A Calculus of Definitions

1 Type theory

We describe how to implement a core type theory. This is very close to a functional programming language with λ abstraction and data types defined by constructors and functions defined by case on these data types. The difference with ordinary functional programming is that we can do computation on types.

The canonical types are either dependent product types or labelled sums.
The canonical elements are either λ-abstraction or functions defined by case or in constructor form.

We also have a universe of small types, with which we can do computation on types.
Like in any functional programming language we have a let (or where) construct, with which we can define elements by mutual recursion. It is possible in this language to define in a mutual recursive way (small) types and functions ${ }^{1}$.

Interestingly, the language now looks very much like the language Lazy ML (one precursor of Haskell), where data types are also represented as labelled sums.

[^0]
2 Some examples

$\mathrm{N}: \mathrm{U}=0 \mathrm{I} \mathrm{SN}$
(/
) : N2 $\rightarrow \mathrm{N} 2 \rightarrow \mathrm{~N} 2=(\mathrm{O} \rightarrow|\mathrm{b} \rightarrow \mathrm{O}| 1 \rightarrow>(0 \rightarrow>0 \mid 1->1))$
$\mathrm{N} 2: \mathrm{U}=0$ | 1

N1 : U = 0

NO : U = () -- empty labelled sum
$\mathrm{T}: \mathrm{N} 2->\mathrm{U}=(\mathrm{O}->\mathrm{NO} \mid 1->\mathrm{N} 1)$
neq : N -> N -> N 2 =

mutual
flist : U = Nil | Cons (a : N) (as : flist) (T (notin a as))
notin : N -> flist -> N2 =
\a -> (Nil -> 1 Cons b bs \rightarrow neq a b / Notin a bs)

W (A : U) (B : A \rightarrow) $: U=\operatorname{Sup}(\mathrm{a}: A)(f: B a->W A B)$
tree (A : U) (B : A $->$ U) (C : (a : A) $->$ B a $->$)
(d : (a : A) $\rightarrow(\mathrm{b}: \mathrm{B}$ a) $\rightarrow \mathrm{C}$ a b $\rightarrow \mathrm{A})(\mathrm{x}: \mathrm{A}): \mathrm{U}=$
$\operatorname{Sup}(y: B x)((z: C x y) \rightarrow t r e e A B C d(d x y z))$

3 Programming language

Programs

$$
M, A::=v_{k}|M M| \lambda M|\Pi A A| M D|c \vec{M}| B \mid L
$$

Definitions, Branches and Labelled Sums

$$
D::=[\vec{M}: \vec{A}] \quad B::=c_{1} M_{1}, \ldots, c_{k} M_{k} \quad L::=c_{1} \overrightarrow{A_{1}}, \ldots, c_{k} \overrightarrow{A_{k}}
$$

Environments, Contexts and Values

$$
\begin{gathered}
\rho::=()|\rho, u| D \rho \quad \Gamma::=() \mid \Gamma, V \\
u, V::=M \rho|u u| X_{l}|c \vec{u}| \Pi V V
\end{gathered}
$$

Access rules

$$
v_{0}(\sigma, u)=u \quad v_{k+1}(\sigma, u)=v_{k} \sigma
$$

and if $\rho=[\vec{M}: \vec{A}] \sigma$ then

$$
v_{i} \rho=v_{i}(\sigma, \vec{M} \rho)
$$

Evaluation rules

$$
\begin{gathered}
\left(M_{1} M_{2}\right) \rho=M_{1} \rho\left(M_{2} \rho\right) \quad(M D) \rho=M(D \rho) \\
(\Pi A F) \rho=\Pi(A \rho)(F \rho) \quad(c \vec{M}) \rho=c(\vec{M} \rho) \\
(\lambda M) \rho u=M(\rho, u) \quad\left(c_{1} N_{1}, \ldots, c_{k} N_{k}\right) \rho\left(c_{i} \vec{u}\right)=N_{i}(\rho, \vec{u})
\end{gathered}
$$

4 Type-checking rules

$$
\begin{aligned}
& \frac{\rho, \Gamma \vdash_{k} A \quad\left(\rho, X_{k}\right),(\Gamma, A \rho) \vdash_{k+1} A^{\prime}}{\rho, \Gamma \vdash_{k} \Pi A\left(\lambda A^{\prime}\right)} \quad \frac{\rho, \Gamma \vdash_{k} \overrightarrow{A_{1}} \ldots \rho, \Gamma \vdash_{k} \overrightarrow{A_{n}}}{\rho, \Gamma \vdash_{k} c_{1} \overrightarrow{A_{1}}, \ldots, c_{n} \overrightarrow{A_{n}}} \\
& \frac{\rho, \Gamma \vdash_{k}() \rightarrow \rho, \Gamma, k}{} \quad \frac{\rho, \Gamma \vdash_{k} A}{} \quad\left(\rho, X_{k}\right),(\Gamma, A \rho) \vdash_{k+1} \vec{A} \rightarrow \rho_{1}, \Gamma_{1}, l \\
& \rho, \Gamma \vdash_{k} A, \vec{A} \rightarrow \rho_{1}, \Gamma_{1}, l
\end{aligned}
$$

