Inductive Definitions and Type Theory an Introduction

Thierry Coquand
Preliminary draft for the TYPES Summer School, August 1999

1 A Normalisation Proof of Gödel's System T

Gödel system T is one of the simplest type system with one inductive definition. In this section, we present a proof of normalisation for head-reduction and closed terms. This proof uses as a main tool one inductive definition, of being reducible or computable at type N.

In order to present a complete proof (in particular, to be completely precise about bound variables) we use a simple form of explicit substitution. The proof is formulated in such a way that it follows the following computational interpretation: an object u of type N is a (well-founded) method that will eventually gives 0 or $S u_{1}$ with u_{1} method of type N. A method of type $\alpha \rightarrow \beta$ is a method that applied to a method of type α with gives a method of type β.

The goal of the argument is to prove that all closed terms are correct methods in this sense. For doing this, we have to explain what should be the meaning of an open term as well: it should correspond to an hypothetical method. Explicit substitutions are also used to explain this notion.

1.1 Gödel's system T

The types are inductively defined as being N or of the form $\alpha \rightarrow \beta$. A context Γ, Δ, \ldots is a set of typed variables $x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}$ with x_{1}, \ldots, x_{n} distinct. The typing rules are the following

- $\Gamma \vdash x: \alpha$ if $x: \alpha$ is in Γ,
- $\Gamma \vdash 0: N$,
- $\Gamma \vdash S t: N$ if $\Gamma \vdash t: N$,
- $\Gamma \vdash t t^{\prime}: \beta$ if $\Gamma \vdash t: \alpha \rightarrow \beta$ and $\Gamma \vdash t^{\prime}: \alpha$,
- $\Gamma \vdash \lambda x t: \alpha \rightarrow \beta$ if x does not appear in Γ and $\Gamma, x: \alpha \vdash t: \beta$,
- $\Gamma \vdash f_{a, b}: N \rightarrow \alpha$ if $\Gamma \vdash a: \alpha$ and $\Gamma \vdash b: N \rightarrow \alpha \rightarrow \alpha$.

We recall that $\alpha \rightarrow \alpha_{1} \rightarrow \alpha_{2}$ should be read $\alpha \rightarrow\left(\alpha_{1} \rightarrow \alpha_{2}\right)$. If we have $\Gamma \vdash t: \alpha$ then t represents an hypothetical method of type α with free variables Γ. If $\Gamma=x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}$ and u_{i} is a closed expression of type α_{i} then we say that the substitution $\gamma=\left(x_{1}=u_{1}, \ldots, x_{n}=u_{n}\right)$ is a (closed) instantiation of Γ. We can then form the instantiation $t \gamma$ of the method t and we get a closed expression of type α. Recursively, the closed expressions are hence described by the following clauses:

- 0 is a closed expression of type N,
- $S u$ is a closed expression of type N, if u is a closed expression of type N,
- $u u^{\prime}$ is a closed expression of type β, if u, u^{\prime} are closed expressions of type $\alpha \rightarrow \beta, \alpha$ respectively,
- $t \gamma$ is a closed expression of type α if $\Gamma \vdash t: \alpha$ and γ is an instantiation of Γ.

We describe next the head-reduction on closed expressions:

- $0 \gamma \rightarrow 0$,
- $(S t) \gamma \rightarrow S(t \gamma)$,
- $(\lambda x t) \gamma u \rightarrow t(\gamma, x=u)$,
- $u u^{\prime} \rightarrow u_{1} u^{\prime}$ if $u \rightarrow u_{1}$,
- $f_{a, b} \gamma 0 \rightarrow a \gamma$,
- $f_{a, b} \gamma(S u) \rightarrow b \gamma u\left(f_{a, b \gamma} u\right)$,
- $f_{a, b \gamma} u \rightarrow f_{a, b \gamma} u_{1}$ if $u \rightarrow u_{1}$.

As usual, let us write \rightarrow^{*} for the reflexive transitive closure of \rightarrow. We define inductively the predicate $R_{N} u$ which expresses that the closed expression u is reducible or computable of type N :

$$
\frac{u \rightarrow^{*} 0}{R_{N} u} \quad \frac{u \rightarrow^{*} S u_{1} \quad R_{N} u_{1}}{R_{N} u}
$$

and we define recursively on the type α what it means to be reducible at any type: $R_{\alpha \rightarrow \beta} u$ means that $R_{\alpha} u^{\prime}$ implies $R_{\beta}\left(u u^{\prime}\right)$.

