.

If all variable components have unique maxima, it is trivial to see the variable com-
ponent solution. A variable component solution is not guaranteed to be optimal.

Definition 3 (adapted from Grohe & Wedelin (2007)) A non-conflicting solu-
tion selects a maximum value from every component (both variable and constraint
components). Otherwise the solution is conflicting.

Proposition 5 If a non-conflicting solution exists, it is optimal. Its value is equal
to the height of the max-sum problem, which is then minimal.

The last definition is related to the notion of arc consistency as described in e.g.
(Cooper, 2008) for valued and weighted CSP’s. It helps us to think directly about
a desirable property of a solution, and is related to the notion of complemen-
tary slackness in linear programming. In contrast, arc consistency more abstractly
refers to a property of the problem. Generally these concepts are descriptions of
what the max-sum problem and its solutions look like when the height - or a similar
quantity - is minimized.

Now suppose that we would like to find a variable component solution with invari-
ant transformations. A natural goal for a general constraint component update is
then to find an optimal solution to the subproblem and unambiguously reveal that
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solution in the variable components. This can be straightforwardly done in two
steps (see Figure 7):

1. Move in the costs of the variable components to the constraint component.
Any locally optimal solution is now apparent by inspecting the constraint
component.

2. Move out costs to the variable components so that they uniquely indicate the
optimal solution.

After step 1, there is always a locally optimal and non-conflicting solution (the 8 in
the example, variable components are uniform), and the height is locally minimal.

As long as just a little is moved out in step 2, the best combination is still largest
in the constraint component, the variable component solution is non-conflicting,
and the height is still minimal. We call this a non-conflicting update (adapted
from Grohe & Wedelin (2007)). With non-conflicting updates for all constraint
components, it follows that if a solution is found it will be non-conflicting and
therefore globally optimal (this holds e.g. for max-sum diffusion).

If a lot is moved out, the non-conflicting solution disappears and the height is no
longer minimal. The reason is that when we move out to more than one variable,
the best value in the constraint component decreases more than any other value.
This is illustrated in the last table of Figure 7, which corresponds to the max-sum
algorithm, moving out the max-marginals. The variable component solution is
optimal for the subproblem, but it is conflicting. With such conflicting updates
for all constraint components we obtain a heuristic, in the sense that the variable
components may converge to a solution which is not globally optimal (as is well
known e.g. for the loopy max-sum algorithm). Intuitively, this can happen because
the conflicting updates can hide much of the problem in the constraint components.

A natural possibility is to move out as much as possible while still keeping the
non-conflicting solution. Moving out more can be expected to improve the speed
of convergence. The limit is reached when the max-marginals of the constraint
component are uniform, we call this a uniform non-conflicting update.

The main purpose of the paper is not to detail how to best design general constraint
updates, but we mention a few points. Even for the uniform non-conflicting update
there is a design choice in how to move out, since if we move out a lot to one
variable component, we can normally move out less to another. We can do this in
a fair way like for the in-the-middle algorithm, where we maximize the distance
to 0 for all costs. Then, if a non-conflicting solution does not exist (existence
can be established with theorem 1), conflicting updates are necessary to find a

16



variable component solution heuristically. Here, the ideas of the in-the-middle
heuristic can be directly applied. Non-uniqueness can be handled with noise. We
note that a different non-heuristic way to solve the max-sum problem, is to attempt
to minimize the height with non-conflicting updates, and then apply branching
strategies rather than heuristics (Cooper et al., 2000; Cooper, 2008), an approach
that is also common for ILP.

5.1 In-the-middle as constraint component updates, and the relation-
ship to the max-sum algorithm

We are now in a position to ask what kind of update the in-the-middle algorithm
corresponds to, if we see it as a constraint component update. To enable the com-
parison, we model (ILP) as a max-sum problem in the following way. We model
the variables of (ILP) with binary variable components, and set the two variable
component values to 0 and cj . We further match each linear constraint of (ILP)
with a constraint component by suitably setting the values of the constraint com-
ponent to 0 or−∞. To avoid confusion, we note that we model (ILP) as a max-sum
problem, for which invariant transformations are enabled by a different and larger
max-sum ILP.