Rule for recursive definitions

$$
\frac{\rho, \Gamma \vdash_{k} \vec{A} \rightarrow \rho_{1}, \Gamma_{1}, l \quad \rho_{1}, \Gamma_{1} \vdash_{l} \vec{M}: \vec{A} \rho}{\rho, \Gamma \vdash_{k}[\vec{M}: \vec{A}]}
$$

Rules for elements

$$
\begin{gathered}
\frac{\rho, \Gamma \vdash_{k}():() \nu}{\frac{\rho, \Gamma \vdash M: A \nu}{\rho, \Gamma \vdash_{k} M, \vec{M}:(A, \vec{A}) \nu}} \begin{array}{c}
\frac{\rho, \Gamma \vdash \vec{M}(\vec{A}(\nu \rho)}{} \\
\rho, \Gamma \vdash_{k} N M: F(M \rho)
\end{array} \frac{\left(\rho, X_{k}\right),(\Gamma, V) \vdash_{k+1} N: F X_{k}}{\rho, \Gamma \vdash_{k} \lambda N: \Pi V F} \\
\frac{\rho, \Gamma \vdash_{k} M: V}{\rho, \Gamma \vdash_{k}: \Gamma!n} \quad \frac{\rho, \Gamma \vdash_{k} \vec{M}: \vec{A}_{i} \nu}{\rho, \Gamma \vdash_{k} c_{i} \vec{M}: L \nu} \\
\frac{\left(\rho, \vec{X}_{k}\right), \Gamma+\vec{X}_{k}: \overrightarrow{A_{1}} \nu \vdash_{k+l_{1}} N_{1}: F\left(c \vec{X}_{k}\right) \ldots\left(\rho, \vec{X}_{k}\right), \Gamma+\vec{X}_{k}: \overrightarrow{A_{n}} \nu \vdash_{k+l_{n}} N_{n}: F\left(c \vec{X}_{k}\right)}{\rho, \Gamma \vdash_{k} B: \Pi(L \nu) F} \\
\frac{\rho, \Gamma \vdash_{k} D \quad D \rho, \Gamma+\vec{M}(D \rho): \overrightarrow{A \rho} \vdash_{k+l} N: V}{\rho, \Gamma \vdash_{k} N D: V}
\end{gathered}
$$

where $B=c_{1} N_{1}, \ldots, c_{n} N_{n}, L=c_{1} \overrightarrow{A_{1}}, \ldots, c_{n} \overrightarrow{A_{n}}, D=[\vec{M}: \vec{A}], l=|\vec{A}|, l_{i}=\left|\overrightarrow{A_{i}}\right|$

$$
\Gamma+():() \nu=\Gamma \quad \Gamma+u, \vec{u}:(A, \vec{A}) \nu=\Gamma, A \nu+\vec{u}: \vec{A}(\nu, u)
$$

We can add a universe U of small types with computation rules $U \rho=U$.

5 Reification

Each branch B has a name f_{B} and each labelled sum L a name d_{L} associated to it.

$$
\begin{gathered}
R_{k} X_{l}=v_{k-l-1} \quad R_{k}((\lambda M) \rho)=\lambda R_{k+1}\left(M\left(\rho, X_{k}\right)\right) \quad R_{k}\left(u_{1} u_{2}\right)=R_{k} u_{1}\left(R_{k} u_{2}\right) \\
R_{k}(\Pi V F)=\Pi\left(R_{k} V\right)\left(R_{k} F\right) \quad R_{k}(c \vec{u})=c\left(R_{k} \vec{u}\right) \\
R_{k}(B \rho)=f_{B}\left(R_{k} \rho\right) \quad R_{k}(L \rho)=d_{L}\left(R_{k} \rho\right) \\
R_{k}()=() \quad R_{k}(\rho, u)=\left(R_{k} \rho, R_{k} u\right) \quad R_{k}(D \rho)=R_{k} \rho
\end{gathered}
$$

