
Inductive De�nitions and Type Theory

an Introduction

Thierry Coquand

Preliminary draft for the TYPES Summer School, August 1999

1 A Normalisation Proof of G�odel's System T

G�odel system T is one of the simplest type system with one inductive de�nition. In this section,

we present a proof of normalisation for head-reduction and closed terms. This proof uses as a main

tool one inductive de�nition, of being reducible or computable at type N .

In order to present a complete proof (in particular, to be completely precise about bound vari-

ables) we use a simple form of explicit substitution. The proof is formulated in such a way that

it follows the following computational interpretation: an object u of type N is a (well-founded)

method that will eventually gives 0 or S u

1

with u

1

method of type N . A method of type � ! �

is a method that applied to a method of type � with gives a method of type �.

The goal of the argument is to prove that all closed terms are correct methods in this sense.

For doing this, we have to explain what should be the meaning of an open term as well: it should

correspond to an hypothetical method. Explicit substitutions are also used to explain this notion.

1.1 G�odel's system T

The types are inductively de�ned as being N or of the form � ! �: A context �;�; : : : is a set of

typed variables x

1

: �

1

; : : : ; x

n

: �

n

with x

1

; : : : ; x

n

distinct. The typing rules are the following

� � ` x : � if x : � is in �;

� � ` 0 : N;

� � ` S t : N if � ` t : N;

� � ` t t

0

: � if � ` t : �! � and � ` t

0

: �;

� � ` �x t : �! � if x does not appear in � and �; x : � ` t : �;

� � ` f

a;b

: N ! � if � ` a : � and � ` b : N ! �! �.

We recall that � ! �

1

! �

2

should be read � ! (�

1

! �

2

). If we have � ` t : � then t

represents an hypothetical method of type � with free variables �: If � = x

1

: �

1

; : : : ; x

n

: �

n

and

u

i

is a closed expression of type �

i

then we say that the substitution = (x

1

= u

1

; : : : ; x

n

= u

n

) is

a (closed) instantiation of �: We can then form the instantiation t of the method t and we get a

closed expression of type �: Recursively, the closed expressions are hence described by the following

clauses:

� 0 is a closed expression of type N ,

1

� S u is a closed expression of type N , if u is a closed expression of type N ,

� u u

0

is a closed expression of type �, if u; u

0

are closed expressions of type � ! �; � respec-

tively,

� t is a closed expression of type � if � ` t : � and is an instantiation of �:

We describe next the head-reduction on closed expressions:

� 0 ! 0;

� (S t) ! S (t);

� (�x t) u! t(; x = u);

� u u

0

! u

1

u

0

if u! u

1

,

� f

a;b

 0! a;

� f

a;b

 (S u) ! b u (f

a;b

 u);

� f

a;b

 u! f

a;b

 u

1

if u! u

1

:

As usual, let us write !

�

for the reexive transitive closure of ! : We de�ne inductively the

predicate R

N

u which expresses that the closed expression u is reducible or computable of type N :

u!

�

0

R

N

u

u!

�

S u

1

R

N

u

1

R

N

u

and we de�ne recursively on the type � what it means to be reducible at any type: R

�!�

u means

that R

�

u

0

implies R

�

(u u

0

):

1.2 All terms are computable

The proofs is divided in two lemmas.

Lemma 1: If R

�

u

0

and u! u

0

then R

�

u.

Corollary: If R

�

u

0

and u!

�

u

0

then R

�

u.

Lemma 2: If x

1

: �

1

; : : : ; x

n

: �

n

` t : � and R

�

i

u

i

then we have R

�

t(x

1

= u

1

; : : : ; x

n

= u

n

):

Theorem: All closed expressions are reducible.

Let us prove the theorem, assuming �rst lemma 2. We do an induction on the form of a closed

expression v:

� v = 0 is reducible by de�nition,

� v = S u, by induction hypothesis, u is reducible, hence so is v;

� v = u u

0

by induction hypothesis, both u and u

0

are reducible, hence so is v;

� v = t(x

1

= u

1

; : : : ; x

n

= u

n

); by induction hypothesis all u

1

; : : : ; u

n

are reducible, hence, by

lemma 2, so is v.

2

Hence the theorem is easily proved if we have already lemma 2. The proof of lemma 1 and its

corollary are left as exercices: to prove lemma 1, do �rst an induction on the type � and then in

the base case where � = N an induction on the de�nition of R

N

: A predicate on expressions that

satis�es the statement of lemma 1 is called saturated.

We prove now the key lemma 2. This is proved by induction on t:

� t = x

i

; then we have t ! u

i

; by hypothesis u

i

is reducible, and hence t is reducible using

lemma 1,

� t = 0; then we have 0 ! 0; and hence R

N

(0) by de�nition of R

N

,

� t = S t

0

; then we have (S t

0

) ! S (t

0

); but t

0

 is reducible by induction hypothesis, and

hence so is t,

� t = �x t

0

is of type �! �; then we have (�x t

0

) u! t

0

(; x = u); for any reducible u of type

�: By induction hypothesis t

0

(; x = u) is reducible, and hence, by lemma 1, t u is reducible,

� t = t

1

t

2

; then t ! t

1

 (t

2

); by induction hypothesis, both t

1

 and t

2

 are reducible, hence

t

1

 (t

2

) is reducible and so is t using lemma 1,

� t = f

a;b

; then we prove that t u is reducible by induction on the proof of R

N

u: If u!

�

0 then

t u!

�

a. Since a is reducible by induction hypothesis, then so is t u by the corollary of

lemma 1. If u!

�

S u

1

with u

1

reducible then t !

�

b u

1

(t u

1

): By induction hypothesis,

t u

1

is reducible; also by induction hypothesis (on t) b is reducible. Since u

1

is reducible

we can conclude by the corollary of lemma 1.

This proof is a good example of a proof by induction. There are two induction going on there:

one is an induction on the types, and the other is the inductive de�nition of R

N

:

The advantage of such a proof is that it is rather direct to extend it to the case of other data

types. For instance, if we have a type of ordinals O = 0 j S O j L (N ! O) the de�nition of being

reducible of type O will be

u!

�

0

R

O

u

u!

�

S u

1

R

O

u

1

R

O

u

u!

�

L f (8v)R

N

v ! R

O

(f v)

R

O

u

:

1.3 Comment on ` versus !

It is interesting to compare the use of ` and the use of ! in this argument. One can consider

! as an internalisation of `, while the application of lambda-calculus is an internalisation of the

operation of instantiation. The similarity in these two operations appear also in the framework

of dependent types: if we write [x : A]B for the dependent product and �[x : A] the operation

of extending a context with a type A then the rule of product formation can be formulated as:

� ` [x : A]B i� �[x : A] ` B:

3