Theorem 6 The update of the in-the-middle algorithm is a uniform non-conflicting
update.

Proof idea In the constraint component update, we can move out values to c̄j in the
variable components so that it corresponds to the in-the-middle algorithm. Because
of the equality of the linear constraint, and that the same value yi is used for all
variables, all feasible values of the constraint component will have the same value
yibi after the update. These values are distributed in the constraint component so
that all marginals become equal. 2

So, if we should begin to investigate max-sum constraint updates along the lines of
Section 5, and then consider specialized updates for simple linear constraints, we
would arrive at the same in-the-middle algorithm that is now the starting point of
this paper. Within this framework we can also seamlessly mix fast in-the-middle
updates for linear constraints, and constraint component updates for other con-
straints, providing flexibility in modeling different kinds of problems.

In the same way, we can see what the in-the-middle heuristic corresponds to if seen
as a constraint component update:

Theorem 7 The update of in-the-middle heuristic with α > 0, is a conflicting
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update. For α = 1 the heuristic is equivalent to the loopy max-sum algorithm.

Proof sketch The first part is trivial and follows from the fact that we move out
more than in theorem 6. For α = 1, we consider the constraint x1 + x2 + x3 = 1.
If the costs for the variables are c1 ≥ c2 ≥ c3 then r+ = c1 and r− = c2. For
the heuristic, the effect of the update for α = 1 is to subtract r− to the costs that
shall be positive, and subtract r+ to the costs that shall be negative. The net result
is that the new costs after the update are c̄1 = c1 − c2, c̄2 = c2 − c1, c̄3 = c3 − c1.
For max-sum, if we let a constraint component over binary variables describe the
linear constraint and move in the costs c1, c2 and c3 the max-marginal differences
for these components give exactly the same numbers (since we from each cost shall
subtract the largest of the other costs). The argument generalizes straightforwardly
to other linear constraints. �

6 Applications of the in-the-middle heuristic

The in-the-middle heuristic was first developed to solve optimization problems in
airline crew scheduling (Gopalakrishnan & Johnson, 2005; Andersson et al., 1998;
Barnhart et al., 2003; Ernst et al., 2004). This problem concerns the the creation
of a schedule with pairings (crew routes), where each pairing is a round trip of
flight legs (non-stop flights) from a crew base and back again. The objective is
to minimize total crew cost, subject to the restriction that every flight leg receives
a crew. This is a major problem for any airline, where a 1 percent savings may
amount to many millions of dollars yearly, and a successful crew system may save
many times that, compared to previous practice.

The actual optimization problem is to select a subset of pairings from a large num-
ber of possible pairings. This can be modeled as an extended set covering problem
(Caprara et al., 2000), where variables correspond to pairings, and constraints of
the form Ax ≥ 1 express that every flight leg requires at least one crew. Numer-
ous additional constraints are required. some of which fall outside the form given
by (ILP), and are of a more general knapsack form. Problem sizes can range up
to millions of variables and tens of thousands of constraints. For this application,
(Wedelin, 1995; Andersson et al., 1998; Alefragis et al., 2000) describe an opti-
mized implementation of the in-the-middle heuristic with extensions for different
kinds of constraints, known as the paqs optimizer. The optimizer is integrated in
the Jeppesen (formerly Carmen) Crew Pairing System which is used by many of
the world’s large airlines. It includes an active set strategy, where iteration is more
frequent within the most critical parts of the problem, and parallel computation.
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The system and its optimizer has been running for more than 20 years, and the
in-the-middle optimizer itself is regularly benchmarked against other state of the
art integer optimizers such as CPLEX and XPRESS-MP.

