Normalisation for extension types

We treat only the case of the extension type $A[\psi \rightarrow a]$ and universe. The treatment of dependent product and sum is the same as before. Note that path types can be defined from extension types: the type of path between a and b can be defined as $\Pi_{i: \mathbf{I}} A[i=0 \rightarrow a, i=1 \rightarrow b]$.

For A in $\operatorname{Elem}\left(U_{n}\right)$ we have $\operatorname{Var}(A) \subseteq \operatorname{Neut}(A) \subseteq \operatorname{Norm}(A)$. If e in $\operatorname{Norm}(A)$ we write $\langle e\rangle$ its interpretation in in Elem (A).

An element of $\operatorname{Neut}(A)$ is x or $k u$ with k is $\operatorname{Elem}\left(\Pi_{C} D\right)$ and u in $\operatorname{Norm}(C)$ and $D\langle u\rangle=A$, or $k .1$ with k in $\operatorname{Elem}\left(\Sigma_{C} D\right)$ and $C=A$ or $k .2$ with k in $\operatorname{Elem}\left(\Sigma_{C} D\right)$ and $D(\langle k\rangle .1)=A$.

If u in $\operatorname{Elem}(A)$ then $\operatorname{Norm}(A) \mid u$ is the set of e in $\operatorname{Norm}(A)$ such that $\langle e\rangle=u$.
If k in $\operatorname{Neut}(A)$ and e in $\operatorname{Norm}(A) \mid\langle k\rangle$ on ψ then $k \mid \psi \rightarrow e$ in $\operatorname{Norm}(A)$ with $\langle k \mid \psi \rightarrow e\rangle=\langle k\rangle$.

0.1 Extension type

If $T=A[\psi \rightarrow u]$ we define $T^{\prime}(v)$ to be $A^{\prime}(v)[\psi \rightarrow \bar{u}]$
We define $\alpha_{T} v \bar{v}$ for $v: T$ and $v=u$ on ψ and $\bar{v}: A^{\prime}(v)$ and $\bar{v}=\bar{u}$ on ψ as $e=\alpha_{A} v \bar{v}$ in $\operatorname{Norm}(A)$. This is an element equal to $\alpha_{A} u \bar{u}$ on ψ, and so an element such that $\langle e\rangle=u$ on ψ, and thus it is in $\operatorname{Norm}(T)$.

We now have to define $\beta_{T}(k, \varphi \rightarrow \bar{v})$ which should be in $T^{\prime}(v)[\varphi \rightarrow \bar{v}]$, for k in $\operatorname{Neut}(T)$, which means k in $\operatorname{Neut}(A)$ and $\langle k\rangle=u$ on ψ, and \bar{v} in $T^{\prime}\langle k\rangle$ on ψ. We take it to be

$$
\beta_{T}(k, \varphi \rightarrow \bar{v})=\beta_{A}(k, \varphi \rightarrow \bar{v}, \psi \rightarrow \bar{u})
$$

0.2 Universe

If A in Elem $\left(U_{n}\right)$ we define $U_{n}^{\prime}(A)$ as the type of tuples $A^{\prime}, A_{0}, \alpha_{A}, \beta_{A}$ with

1. $A^{\prime}(u)$ in \mathcal{U}_{n} for u in $\operatorname{Elem}(A)$
2. A_{0} in $\operatorname{Norm}\left(U_{n}\right) \mid A$
3. $\alpha_{A} u$ in $A^{\prime}(u) \rightarrow \operatorname{Norm}(A) \mid u$ for u in Elem (A)
4. $\beta_{A}(k, \psi \rightarrow \bar{u})$ in $A^{\prime}\langle k\rangle[\psi \rightarrow \bar{u}]$ if \bar{u} in $A^{\prime}\langle k\rangle$ on ψ for k in $\operatorname{Neut}(A)$

If $\psi=\perp$ we simply write $\beta_{A}(k)$ instead of $\beta_{A}(k, \psi \rightarrow \bar{u})$.
We define $\alpha_{U_{n}} A\left(A^{\prime}, A_{0}, \alpha_{A}, \beta_{A}\right)$ to be A_{0}.
One main issue seems to be how to define $\beta_{U_{n}}\left(K, \psi \rightarrow\left(T^{\prime}, T_{0}, \alpha_{T}, \beta_{T}\right)\right)$. We can then define the interpretation $\overline{U_{n}}$ as $U_{n}^{\prime}, U_{n}, \alpha_{U_{n}}, \beta_{U_{n}}$.

For this we use in the meta theory the operation of extension of functions of a fixed codomain (also called "Glue" and "unglue"): if A is a type, and $u: T \rightarrow A$ a function only defined on ψ we can form the total type $\operatorname{Ext}(u)$ which extends T and $\operatorname{ext}(u): \operatorname{Ext}(u) \rightarrow A$ which extends u. If a in
A and t in T on ψ with $u t=a$ on ψ we can form (a, ψ, t) in $\operatorname{Ext}(u)$ such that $(a, \psi, t)=t$ on ψ and $\operatorname{ext}(u)(a, \psi, t)=a$.

We take $\beta_{U_{n}}\left(K, \psi \rightarrow\left(T^{\prime}, T_{0}, \alpha_{T}, \beta_{T}\right)\right)$ to be ($\left.X^{\prime}, X_{0}, \alpha_{X}, \beta_{X}\right)$ with the following definitions.

- $X^{\prime}(u)$ is $\operatorname{Ext}\left(\alpha_{T} u\right)$, so that we have $X^{\prime}(u)=T^{\prime}(u)$ on ψ.
$-X_{0}$ is $K \mid \psi \rightarrow T_{0}$, so that we have $X_{0}=T_{0}$ on ψ.
$-\alpha_{X} u$ is $\operatorname{ext}\left(\alpha_{T} u\right)$. Note that $\alpha_{T} u$ is of type $T^{\prime}(u) \rightarrow \operatorname{Norm}(K) \mid u$ and then $\operatorname{ext}\left(\alpha_{T} u\right)$ is of type $X^{\prime}(u) \rightarrow \operatorname{Norm}\langle K\rangle \mid u$.
$-\beta_{X}(k, \varphi \rightarrow \bar{u})$ is $\left(k_{1}, \varphi, \overline{u_{1}}\right)$ with the following definitions. We take $\overline{u_{1}}$ to be $\beta_{T}(k, \varphi \rightarrow \bar{u})$ in $T^{\prime}\langle k\rangle[\varphi \rightarrow \bar{u}]$ on ψ. We take k_{1} to be $k \mid \varphi \rightarrow \operatorname{ext}\left(\alpha_{T}\langle k\rangle\right) \bar{u}, \psi \rightarrow \alpha_{T}\langle k\rangle \overline{u_{1}}$.