6 Projection and conversion

In order to get η-conversion, we introduce the projection functions

$$
\begin{aligned}
& \mathrm{p} L \rho(c \vec{u})=c(\mathrm{q} \vec{A} \rho \vec{u}) \quad \text { with } \quad c \vec{A} \text { in } L \\
& \mathrm{p} L \rho k=k \\
& \mathrm{p}(\Pi a f) w=x \mapsto \mathrm{p}(f(\mathrm{p} a x))(w(\mathrm{p} a x)) \\
& \mathrm{p} \mathrm{U}_{j} L \rho=L \rho \\
& \mathrm{p} \mathrm{U}_{j}(\Pi a f)=\Pi\left(\mathrm{p} \mathrm{U}_{j} a\right)\left(\left(\mathrm{p} \mathrm{U}_{j}\right) \circ f \circ(\mathrm{p} a)\right) \\
& \mathrm{p} \mathrm{U}_{j} \mathrm{U}_{i} \quad=\mathrm{U}_{i} \quad \text { if } \quad i<j \\
& \mathrm{p} \mathrm{U}_{j} k=k \\
& \mathrm{p} k k^{\prime}=k^{\prime} \\
& \mathrm{q}() \rho() \quad=\quad() \\
& \mathrm{q}(A, \vec{A}) \rho(u, \vec{u})=v, \mathrm{q} \vec{A}(\rho, v) \vec{u} \text { where } v=\mathrm{p}(A \rho) u
\end{aligned}
$$

and when introducing a fresh value v_{k} of type $A \rho$ we use $\mathrm{p}(A \rho) v_{k}$ instead.

$7 \quad$ Infinite structures

The main idea is to use closure to represent infinite structures. We use it already to represent recursive data types and recursively defined functions, and we use it now to represent streams.

A first attempt would be to have a notion of "lazy" constructors so that ($c M$) ρ is canonical. For a "strict" constructor ($c M) \rho$ reduces to $c(M \rho)$. From the user point of view, each constructor is used in a "generative" way. This means that if we define

$$
\omega=s \omega \quad \omega_{1}=s \omega_{1}
$$

then ω and ω_{1} are not convertible.
However it is then not possible to give good sense of dependent case. For instance if we define the type $\Omega=s \Omega$ and $\omega: \Omega$ by $\omega=s \omega$ then we cannot typecheck

$$
f:(x: \Omega) \rightarrow C(x) \quad f(s y)=b
$$

since b should have type $C(s y)$.

8 New terms

We extend the syntax of our language with

$$
M, A::=l_{1}: A_{1}, \ldots, l_{n}: A_{n}\left|l_{1}=M_{1}, \ldots, l_{n}=M_{n}\right| M . l
$$

with the new computation rules

$$
(M . l) \rho=M \rho . l \quad\left(l_{1}=M_{1}, \ldots, l_{n}=M_{n}\right) \rho . l_{i}=M_{i} \rho
$$

and the new typing rules

$$
\begin{gathered}
\frac{\rho, \Gamma \vdash_{k} A_{1} \ldots \rho, \Gamma \vdash_{k} A_{n}}{\rho, \Gamma \vdash_{k}\left(l_{1}: A_{1}, \ldots, l_{n}: A_{n}\right)} \\
\frac{\rho, \Gamma \vdash_{k} M_{1}: A_{1} \nu \ldots \rho, \Gamma \vdash_{k} M_{n}: A_{n} \nu}{\rho, \Gamma \vdash_{k}\left(l_{1}=M_{1}, \ldots, l_{n}=M_{n}\right):\left(l_{1}: A_{1}, \ldots, l_{n}: A_{n}\right) \nu} \quad \frac{\rho, \Gamma \vdash_{k} M:\left(l_{1}: A_{1}, \ldots, l_{n}: A_{n}\right) \nu}{\rho, \Gamma \vdash_{k} M . l_{i}: A_{i} \nu}
\end{gathered}
$$

This is a good modularity test. We don't have to change the other clauses (in particular the clauses for checking recursive definitions).

9 Examples

We can define the type of streams stream $A=(h d: A, t l:$ stream $A)$. The constant stream 0 of type stream N would be $0 s=(h d=0, t l=0 s)$. Then $0 s . t l$ and $0 s$ are convertible.

One can define cons a as $=(h d=a, t l=a s)$. But notice then that if we define $u s=$ cons 0 us then the semantics of us is \perp. So the function cons cannot be used to define the constant stream 0 .

This corresponds to the syntactical fact that the normal form of $0 s$ is finite and is

$$
(h d=0, t l=0 s) D
$$

where D is the definition $0 s=(h d=0, t l=0 s)$ while the normal for of $u s$ would be the infinite expression

$$
(h d=a, t l=a s)(a=0, a s=(h d=a, t l=a s)(a=0, a s=(h d=a, t l=a s)(a=0, a s=\ldots)))
$$

[^0]: ${ }^{1}$ We can represent induction-recursion in this way.