The in-the-middle heuristic - in the literature sometimes referred to as the Wedelin
heuristic - has also been shown to be efficient in several other contexts. In Bastert
et al. (2010) several generalizations are suggested, and many implementation de-
tails are given. The paper also presents experiments on a large number of integer
programming problems from mixed sources. These show that the heuristic finds
comparable or better solutions than other state-of-the-art heuristics, typically need-
ing only a fraction of their running time, and often finds integer solutions faster than
what LP-algorithms require to find the LP-solution.

For a vehicle scheduling application, Ernst. et al. (2011) reports that the heuristic
not only creates good schedules but also provides very good lower bounds. Other
references include Atamturk et al. (1995); Mason (2002); Miura et al. (2009), who
all confirm the effectiveness of the heuristic. The in-the-middle heuristic has also
been implemented in commercial optimization software such as XPRESS-MP and
SAS.

7 Conclusions and discussion

We have presented the in-the-middle algorithm and the in-the-middle heuristic.
The former is LP-based, the latter can find non-trivial integer solutions and also
significantly speed up convergence. We have provided a new analysis showing the
relationship to other algorithms (GIS, max-sum diffusion, max-sum algorithm),
and outlined relevant concepts for relating to the max-sum problem and general-
izing to constraint component updates. Beyond specific results, we like to think
that this opens up for exploring new related algorithms and relationships. (For a
specific list of contributions of this paper, see the introduction.)

With respect to the overall modeling approach, we have found it useful to have
linear constraints as a starting point (ILP, in-the-middle, GIS), rather than the max-
sum problem, since analysis of the latter anyway seems to lead to the former. Our
analysis also shows that in-the-middle and max-sum updates can be freely mixed,
dissolving any sharp distinction between ILP and the max-sum problem. In Grohe
& Wedelin (2007), one of the cited references contains an example of solving a
crossword puzzle equivalent to a simple substitution cipher, using bigram statis-
tics. The problem is straightforwardly modelled as a hybrid ILP/max-sum prob-
lem, and is solved with an adaptation of the in-the-middle algorithm (no heuristic
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was required in this case).

We also comment on the general relationship between belief propagation and lin-
ear programming, which has been the topic of much research in recent years see
e.g. Wainwright et al. (2005); Kolmogorov (2006); Wainwright & Jordan (2007).
For the in-the-middle approach this relationship is obvious, with the clear sepa-
ration between the non-heuristic in-the-middle algorithm (a dual LP algorithm),
and the parameter-controlled in-the-middle heuristic. We have also shown that the
two algorithms match with the more general concepts of non-conflicting and con-
flicting updates, which for the max-sum problem draws the line between exact LP
algorithms and heuristics.

The power of the approach comes not only from the fact that it is LP-based, but
also from the fact that the heuristic is able to find integer solutions when the LP-
relaxation is fractional. This matches well with the established experience in opti-
mization, where LP-based heuristics are common. In comparison, the loopy max-
sum algorithm is already a heuristic since its updates are conflicting. This means
that its LP-related aspects are not clearly visible, and we may have to handle con-
vergence by making the updates less conflicting e.g. by some form of attenuation.
However, also here, it is not just some relationship to LP that explains its well-
known performance in solving difficult combinatorial problems, but also that its
conflicting updates help to find integer solutions when plain LP is not sufficient.

We have finally highlighted the in-the-middle heuristic as an application of coordi-
nate ascent/message passing in a major application of optimization and operations
research, which has been in commercial use for many years. The effectiveness of
the approach has been reported also in other benchmarks and applications. De-
pending on the application, it may be of interest to combine with other approaches,
so the full usefulness cannot easily be assessed in isolation. For example, if an
exact algorithm is desired, an algorithm such as the in-the-middle heuristic can be
used to quickly provide both dual bounds and feasible integer solutions, improving
the efficiency of a branch and bound search.
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