1.2 All terms are computable

The proofs is divided in two lemmas.
Lemma 1: If $R_{\alpha} u^{\prime}$ and $u \rightarrow u^{\prime}$ then $R_{\alpha} u$.
Corollary: If $R_{\alpha} u^{\prime}$ and $u \rightarrow^{*} u^{\prime}$ then $R_{\alpha} u$.
Lemma 2: If $x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n} \vdash t: \alpha$ and $R_{\alpha_{i}} u_{i}$ then we have $R_{\alpha} t\left(x_{1}=u_{1}, \ldots, x_{n}=u_{n}\right)$.
Theorem: All closed expressions are reducible.
Let us prove the theorem, assuming first lemma 2. We do an induction on the form of a closed expression v :

- $v=0$ is reducible by definition,
- $v=S u$, by induction hypothesis, u is reducible, hence so is v,
- $v=u u^{\prime}$ by induction hypothesis, both u and u^{\prime} are reducible, hence so is v,
- $v=t\left(x_{1}=u_{1}, \ldots, x_{n}=u_{n}\right)$, by induction hypothesis all u_{1}, \ldots, u_{n} are reducible, hence, by lemma 2 , so is v.

Hence the theorem is easily proved if we have already lemma 2 . The proof of lemma 1 and its corollary are left as exercices: to prove lemma 1, do first an induction on the type α and then in the base case where $\alpha=N$ an induction on the definition of R_{N}. A predicate on expressions that satisfies the statement of lemma 1 is called saturated.

We prove now the key lemma 2. This is proved by induction on t :

- $t=x_{i}$, then we have $t \gamma \rightarrow u_{i}$; by hypothesis u_{i} is reducible, and hence $t \gamma$ is reducible using lemma 1,
- $t=0$, then we have $0 \gamma \rightarrow 0$, and hence $R_{N}(0 \gamma)$ by definition of R_{N},
- $t=S t^{\prime}$, then we have $\left(S t^{\prime}\right) \gamma \rightarrow S\left(t^{\prime} \gamma\right)$, but $t^{\prime} \gamma$ is reducible by induction hypothesis, and hence so is $t \gamma$,
- $t=\lambda x t^{\prime}$ is of type $\alpha \rightarrow \beta$, then we have $\left(\lambda x t^{\prime}\right) \gamma u \rightarrow t^{\prime}(\gamma, x=u)$, for any reducible u of type α. By induction hypothesis $t^{\prime}(\gamma, x=u)$ is reducible, and hence, by lemma 1 , $t \gamma u$ is reducible,
- $t=t_{1} t_{2}$, then $t \gamma \rightarrow t_{1} \gamma\left(t_{2} \gamma\right)$; by induction hypothesis, both $t_{1} \gamma$ and $t_{2} \gamma$ are reducible, hence $t_{1} \gamma\left(t_{2} \gamma\right)$ is reducible and so is $t \gamma$ using lemma 1,
- $t=f_{a, b}$, then we prove that $t \gamma u$ is reducible by induction on the proof of $R_{N} u$. If $u \rightarrow^{*} 0$ then $t \gamma u \rightarrow^{*} a \gamma$. Since $a \gamma$ is reducible by induction hypothesis, then so is $t \gamma u$ by the corollary of lemma 1. If $u \rightarrow^{*} S u_{1}$ with u_{1} reducible then $t \gamma \rightarrow^{*} b \gamma u_{1}\left(t \gamma u_{1}\right)$. By induction hypothesis, $t \gamma u_{1}$ is reducible; also by induction hypothesis (on t) $b \gamma$ is reducible. Since u_{1} is reducible we can conclude by the corollary of lemma 1.

This proof is a good example of a proof by induction. There are two induction going on there: one is an induction on the types, and the other is the inductive definition of R_{N}.

The advantage of such a proof is that it is rather direct to extend it to the case of other data types. For instance, if we have a type of ordinals $O=0|S O| L(N \rightarrow O)$ the definition of being reducible of type O will be

$$
\frac{u \rightarrow^{*} 0}{R_{O} u} \quad \frac{u \rightarrow^{*} S u_{1} R_{O} u_{1}}{R_{O} u} \quad \frac{u \rightarrow^{*} L f \quad(\forall v) R_{N} v \rightarrow R_{O}(f v)}{R_{O} u}
$$

1.3 Comment on \vdash versus \rightarrow

It is interesting to compare the use of \vdash and the use of \rightarrow in this argument. One can consider \rightarrow as an internalisation of \vdash, while the application of lambda-calculus is an internalisation of the operation of instantiation. The similarity in these two operations appear also in the framework of dependent types: if we write $[x: A] B$ for the dependent product and $\Gamma[x: A]$ the operation of extending a context with a type A then the rule of product formation can be formulated as: $\Gamma \vdash[x: A] B$ iff $\Gamma[x: A] \vdash B$.

