Normalisation for extension types

We treat only the case of the extension type $A[\psi \to a]$ and universe. The treatment of dependent product and sum is the same as before. Note that path types can be defined from extension types: the type of path between a and b can be defined as $\prod_{i:\mathbf{I}} A[i=0 \to a, i=1 \to b]$.

For A in $\mathsf{Elem}(U_n)$ we have $\mathsf{Var}(A) \subseteq \mathsf{Neut}(A) \subseteq \mathsf{Norm}(A)$. If e in $\mathsf{Norm}(A)$ we write $\langle e \rangle$ its interpretation in in $\mathsf{Elem}(A)$.

An element of Neut(A) is x or k u with k is $Elem(\Pi_C D)$ and u in Norm(C) and $D\langle u \rangle = A$, or k.1 with k in $Elem(\Sigma_C D)$ and C = A or k.2 with k in $Elem(\Sigma_C D)$ and $D\langle k \rangle$.1) = A.

If u in Elem(A) then Norm(A)|u is the set of e in Norm(A) such that $\langle e \rangle = u$.

If k in Neut(A) and e in Norm(A) $|\langle k \rangle$ on ψ then $k | \psi \to e$ in Norm(A) with $\langle k | \psi \to e \rangle = \langle k \rangle$.

0.1 Extension type

If $T = A[\psi \to u]$ we define T'(v) to be $A'(v)[\psi \to \overline{u}]$

We define $\alpha_T v \overline{v}$ for v : T and v = u on ψ and $\overline{v} : A'(v)$ and $\overline{v} = \overline{u}$ on ψ as $e = \alpha_A v \overline{v}$ in Norm(A). This is an element equal to $\alpha_A u \overline{u}$ on ψ , and so an element such that $\langle e \rangle = u$ on ψ , and thus it is in Norm(T).

We now have to define $\beta_T(k, \varphi \to \overline{v})$ which should be in $T'(v)[\varphi \to \overline{v}]$, for k in Neut(T), which means k in Neut(A) and $\langle k \rangle = u$ on ψ , and \overline{v} in $T'\langle k \rangle$ on ψ . We take it to be

$$\beta_T(k,\varphi\to\overline{v}) = \beta_A(k,\varphi\to\overline{v},\psi\to\overline{u})$$

0.2 Universe

If A in $\mathsf{Elem}(U_n)$ we define $U'_n(A)$ as the type of tuples $A', A_0, \alpha_A, \beta_A$ with

- 1. A'(u) in \mathcal{U}_n for u in $\mathsf{Elem}(A)$
- 2. A_0 in Norm $(U_n)|A|$
- 3. $\alpha_A u$ in $A'(u) \to \mathsf{Norm}(A)|u$ for u in $\mathsf{Elem}(A)$
- 4. $\beta_A(k, \psi \to \overline{u})$ in $A'\langle k \rangle [\psi \to \overline{u}]$ if \overline{u} in $A'\langle k \rangle$ on ψ for k in Neut(A)
- If $\psi = \perp$ we simply write $\beta_A(k)$ instead of $\beta_A(k, \psi \to \overline{u})$.

We define $\alpha_{U_n} A (A', A_0, \alpha_A, \beta_A)$ to be A_0 .

One main issue seems to be how to define $\beta_{U_n}(K, \psi \to (T', T_0, \alpha_T, \beta_T))$. We can then define the interpretation $\overline{U_n}$ as $U'_n, U_n, \alpha_{U_n}, \beta_{U_n}$.

For this we use in the meta theory the operation of extension of functions of a fixed codomain (also called "Glue" and "unglue"): if A is a type, and $u: T \to A$ a function only defined on ψ we can form the total type $\mathsf{Ext}(u)$ which extends T and $\mathsf{ext}(u) : \mathsf{Ext}(u) \to A$ which extends u. If a in

A and t in T on ψ with $u \ t = a$ on ψ we can form (a, ψ, t) in $\mathsf{Ext}(u)$ such that $(a, \psi, t) = t$ on ψ and $\mathsf{ext}(u) \ (a, \psi, t) = a$.

We take $\beta_{U_n}(K, \psi \to (T', T_0, \alpha_T, \beta_T))$ to be $(X', X_0, \alpha_X, \beta_X)$ with the following definitions.

-X'(u) is $\mathsf{Ext}(\alpha_T u)$, so that we have X'(u) = T'(u) on ψ .

 $-X_0$ is $K|\psi \to T_0$, so that we have $X_0 = T_0$ on ψ .

 $-\alpha_X u$ is $ext(\alpha_T u)$. Note that $\alpha_T u$ is of type $T'(u) \to Norm(K)|u$ and then $ext(\alpha_T u)$ is of type $X'(u) \to Norm(K)|u$.

 $-\beta_X(k, \varphi \to \overline{u})$ is $(k_1, \varphi, \overline{u_1})$ with the following definitions. We take $\overline{u_1}$ to be $\beta_T(k, \varphi \to \overline{u})$ in $T'\langle k \rangle [\varphi \to \overline{u}]$ on ψ . We take k_1 to be $k | \varphi \to \text{ext}(\alpha_T \langle k \rangle) \ \overline{u}, \psi \to \alpha_T \langle k \rangle \ \overline{u_1}$.