Forcing and non principal ultrafilter

Thierry Coquand

January 30, 2012

Abstract

The goal of this note is to present a simple proof of the fact that analysis extended with the existence of a non principal ultrafilter of natural number is conservative over analysis with dependent choice. The proof is purely syntactical and is a variation of an argument presented by Levin [1].

A.M. Levin "One conservative extension of formal mathematical analysis with a scheme of dependent choice" (1977)

Forcing over the system $HA^{\omega} + EM + DC$ (for well-ordering of the reals)

Theorem: If $HA^{\omega} + EM + DC + SUF \vdash A$ then $HA^{\omega} + EM + DC \vdash A$

The terms of the language are simply typed lambda terms. We have two basic types N (natural numbers) and N_2 (booleans). The atomic formulae are simply the terms of type N_2 . There are two terms 0, 1 of type N_2 and we identify 1 with the true formula \top and 0 with the false formula \perp .

The formulae are

$$\varphi ::= \varphi \to \varphi \mid t \mid \forall x.\varphi$$

where t is a term of type N_2 (decidable atomic formula)

We use n, m, \ldots for variables over the type N. Example: $\forall n \exists^c m. n < m$.

 $\neg \varphi$ to be $\varphi \rightarrow \perp$

 $\exists^c x.\varphi \text{ is } \neg \forall x.\neg \varphi$

The system HA^{ω} is intuitionistic with the usual rules of natural deduction and induction over natural numbers and boolean. The rule EM is $(\neg \neg \varphi) \rightarrow \varphi$ which is equivalent to $\varphi \lor \neg \varphi$. The rule DC is

$$\forall n. \forall x. \exists y. \varphi(n, x, y) \rightarrow \forall u. \exists f. \varphi(0, u, f(0)) \land \forall n. \varphi(n, f(n), f(n+1))$$

The rule CC is

 $\forall n. \exists y. \varphi(n, y) \to \exists f. \forall n. \varphi(n, f(n))$

We add a new symbol μ and new atomic formula $\mu(f)$ for f of type $N \to N_2$

We consider now the extension of the theory HA^{ω} with the axioms (we could add the selectivity axiom)

$$\begin{aligned} \mu(1) & \mu(fg) \leftrightarrow (\mu(f) \wedge \mu(g)) \\ \mu(f) \lor^c \mu(1-f) & \mu(f) \to \forall m. \exists^c n > m. f(m) \end{aligned}$$

We use letters p, q, r, \ldots to denote forcing conditions, here simply terms of type $N \to N_2$. One can think of forcing conditions as decidable subsets of \mathbb{N} .

We define a formula $p \Vdash \varphi$ by induction on φ where φ is an extended formula (which may contain the new symbol μ) and p is of type $N \to N_2$.

I(p) is $\forall n. \exists m > n. p(m)$ F(p) is $\exists n. \forall m > n. \neg p(m)$

 $\begin{array}{l} \mu(f) \to I(f) \\ p \leqslant q \text{ is } F(p(1-q)) \\ p \Vdash \mu(f) \text{ is } p \leqslant f \\ p \Vdash \varphi \text{ is } I(p) \to \varphi \text{ if } \varphi \text{ is a boolean} \\ p \Vdash \varphi_0 \to \varphi_1 \text{ is } \forall q \leqslant p.(q \Vdash \varphi_0) \to (q \Vdash \varphi_1) \\ p \Vdash \forall x.\varphi \text{ is } \forall x.(p \Vdash \varphi) \\ \text{We can add other connectives and existential quantification} \\ \text{Not needed if we are only interested in classical logic} \\ \mathbf{Proposition:} \ If \varphi_1, \dots, \varphi_n \vdash \varphi \ and \ p \Vdash \varphi_1, \dots, p \Vdash \varphi_n \ then \ p \Vdash \varphi \\ \text{Using EM} \\ \mathbf{Proposition:} \ We \ have \ p \Vdash \varphi_0 \lor^c \varphi_1 \ iff \end{array}$

 $\forall q \leq p . \exists r \leq q. \ (r \Vdash \varphi_0) \lor^c (r \Vdash \varphi_1)$

and $p \Vdash \exists^c x. \varphi$ iff

 $\forall q \leqslant p. \exists r \leqslant q. \exists^c x. \ r \Vdash \varphi$

Proposition: We have (classical version of the comprehension axiom)

 $p \Vdash (\forall n.\varphi(n,0) \lor^c \varphi(n,1)) \to \exists^c f. \forall n\varphi(n,f(n))$

This expresses that there are no more decidable functions in the extension than in the ground model

Proposition: We have (countable choice)

$$p \Vdash (\forall n. \exists^c x. \varphi(n, x) \to \exists^c f. \forall n \varphi(n, f(n)))$$

All the axioms of non principal ultrafilters are forced We have $\mathsf{HA}^{\omega} \vdash (I(p) \rightarrow \varphi) \leftrightarrow (p \Vdash \varphi)$ if φ does not mention μ $\mathsf{HA}^{\omega} + \mathsf{EM} + \mathsf{DC} + \mathsf{SUF} \vdash \varphi$ implies $\mathsf{HA}^{\omega} + \mathsf{EM} + \mathsf{DC} \vdash (\Vdash \varphi)$ and hence $\mathsf{HA}^{\omega} + \mathsf{EM} + \mathsf{DC} \vdash \varphi$ So we have a computational interpretation of non principal ultrafilters

Levin (1977) does the same with a well-ordering of the reals, which justifies also the continuum hypothesis

References

[1] A.M. Levin. One conservative extension of formal mathematical analysis with a scheme of dependent choice 1977